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Abstract

Logical reasoning, i.e., deductively inferring
the truth value of a conclusion from a set of
premises, is an important task for artificial in-
telligence with wide potential impacts on sci-
ence, mathematics, and society. While many
prompting-based strategies have been proposed
to enable Large Language Models (LLMs) to
do such reasoning more effectively, they still
appear unsatisfactory, often failing in subtle
and unpredictable ways. In this work, we
investigate the validity of instead reformulat-
ing such tasks as modular neurosymbolic pro-
gramming, which we call LINC: Logical In-
ference via Neurosymbolic Computation. In
LINC, the LLM acts as a semantic parser, trans-
lating premises and conclusions from natural
language to expressions in first-order logic.
These expressions are then offloaded to an ex-
ternal theorem prover, which symbolically per-
forms deductive inference. Leveraging this ap-
proach, we observe significant performance
gains on FOLIO and a balanced subset of
ProofWriter for three different models in nearly
all experimental conditions we evaluate. On
ProofWriter, augmenting the comparatively
small open-source StarCoder+ (15.5B parame-
ters) with LINC even outperforms GPT-3.5 and
GPT-4 with Chain-of-Thought (CoT) prompt-
ing by an absolute 38% and 10%, respec-
tively. When used with GPT-4, LINC scores
26% higher than CoT on ProofWriter while
performing comparatively on FOLIO. Further
analysis reveals that although both methods on
average succeed roughly equally often on this
dataset, they exhibit distinct and complemen-
tary failure modes. We thus provide promising
evidence for how logical reasoning over natural
language can be tackled through jointly lever-
aging LLMs alongside symbolic provers. All
corresponding code is publicly available.1

∗ Author order randomized; all reserve the right to list
their name first.

1 https://github.com/benlipkin/linc

1 Introduction

Widespread adoption of large language models
(LLMs) such as GPT-3 (Brown et al., 2020), GPT-
4 (OpenAI, 2023), and PaLM (Chowdhery et al.,
2022) have led to a series of remarkable successes
in tasks ranging from text summarization to pro-
gram synthesis. Some of these successes have en-
couraged the hypothesis that such models are able
to flexibly and systematically reason (Huang and
Chang, 2022), especially when using prompting
strategies that explicitly encourage verbalizing in-
termediate reasoning steps before generating the
final answer (Nye et al., 2021; Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2023b). However,
this reasoning ability appears to be unreliable for
tasks that require reasoning out of domain (Liang
et al., 2022; Saparov et al., 2023), understanding
negation (Anil et al., 2022), and following long
reasoning chains (Dziri et al., 2023). Furthermore,
while the standard approach of “scaling up” seems
to improve performance across some reasoning do-
mains, other domains, e.g., reasoning involving use
of Modus Tollens, show no such improvements
(McKenzie et al., 2022). These findings suggest
that such models may be relying on approximate
heuristics based on surface-level statistical patterns
in reasoning tasks, rather than consistent, gener-
alizable representations and strategies (Srivastava
et al., 2023; Creswell et al., 2023).

At the same time, the ability to accurately and
soundly perform logical reasoning is important for
AI and NLP due to its impact on downstream tasks.
For example: retrieval-augmented chatbots may
become more truthful if it can be verified that their
answers logically follow from the retrieved facts;
data-driven models capable of logical reasoning
may speed up progress across mathematics and
the sciences through automated theorem proving
and knowledge discovery; and AI tutoring systems
which ensure internal logical consistency might
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Premise:  All rectangles have four sides.
Premise:  All four-sided things are shapes.
Conclusion: Are all rectangles shapes?

<PREMISE> all x. (rectangle(x) -> foursides(x)) </PREMISE>
<PREMISE> all x. (foursides(x) -> isshape(x)) </PREMISE>
<CONCLUSION> all x. (rectangle(x) -> isshape(x)) </CONCLUSION>

<PREMISE> all x. (rectangle(x) -> foursides(x)) </PREMISE>
<PREMISE> all x. (foursides(x) -> isshape(x))) </PREMISE>
<CONCLUSION> all x. (rectangle(x) -> isshape(x)) </CONCLUSION>

<PREMISE> all x. (rectangle(x) -> foursidedthings(x)) </PREMISE>
<PREMISE> all x. (foursidedthings(x) -> isshape(x)) </PREMISE>
<CONCLUSION> all x. (rectangle(x) -> isshape(x)) </CONCLUSION>

<PREMISE> all x. (rectangle(x) -> foursides(x)) </PREMISE>
<PREMISE> all x. (foursidedthings(x) -> isshape(x)) </PREMISE>
<CONCLUSION> all x. (rectangle(x) -> isshape(x)) </CONCLUSION>

Step 2:
Logic
Theorem
Prover

True

Error

True

Unknown

Step 3:
K-Maj
Voting

True

Step 1:
Semantic
Parser

Input
Output

Sample 1

Sample 2

Sample 3

Sample N

Sample 1

Sample 2

Sample 3

Sample N

Figure 1: This figure showcases the essence of our approach. Starting from a problem in natural language, in
Step 1, the LLM semantic parser samples logic formulas expressing estimates of the semantics. It is possible that
some of these might contain errors, e.g., the second example shows a syntax error involving an extra parenthesis,
whereas the fourth example highlights a semantic error caused by mismatched predicates. In Step 2, these are then
each offloaded to an automated theorem prover, filtering out syntax errors, and producing labels for the remaining
samples. In Step 3, the remaining candidate outputs are passed through a majority-vote sieve to arrive at the best
estimate for a single output label.

make for better educational platforms, teaching
students to think more clearly and rigorously. The
question of how to enable state-of-the-art LLMs to
become more reliable logical reasoners is thus one
of great importance, with far-reaching implications.

In this work, we analyze LINC: Logical
Inference via Neurosymbolic Computation (Fig. 1).
In LINC, logical reasoning is tackled through a
modular, two-step neurosymbolic process. First,
the language model converts the natural language
premises and desired conclusion into first-order
logic (FOL) expressions (Enderton, 2001; Barker-
Plummer et al., 2011). Second, a symbolic FOL
theorem prover algorithmically determines the
truth value of the conclusion given the formalized
premises. In practice, we also incorporate a third
majority voting step, which is shown to improve
performance. LINC is a natural extension of recent
work augmenting lanugage models with symbolic
tools such as calculators or interpreters (Schick
et al., 2023).

LINC has a key advantage: the language model
itself no longer needs to perform any deductive rea-
soning, which is offloaded to the theorem prover.
However, there are also clear drawbacks: the for-
malization from natural language to first-order
logic must perfectly capture all relevant informa-
tion contained in the premises, and any loss of in-
formation in the formalization procedure may lead

the solver astray, leading to an incorrect conclusion.
As it is not clear whether the task of formalization
is more or less difficult than that of end-to-end nat-
ural language reasoning, our core interest in this
work is to compare and contrast our neurosym-
bolic approach to existing reasoning strategies like
Chain-of-Thought. Our contributions are thus
three-fold:

• First, we propose LINC, a two-stage neurosym-
bolic approach for logical reasoning tasks
(Sec. 2).

• Second, we compare LINC to three baseline
LLM strategies (Fig. 2), across three mod-
els (StarCoder+, GPT-3.5, GPT-4) and two
datasets (FOLIO and ProofWriter) (Sec. 4).
We find that LINC significantly improves per-
formance over every baseline in all experimen-
tal conditions except for GPT-4 on FOLIO.

• Third, we provide a thorough error analysis of
both LINC and Chain-of-Thought, identify-
ing three high-level failure modes of each. We
discover that these failure modes are distinct,
highlighting the potential for a synergy of the
two methods (Sec. 5).

Overall, we present strong evidence for the po-
tential of future neurosymbolic logical reasoning
systems based on integrating language models and
theorem provers.
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2 LINC: Logical Inference via
Neurosymbolic Computation

Our neurosymbolic approach to end-to-end logical
reasoning consists of two stages. In the first stage,
the LLM acts as a semantic parser, translating NL
statements into FOL expressions in our supported
logic language. In the second stage, these expres-
sions are parsed from the text generated by the
LLM and then get passed to an automated theo-
rem prover; we use Prover9, a high-performance
prover widely used in the logic community (Mc-
Cune, 2005–2010). The external solver then ex-
ecutes a symbolic deduction algorithm, which ei-
ther returns a value from the set {True, False,
Uncertain} or raises an exception due to improper
FOL syntax (e.g., if the model fails to balance
parantheses in the formulae).

At its core, the strength of this approach lies in
the reformulation of the problem space. End-to-
end NL-based reasoning allows for operation over
a highly flexible expression space, but leaves the
LLM with the difficult task of performing explicit
deductive inference over expressions in this space.
Using LINC, we instead trade off the flexible ex-
pression space of NL for syntactically strict logic
formulas, allowing us to leverage symbolic algo-
rithms with provable guarantees that the deductive
chains will be correct with respect to the semantics
of the intermediate representation. Making effec-
tive use of this reformulation thus requires the logic
expressions generated by the LLM to be 1) syntac-
tically valid, such that they are accepted by the
prover, and 2) semantically valid, such that their
evaluation results in the correct conclusion. In our
experiments, we mitigate these risks by using a K-
way majority voting procedure, which is discussed
further in Sec. 3.

The significance of this problem space refor-
mulation can—beyond the numerical increases in
performance observed across our experiments—
perhaps best be seen through an in-depth compari-
son of how LINC and traditional end-to-end LLM
reasoning approaches such as Chain-of-Thought
(CoT) fail. To foreshadow our latter analysis, we
find that compared to CoT, LINC has worse recall
but better precision on True/False predictions. We
discuss this further in Sec. 5 and highlight that this
suggests that LINC, as well as neurosymbolic com-
putation more generally, has the potential to reduce
LLM overconfidence and hallucination.

3 Experiments

In this section, we present our experimental setup,
the models we use, and the three baselines to which
we compare LINC.

Datasets: Our experiments use tasks from two
existing datasets: FOLIO (Han et al., 2022) and
ProofWriter (Tafjord et al., 2021), both of which
have been shown to be challenging for off-the-shelf
LLMs (Han et al., 2022; Creswell et al., 2023). FO-
LIO is an expert-written, open-domain, logically
complex and diverse dataset for natural language
reasoning with first-order logic. We use its val-
idation set for our evaluation. However, of the
204 samples in the validation set, we discover that
22 have errors (details in Appendix C), leaving us
with 182 examples for our evaluation. ProofWriter,
meanwhile, is a synthetically generated dataset for
logical reasoning over natural language. For our
evaluation, we use the OWA (Open-World Assump-
tion) portion of ProofWriter, since this setting best
matches that of FOLIO. Since we are running a
large number of experiments, we randomly select
360 data points to evaluate on in order to reduce
costs. We sample these in such a way that the re-
sulting data set is balanced across both the number
of reasoning steps in the shortest ground truth proof
(depth 0-5; 50 samples each) and across the three
labels (True/False/Uncertain; 120 samples each;
20 each per depth).

In-context learning examples: We hand-pick
eight diverse samples from the FOLIO training
set to be used as few-shot in-context examples.
Because ProofWriter does not come with ground
truth FOL statements, we use these eight samples
for both evaluations. Compared to FOLIO, ques-
tions in ProofWriter generally have more premises
per question (in our validation sets: an average
of 5.3 in FOLIO vs. 18.8 in ProofWriter). Thus,
our evaluation on FOLIO is an in-distribution task,
whereas ProofWriter requires generalizing out-of-
distribution to reasoning over considerably larger
sets of premises than are given in the prompt.

Majority voting: K-way majority voting, in
which K samples are taken i.i.d. from the model
and the mode is used as the final prediction, has
previously been shown to improve the performance
of prompting-based strategies in logical reasoning
tasks (Wang et al., 2023b). We implement such
a strategy in our work, with reported accuracies
reflecting K=10-way majority voting, unless oth-
erwise stated. In the case of ties between two la-
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All rectangles have four sides.
All four-sided things are shapes.
Are all rectangles shapes?

<EVALUATE>
ANSWER: True
</EVALUATE>

<EVALUATE>
NL:   All rectangles have four sides.
FOL:  all x. (rectangle(x) -> foursides(x))
NL:   All four-sided things are shapes.
FOL:  all x. (foursides(x) -> isshape(x)) 
NL:   Are all rectangles shapes?
FOL:  all x. (rectangle(x) -> isshape(x))
ANSWER: True
</EVALUATE>

<EVALUATE>
Since all rectangles have four 
sides, and all four-sided things 
are shapes, then all rectangles 
must be shapes, so True!
ANSWER: True
</EVALUATE>

<EVALUATE>
NL:   All rectangles have four sides.
FOL:  all x. (rectangle(x) -> foursides(x))
NL:   All four-sided things are shapes.
FOL:  all x. (foursides(x) -> isshape(x)) 
NL:   Are all rectangles shapes?
FOL:  all x. (rectangle(x) -> isshape(x))
</EVALUATE>

Naïve Scratchpad CoT LINC

⧺

All dogs are mammals.
Harry is a dog.
Is Harry a mammal?
<EVALUATE>
…

⧺

⧺ = string concatenation

* N ICL 
Examples

Figure 2: This figure outlines the string concatenation workflow for each of our conditions. We start with the
original problem, provide ICL examples through an intermediate markup language, and finally append the problem
to evaluate. At this stage, we allow the model to autoregressively sample until producing a stop token.

bels, we arbitrarily select the first of the two to
have been generated. We report the effect of K
on performance across our conditions and briefly
discuss trends in Appendix H.

Models: We use three models pre-trained on
both natural language and code: GPT-3.5 (Ouyang
et al., 2022), GPT-42 (OpenAI, 2023), and Star-
Coder+3 (Li et al., 2023) with a decoding temper-
ature of T = 0.8 for all experiments. We defer
model, hyperparameter, and hardware details to Ap-
pendix B. We opt for StarCoder+ for three reasons:
firstly, unlike the other models we consider, it is a
free, open-access model. Secondly, it has a dataset
search functionality4, with which we verify that
FOLIO and ProofWriter are not in StarCoder+’s
training set, giving further assurance in the validity
of our findings. Thirdly, with its 15.5B parameters
it is likely considerably smaller than GPT-3.5 and
GPT-45, allowing us to compare performance at
different model scales.

Controlled baselines: We compare LINC to
three baselines, which we call Naïve, Scratchpad,
and Chain-of-Thought (CoT), as illustrated in
Fig. 2. In the Naïve baseline, the model is given
the natural language premises and is asked to di-
rectly generate the label (True/False/Uncertain).

2We use gpt-3.5-turbo-16k-0613 and gpt-4-0613.
3https://huggingface.co/bigcode/starcoderplus
4See https://huggingface.co/spaces/bigcode/

in-the-stack and https://huggingface.co/spaces/
bigcode/search.

5Although the exact size of these models has not been
made public, their common predecessor GPT-3 was known to
have 175B parameters; see Brown et al. (2020).

In the Scratchpad baseline (Nye et al., 2021), the
model is asked to first generate FOL expressions
corresponding to the premises, and then generate
the label. This baseline is thus an ablation of LINC,
where we use the LLM instead of Prover9 as the
logic solver. Finally, in the CoT baseline, we use the
standard technique of CoT prompting (Wei et al.,
2022; Kojima et al., 2022; Wang et al., 2023b),
where the model is asked to generate step-by-step
natural language reasoning to arrive at the conclu-
sion. The prompts we use for all approaches can
be found in Appendix D.

4 Results & Discussion

Our main results are shown in Figure 3. Each bar
represents either LINC or one of the three baselines,
while each group of bars indicates the language
model used (in {StarCoder+, GPT-3.5, GPT-4}).

We note first that in the FOLIO domain (Figure
3a), StarCoder+—the smallest model we experi-
ment with—benefits the most from LINC, achiev-
ing a mean accuracy that is 14.2 points higher than
the closest controlled baseline (56.0% vs. 41.8%
with CoT). We find that Scratchpad, where the
intermediate logical formulae are still generated
but the call to the symbolic solver is ablated and
replaced by the model’s own prediction, does not
appear to benefit performance; for StarCoder+, nei-
ther Scratchpad nor the Naïve baseline perform
better than simply deterministically predicting the
most common label (“Uncertain”). For GPT-3.5,
the trend is similar, although the gap between LINC
and the closest baseline shrinks (62.6% vs. 54.9%
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(a) FOLIO.

Naive
Scratchpad

Chain-of-Thought
LINC (ours)
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43.6%
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53.1%
55.8%

72.2%

98.3%

(b) ProofWriter.

Figure 3: Results of each model on the FOLIO and ProofWriter datasets. Accuracies are for bootstrapped 10-way
majority vote for all models. Error bars are ±1 bootstrapped standard deviation. Dotted, black line is the accuracy
obtained by always guessing the most common label in the dataset.

average accuracies). For GPT-4, the trend reverses:
LINC underperforms CoT. However, we perform
a McNemar’s test (McNemar, 1947) to get the p-
value on this GPT-4 LINC vs. CoT comparison,
and we find that the difference is not significant
(p = 0.58). Meanwhile, for our balanced subset of
ProofWriter, we see significant performance gains
across the board (Figure 3b); particularly so for
GPT-3.5 and GPT-4, which achieve mean accura-
cies of 96.4% and 98.3% when paired with LINC.

In light of the high accuracies obtained with
LINC on ProofWriter, we offer two plausible rea-
sons why LINC is particularly favorable on this
dataset. Firstly, ProofWriter is—unlike FOLIO—
completely synthetically generated, with relatively
short sentences, perhaps lending itself particularly
well to being formalized in FOL. However, it is
noteworthy that the Scratchpad mode does not
seem to improve performance over the Naïve base-
line, indicating that even if the NL-to-FOL task
were particularly easy in this domain, this is not
something that the model is itself capable of lever-
aging to improve its predictions. The second reason
might be that the baseline strategies struggle in this
out-of-distribution setting, in which the model must
generalize to a larger set of premises (with poten-
tially longer deductive chains) than those found in
the prompt. This distribution shift makes it harder
for the model to ignore irrelevant premises in the
question and carry out all deductive chains cor-
rectly. Meanwhile, with LINC, the symbolic solver
robustly handles irrelevant premises and long de-
ductive chains, since the LLM only needs to trans-
late each sentence into FOL.

To test this last explanation further, we plot each
model’s performance across ProofWriter as a func-

tion of the necessary proof depth in Figure 4. We
note first that StarCoder+’s performance remains
flat and close to chance with all three baseline meth-
ods (Figure 4a). Meanwhile, with LINC the perfor-
mance remains far above chance, although it drops
somewhat as necessary proof depth increases; this
performance drop suggests that StarCoder+ strug-
gles somewhat with the NL-to-FOL translation task
as the problem at hand gets larger. For GPT-3.5,
all baselines perform above chance at proof depth
0 (i.e., where the conclusion can immediately be
reached from the premises), but then quickly drop
back down (Figure 4b). While Chain-of-Thought
prompting allows the model to complete some
depth-1 tasks, even this strategy then performs
equivalently to chance (within 1 standard deviation)
for higher depths. When augmented with LINC,
however, GPT-3.5 is able to achieve near-perfect
performance across all proof depths, providing evi-
dence for the scalability of this approach to longer
deductive chains. Finally, for GPT-4 we observe
much stronger performance from the baselines; in
particular, CoT performs above chance for all proof
depths, and all baselines perform well for shallow
proofs (Figure 4c). However, even with GPT-4 the
performance drops as the necessary proof depth
increases with every configuration except for LINC,
which performs near or at ceiling through the max-
imum proof depth available in the dataset.

5 Error Analysis

Having established that LINC can improve perfor-
mance in many settings, we now move on to our
final research question: How do the failure modes
of LINC compare to those of in-context reasoning
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(a) StarCoder+.
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(b) GPT-3.5.
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(c) GPT-4.

Figure 4: Accuracy per necessary proof depth in ProofWriter. Accuracies reported are for bootstrapped 10-way
majority vote, and shaded areas cover ±1 bootstrapped standard deviation. Black, dotted lines reflect the expected
success rate of guessing a random label, which is 1/3 in all subsets per our experiment design.

methods? We focus on comparing GPT-4+CoT vs.
GPT-4+LINC on FOLIO, since their overall perfor-
mance is very similar (75.3% vs. 72.5% average
accuracy). We leave an analysis of StarCoder+’s
predictions on FOLIO to Appendix G.

5.1 Qualitative Analysis
Qualitatively, we find that LINC and CoT have com-
pletely different failure modes. We give a high-
level overview and abbreviated examples of each
failure mode here, leaving full detailed examples
to Appendix E.

First, we detail the failure modes for LINC:
L1: FOL fails to capture implicit informa-

tion not mentioned in the premises. Often, there
is obvious information not explicitly listed in the
premises that is necessary to explicitly encode in
FOL in order to successfully make a desired deduc-
tion. For example, in the snippet below one must
encode in FOL the implicit assumption that Harry
is a person (Person(Harry)).

Premise 1: When a person reads a book, that person
gains knowledge.

FOL: all x. all y. (Person(x) & Reads(x, y) &
Book(y) -> Gains(x, Knowledge))

Premise 2: Harry read the book "Walden" by Henry
Thoreau.

FOL: Reads(Harry, Walden)

Conclusion (Prover9: Uncertain): Harry gains
knowledge.

FOL: Gains(Harry, Knowledge)

L2: FOL fails to capture information explic-
itly mentioned in the premises due to the choice
of representation. Even when information is ex-
plicitly written in the premises, the choice of how
the NL is represented in FOL can lead to lost infor-
mation. In the example below, the fact that Hein-
rich was a Nazi German politician is captured by

one symbol NaziGermanPolitician, causing the
information that he was independently Nazi, Ger-
man, or a politician to be lost. As a result, LINC
predicted Uncertain instead of the ground truth
label True.

Premise: Heinrich Scmidt was a Nazi German
politician.

FOL: NaziGermanPolitician (HeinrichSchmidt)

Conclusion (Prover9: Uncertain): Heinrich Schmidt was
German.

FOL: German(HeinrichSchmidt)

L3: FOL contains syntax errors. Across all
generations, we find that the FOL expressions
sometimes contain syntax errors: 38% for Star-
CoderPlus, 24% for GPT-3.5, and 13% for GPT-4.
The most common error is that the same symbol
is used with multiple arities. As an example, if
Summer(July4) and Loves(Alex, Summer) were
both present in a FOL translation, Summer would
have a multiple arity violation.

Next, we detail three failure modes for CoT:
C1: CoT concludes something different than

it suggests. One common mistake we often see
with the CoT approach is that it generates a chain of
reasoning indicating uncertainty, but then asserts
that the conclusion is false. An example of this is
shown below, where GPT-4 suggests there is “no
evidence” for the conclusion but then deduces it
false.

(GPT-4 Incorrect CoT): Let’s think step by step. We want
to evaluate if platypus are reptiles. We know from the
premises that platypus are mammals and that they have no
teeth. The fact that some mammals have teeth does not
contradict the fact that platypus, although mammals, do not
have teeth. Moreover, the statement about humans having
teeth is unrelated to the classification of platypus. There’s
no evidence in the premises that would suggest platypus are
reptiles. Therefore, the statement is false.
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Figure 5: Analyzing and comparing the mistakes made by GPT-4 on the FOLIO dataset.

C2: CoT makes incorrect logical deductions.
While there are many instances where CoT makes
incorrect logical deductions, one common deduc-
tion mistake is the structure “if B is true and
A → B, then A is true”. In the example shown
below, we see this incorrect deduction where A is
“Mike has an F1 visa” and B is “Mike needs to ap-
ply for CPT or OPT if he wants to work in the US”.
We note that making this type of logical mistake
is often called the fallacy of the converse, and that
humans are not immune to it, either.

Premise 1: International students in US have either an F1
visa or a J1 visa.

Premise 2: An international student in US with an F1 visa
needs to apply for CPT or OPT if the student wants to work
in the US.

Premise 3: Mike is an international student.

Premise 4: Mike needs to apply for CPT if he wants to work
in the US.

Conclusion (Ground Truth: Uncertain): Mike has an F1
visa.

(GPT-4 Incorrect CoT): Let’s think step by step. We want
to evaluate if Mike has an F1 visa. From the premises, we
know that Mike is an international student and needs to
apply for CPT if he wants to work in the US. We also know
that an international student in the US with an F1 visa needs
to apply for CPT or OPT if the student wants to work in the
US. So, it is clear that Mike has an F1 visa since he fits the
criteria. Therefore, the conclusion is true.

C3: CoT fails to find complex paths of reason-
ing. We find that with all three models, CoT fails
when the path of reasoning necessary to make the
deduction is complex. Sometimes, CoT has diffi-
culty getting started, and other times, it gets stuck
in the middle of a reasoning chain.

5.2 Quantitative Analysis
1. Compared to CoT, LINC has worse recall but
better precision on True/False predictions. To
see this, we plotted the confusion matrices in Fig-
ure 5b (CoT) and Figure 5a (LINC). Looking just
at the distributions of predicted labels of the two
methods, we see that CoT predicts 32% True, 27%
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False, and 41% Uncertain, while LINC predicts
24% True, 17% False, and 57% Uncertain (with
2% of predictions throwing an error). Notably, we
observe that LINC predicts Uncertain much more
frequently than CoT (57% vs. 41%). To under-
stand why, note that the translation from natural
language to FOL is a lossy process: recall that in
L1 and L2, we saw that the information conveyed
through the FOL is sometimes a subset of the infor-
mation in the original premises. Removing pieces
of crucial information that were on the critical path
to deducing True/False may then leave an uncer-
tain conclusion. At the same time, while the FOL
translations sometimes do not retain all of the infor-
mation in the NL, they rarely contain false informa-
tion that was not provided in the original premises.
Therefore, LINC’s precision when predicting True
or False is very high (93%) compared to that of
CoT (81%), but this comes at the cost of lower re-
call on True/False predictions (60% for LINC vs.
75% for CoT).

2. LINC and CoT mispredict on different ex-
amples. Earlier in Sec. 5.1, we saw that LINC and
CoT exhibit different failure modes, which suggests
they should fail on different examples. Indeed, we
find that this is the case in our experiments on FO-
LIO: Figure 5c shows a 2 × 2 confusion matrix
which compares whether or not each method’s pre-
diction was correct. We observe that out of the
24 + 29 + 21 = 74 samples where at least one
method makes an incorrect prediction, only 21 are
shared. On a closer examination of these 21 sam-
ples, we find that 16 are ambiguous or incorrect in
their specification (details in Appendix E.4), so the
two methods only agree on 5 well-formed samples.
This suggests that LINC and CoT are complementary
methods which fail under distinct circumstances.

3. Mispredictions of in-context reasoning
baselines are more similar to each other than
they are with mispredictions of LINC. As an ex-
tension of the previous analysis, we next investigate
the correlation between the mispredictions of each
pair of methods. To do so, we define a similarity
score between two methods A and B as follows:
Given a dataset D with N rows and ground truth
labels {Ai}Ni=1 and {Bi}Ni=1 from two methods A
and B, we define

simD(A,B) ≜
∑N

i=1 1 [Ai = Bi ̸= Ri]∑N
i=1 1 [Ai ̸= Ri or Bi ̸= Ri]

In words, simD(A,B) measures the number of in-
stances where A and B are wrong in identical ways

vs. the number of instances where at least one of
them is wrong.

Figure 5d shows the pairwise similarity between
our four methods, highlighting that the similar-
ity between LINC’s mispredictions and the other
methods’ mispredictions (0.14, 0.21, 0.22) is much
lower than the similarity between any pair of the
in-context reasoning methods (0.52, 0.54, 0.56).
These results suggest that for GPT-4 on FOLIO,
LINC is the only method we evaluate which signifi-
cantly alters the ways in which the model fails to
reason.

6 Related Work

Reasoning in LLMs: Our work contributes to
the wider literature on eliciting natural language
reasoning capabilities in models. Although we
have focused here on comparing a neurosymbolic
approach to Scratchpad (Nye et al., 2021) and
Chain-of-Thought prompting (Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2023b), many
other similar or related techniques have been de-
veloped in recent years; these include least-to-most
prompting (Zhou et al., 2023), selection-inference
(Creswell et al., 2023), backward chaining (Tafjord
et al., 2022; Kazemi et al., 2023), and self-taught
reasoning (Zelikman et al., 2022). Some of these
techniques have been formalized under the lan-
guage model cascades framework (Dohan et al.,
2022).

Semantic parsing: The notion of a semantic
parser rests on a long tradition of research (Kamath
and Das, 2019) whose aim is to map fragments of
natural language into useful, symbolic meaning rep-
resentations (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Berant et al., 2013; Liang et al.,
2013; Wong et al., 2023). Unlike earlier works in
this tradition, we use a language model to generate
the semantic parse, which is a method under active
investigation in recent years (Shin and Van Durme,
2022; Drozdov et al., 2022; Lu et al., 2022; Wang
et al., 2023a).

Neurosymbolic approaches for reasoning:
Methods which combine neural networks with sym-
bolic techniques have seen broad uptake in domains
adjacent to logical reasoning, such as generating
outputs consistent with a pre-existing symbolic
knowledge base (Marra et al., 2019; Manhaeve
et al., 2018; Zhang et al., 2023a) and performing
algorithmic reasoning over symbolically grounded
inputs (Ebrahimi et al., 2021; Ibarz et al., 2022;
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Veličković et al., 2022). As for logical reasoning
with LLMs in particular, there have been a few dif-
ferent proposals for when and how to best combine
the LLM with a symbolic component. Zhang et al.
(2022) finetune a language model to synthesize po-
tential facts paired with likelihoods and then use
a handwritten differentiable symbolic reasoner in
order to deduce other facts. Weir and Van Durme
(2022) relax the solver by instead training neural
“entailment” models to decide if and how a given in-
ference rule applies at each stage. Concurrently to
this work, Logic-LM (Pan et al., 2023) and SATLM
(Ye et al., 2023) propose neurosymbolic approaches
which have much in common with LINC. However,
other than the models and datasets considered, their
contributions have a few key differences to ours.
First, we place particular emphasis on establishing
an in-depth understanding of the relative benefits
and drawbacks of a neurosymbolic approach to
reasoning when compared to traditional in-context
reasoning strategies like Chain-of-Thought. Sec-
ond, Logic-LM employs a self-refinement strat-
egy, which has shown promise across code gen-
eration and NLP tasks (Zhang et al., 2023b; Chen
et al., 2023a; Peng et al., 2023; Madaan et al., 2023;
Olausson et al., 2023) but which we do not consider
here. Third, SATLM studies arithmetic reasoning
in addition to logical reasoning, showcasing the
versatility of the neurosymbolic approach. Fourth,
and finally, we use an FOL representation that we
believe is easier for humans to read and models to
learn. We highly encourage interested readers to
study these two contemporary works in detail.

Autoformalization: The idea of automatically
translating natural language into structured sym-
bolic representations that programs can reason
about has gained popularity in the domain of formal
mathematics, leading to autoformalization systems
for several theorem provers including Mizar (Wang
et al., 2018, 2020), Lean 3 (Azerbayev et al., 2023),
and Isabelle (Wu et al., 2022). Outside formal math-
ematics, autoformalization has also been applied to
translating natural language into system specifica-
tion languages such as temporal logic (Hahn et al.,
2022; Cosler et al., 2023; Chen et al., 2023b).

Tool usage: Our work is heavily inspired by re-
cent work on tool usage. The central idea in this
line of research is to augment language models with
external tools such as calculators, code interpreters
and information retrieval systems. We further di-
vide these works into two classes. In the first class,

the model does not need to learn how or where to
invoke the tool: instead, the tool is predefined and
is applied after the generation step finishes. For
example, Gao et al. (2023) and Drori et al. (2022)
solve mathematical reasoning tasks by generating
Python programs and using the Python interpreter
as the tool, Liu et al. (2023) approach physical
reasoning tasks with a physical simulator as the
tool, and Wong et al. (2023) tackle cognitively-
inspired probabilistic reasoning tasks with Church
(a probabilistic programming language) as the tool.
In the second class, the model must learn to in-
voke the tool by itself, meaning that the model
must generate explicit API calls to the tool which
are then executed when those calls are decoded
(Schick et al., 2023; Thoppilan et al., 2022; Yao
et al., 2022; Cheng et al., 2023). Our work belongs
to the former class, with the task at hand being
logical reasoning and the tool available for use be-
ing a FOL solver (Prover9). We refer the reader to
Mialon et al. (2023) for a more thorough survey of
recent work in the tool-usage literature.

7 Conclusion

In this work, we present LINC: Logical Inference
via Neurosymbolic Computation, a neurosymbolic
approach for scalable logical reasoning with large
language models. Our experiments show that LINC
leads to significant performance gains in nearly ev-
ery setting we consider, and that it supports gener-
alization to settings where the model has to reason
about a much larger set of premises than it is shown
in the in-context learning examples. Furthermore,
carrying out a quantitative and qualitative analysis
of the mistakes made by LINC, we find evidence
that it may complement purely in-context reasoning
strategies such as Chain-of-Thought prompting,
since they differ greatly in the types and frequen-
cies of mistakes made. This work thus supports the
efficacy of neurosymbolic approaches to natural
language reasoning, setting the stage for continued
advances in combining large language models and
symbolic reasoning engines; we discuss several
promising future directions in Appendix A.

8 Limitations

Narrow scope of logical reasoning task consid-
ered: In this work, we focus exclusively on one as-
pect of logical reasoning: predicting the truth value
of a conclusion given a set of natural language
premises. Here, we consider a setting where the
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premises and conclusion are expressed in relatively
short statements, which makes the formalization
task tractable. In particular, ProofWriter’s natural
language statements are synthetically generated,
so they can be easily and accurately parsed into
FOL. FOLIO reflects a more naturalistic dataset,
so we see a higher failure rate in LINC’s semantic
parsing step. However, the formalization task be-
comes more difficult if the premises are in longer
paragraph form, such as in question answering or
contradiction detection from context passages. This
is because the same piece of information can be
formalized in a variety of ways, and there is a lot
of information that must be pragmatically inferred
to arrive at the proper conclusion.

Generalizability of qualitative evaluation:
While we find that LINC and CoT produce com-
plementary mistakes for our natural language rea-
soning task, it is unclear if this result also holds true
in similar scenarios, such as the ones considered
in PAL (Gao et al., 2023), Logic-LM, and SATLM.
This is due to the difference in intermediate lan-
guage and overall logical reasoning task. However,
we hypothesize that it will and encourage future
investigation in this direction.

More sophisticated reasoning techniques: Re-
cent work has proposed more sophisticated tech-
niques beyond chain-of-thought, such as tree of
thoughts (Yao et al., 2023), program of thoughts,
(Chen et al., 2022), or using retrieval in chain-of-
thought prompting (Yasunaga et al., 2023). These
have potential to improve and eliminate some of
the failure modes of the traditional CoT method. In
addition, ideas such as self-repair may also serve
to improve these failure modes. It remains future
work to do a more thorough investigation of the
efficacy of these techniques, though there is also
preliminary evidence that they still lack reasoning
capabilities (Huang et al., 2023).

Scalability: It is unclear how well LINC will
perform as the number of premises scales. First,
one mistake in formalization can lead to an incor-
rect deduction, and more premises lead to a higher
probability of errors. Second, in the deduction
stage, while many fast algorithms (e.g., forward-
and backward-chaining) exist for logical deduction,
the general problem is still NP-hard. Therefore, the
theorem prover may take a long time in practice.

Other logics beyond first-order logic: In this
work, we exclusively focus on first-order logic.
However, FOL is not expressive enough to han-

dle problems requiring higher-order logics (Miller
and Nadathur, 1986; Higginbotham, 1998). Also,
in many settings it is desirable to work with non-
classical logics (Priest, 2008; Burgess, 2009). Al-
ternative theorem provers would be needed for such
problems. A method like LINC can be naturally ex-
tended to those settings, but exactly how well it
works there requires further investigations.

Computational costs: Implementing our ap-
proach with both GPT models and the StarCoder+
model requires non-trivial resources. The former
requires reliance on costly API requests and the
latter dedicated GPUs for inference. Especially as
we use majority voting, many generations must be
made for each query, increasing the computational
requirements.
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A Future Directions

Of the error types we catalog in our analysis
of LINC, the key opportunity for improvement is
more elegant handling of naturalistic language use.
While the errors observed with CoT result from
faulty deductive inferences, in the case of LINC,
all errors have been localized to the semantic pars-
ing procedure. This process flows primarily unim-
peded in the evaluation of the synthetic ProofWriter
dataset, yet leaves room for improvement with the
naturalistic FOLIO. In follow-up work, we hope
to deeply explore naturalistic evaluation settings,
as when data get the most messy is also where im-
provements become the most valuable. Here, we
propose three strategies for further improvement
on naturalistic settings.

First, in naturalistic communication, “obvious”
information is often left out of explicit productions,
left to be inferred in the “common ground” of the
communicative act (Grice, 1975; Stalnaker, 2002).
Implicit premise rediscovery through controlled
exploration on the logical neighborhood of the ex-
isting explicit premises promises to be a powerful
strategy for improving performance in underspeci-
fied settings.

Second, while a number of samples are lost to
syntax errors, recent work has proposed restricting
the sampling space of an LLM to that which is
consistent with term expansions in a context-free-
grammar (CFG) (Poesia et al., 2022). Doing so in
this setting would eliminate all syntax errors.

Third, sometimes, the translation process to
FOL is lossy, throwing away valuable information
present in the original sentence. We propose im-
proving the faithfulness of FOL translations by ask-
ing the LLM to translate the FOL back to natural
language and comparing with the original. Forward
translations that rank highly when back-translated
would be those which have effectively captured the
intricacies of a particular sentence’s semantics.

Overall, we believe that shifting to evalua-
tions on more naturalistic datasets, and incorpo-
rating strategies such as those presented here, will
help pave the path forward for neurosymbolic ap-
proaches to formal reasoning.

B Model Details and Parameters

We use a decoding temperature T = 0.8 for all
models. For GPT-3.5 and GPT-4, we limit the max-
imum number of tokens to generate to 1024 for
FOLIO and 4096 for ProofWriter (to accommo-

date for the previously mentioned larger number of
premises involved in a typical question). For the
StarCoder+ model, we allow generation up until
the 8192 context window length, since this model
is run locally. In either case, decoding is halted
early whenever the stop token </EVALUATE> is pro-
duced. All local experiments were executed on a
cluster equipped with NVIDIA A100 GPUs.

GPT Models: We use the gpt-3.5-turbo-16k-
0613 and gpt-4-0613 checkpoints of the GPT-3.5
(Ouyang et al., 2022) and GPT-4 (OpenAI, 2023)
models, respectively, invoking both models via the
OpenAI API.

StarCoder+: StarCoder+ (15.5B)6 is a version
of StarCoderBase (Li et al., 2023) which has been
finetuned on 600B tokens from a combination of (1)
Falcon RefinedWeb (Penedo et al., 2023) (filtered
version of CommonCrawl), (2) The Stack v1.2 (Ko-
cetkov et al., 2022), and (3) a Wikipedia dataset.
Its base model, StarCoderBase, is an open-access
model with a GPT-2 architecture using multi-query
attention (Shazeer, 2019) and fill-in-the-middle ob-
jective (Bavarian et al., 2022). StarCoderBase has
a 8192 context window and is trained on 1T code
tokens of permissively licensed text from GitHub
across 80 programming languages (Li et al., 2023).
We use StarCoder+ instead of StarCoderBase be-
cause it is finetuned on natural language, which
should improve the performance on our task. We
run StarCoder+ with bf16 precision to reduce its
memory footprint.

C FOLIO Dataset Preprocessing

We use the publicly available FOLIO dataset on
https://github.com/Yale-LILY/FOLIO. We
choose representative samples from the training
split of the dataset to be our few-shot examples and
use the validation split of the dataset in our eval-
uation. The testing split is not publicly available.
The original dataset has 204 validation examples.
However, we discovered that there are errors in 22
of the samples. We remove these samples for our
evaluation and use the remaining 182 examples.
The errors as follows:

• In 4 samples, one or more of the ground truth
FOL expressions have unbalanced parenthe-
ses (samples 3, 109, 110, 111).

• In 8 samples, the label obtained by executing
the ground-truth FOL expressions does not

6https://huggingface.co/bigcode/starcoderplus
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match the provided ground truth label. We
double-checked this, first by executing the
FOL expressions through Prover9 and second
by checking it manually. (samples 6, 28, 30,
48, 113, 115, 139, 140).

• In 10 samples, the number of premises does
not match the number of FOL expressions
(samples 10, 11, 12, 88, 106, 107, 108, 174,
175, 176).

The sample numbers above refer to the
line index in the validation file located at
https://github.com/Yale-LILY/FOLIO/blob/
main/data/v0.0/folio-validation.jsonl.

D FOLIO Few-Shot Prompts

The methodologies we investigate do not re-
quire any finetuning on domain-specific data. In-
stead, we use in-context learning (ICL) with pre-
trained models. We prompt the model with
a set of instructions and 1-8 ICL examples,
which adhere to a structured text format de-
signed to scaffold generations and ease post-
processing. In particular, we begin each ICL exam-
ple with each of the NL premises wrapped in an
HTML-style tag <PREMISES>. . . </PREMISES>
followed by the NL conclusion wrapped in
<CONCLUSION>. . . </CONCLUSION>. The requi-
site evaluation steps for each evaluation paradigm
are then outlined in a subsequent section wrapped
<EVALUATE>. . . </EVALUATE>. Following the in-
clusion of ICL examples, a test example is added,
with the <PREMISES> and <CONCLUSION> sections.
Then, the <EVALUATE> tag is opened, and the LM
is allowed to proceed with causal generation un-
til the </EVALUATE> tag is generated. Upon gen-
eration of this stop token, the <EVALUATE> block
is segmented for post-processing according to the
method being evaluated ({naïve, scratchpad,
chain-of-thought, neuro-symbolic}).

For the few-shot examples, we use samples from
the publicly available FOLIO training set. We
select a set of diverse samples that are balanced
across labels. Since the FOLIO training set does
not come with FOL expressions for the conclusions
or chain of thought prompts, we manually add
both for each sample. For the k-shot setting (k<8),
we use the first k samples from the following list
of sample indices: 126, 24, 61, 276, 149, 262,
264, 684. Here, sample i refers to the ith line in
https://github.com/Yale-LILY/FOLIO/blob/

main/data/v0.0/folio-train.jsonl. We do
not optimize for the choice of few-shot examples,
and this is the only set of examples we evaluated
with, so it is likely that there exist better choices
for few-shot examples that would lead to improved
performance across the board.

D.1 FOLIO, 1-shot (baseline)

The following is a first-order logic (FOL)
↪→ problem.

The problem is to determine whether the
↪→ conclusion follows from the premises.

The premises are given in the form of a set of
↪→ first-order logic sentences.

The conclusion is given in the form of a single
↪→ first-order logic sentence.

The task is to evaluate the conclusion as 'True',
↪→ 'False', or 'Uncertain' given the
↪→ premises.

<PREMISES>
All dispensable things are environment-friendly.
All woodware is dispensable.
All paper is woodware.
No good things are bad.
All environment-friendly things are good.
A worksheet is either paper or is environment-

↪→ friendly.
</PREMISES>
<CONCLUSION>
A worksheet is not dispensable.
</CONCLUSION>
<EVALUATE>
Uncertain
</EVALUATE>

<PREMISES>
...premises for sample here, one premise per

↪→ line
</PREMISES>
<CONCLUSION>
...conclusion for sample here
</CONCLUSION>
<EVALUATE>

Listing 1: todo

D.2 FOLIO, 1-shot (scratchpad)

The following is a first-order logic (FOL)
↪→ problem.

The problem is to determine whether the
↪→ conclusion follows from the premises.

The premises are given in the form of a set of
↪→ first-order logic sentences.

The conclusion is given in the form of a single
↪→ first-order logic sentence.

The task is to translate each of the premises
↪→ and conclusions into FOL expressions, and
↪→ then to evaluate the conclusion as 'True
↪→ ', 'False', or 'Uncertain' given the
↪→ premises.

<PREMISES>
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All dispensable things are environment-friendly.
All woodware is dispensable.
All paper is woodware.
No good things are bad.
All environment-friendly things are good.
A worksheet is either paper or is environment-

↪→ friendly.
</PREMISES>
<CONCLUSION>
A worksheet is not dispensable.
</CONCLUSION>
<EVALUATE>
TEXT: All dispensable things are environment-

↪→ friendly.
FOL: all x. (Dispensable(x) ->

↪→ EnvironmentFriendly(x))
TEXT: All woodware is dispensable.
FOL: all x. (Woodware(x) -> Dispensable(x))
TEXT: All paper is woodware.
FOL: all x. (Paper(x) -> Woodware(x))
TEXT: No good things are bad.
FOL: all x. (Good(x) -> -Bad(x))
TEXT: All environment-friendly things are good.
FOL: all x. (EnvironmentFriendly(x) -> Good(x))
TEXT: A worksheet is either paper or is

↪→ environment-friendly.
FOL: ((Paper(Worksheet) & -EnvironmentFriendly(

↪→ Worksheet)) | (-Paper(Worksheet) &
↪→ EnvironmentFriendly(Worksheet)))

TEXT: A worksheet is not dispensable.
FOL: -Dispensable(Worksheet)
ANSWER: Uncertain
</EVALUATE>

<PREMISES>
...premises for sample here, one premise per

↪→ line
</PREMISES>
<CONCLUSION>
...conclusion for sample here
</CONCLUSION>
<EVALUATE>

D.3 FOLIO, 1-shot (chain of thought)

The following is a first-order logic (FOL)
↪→ problem.

The problem is to determine whether the
↪→ conclusion follows from the premises.

The premises are given in the form of a set of
↪→ first-order logic sentences.

The conclusion is given in the form of a single
↪→ first-order logic sentence.

The task is to translate each of the premises
↪→ and conclusions into FOL expressions,

<PREMISES>
All dispensable things are environment-friendly.
All woodware is dispensable.
All paper is woodware.
No good things are bad.
All environment-friendly things are good.
A worksheet is either paper or is environment-

↪→ friendly.
</PREMISES>
<CONCLUSION>
A worksheet is not dispensable.
</CONCLUSION>

<EVALUATE>
Let's think step by step. We want to evaluate if

↪→ a worksheet is not dispensable. From
↪→ premise 6, we know that a worksheet is
↪→ either paper or is environment-friendly.
↪→ If it is paper, then from premise 3, a
↪→ worksheet is woodware, and from premise
↪→ 2, a worksheet is dispensable. If it is
↪→ environment-friendly, we know it is good
↪→ from premise 5, but we know nothing about
↪→ whether it is dispensable. Therefore, we
↪→ don't know if a worksheet is dispensible
↪→ or not, so the statement is uncertain.

ANSWER: Uncertain
</EVALUATE>

<PREMISES>
...premises for sample here, one premise per

↪→ line
</PREMISES>
<CONCLUSION>
...conclusion for sample here
</CONCLUSION>
<EVALUATE>

D.4 FOLIO, 1-shot (neurosymbolic)

The following is a first-order logic (FOL)
↪→ problem.

The problem is to determine whether the
↪→ conclusion follows from the premises.

The premises are given in the form of a set of
↪→ first-order logic sentences.

The conclusion is given in the form of a single
↪→ first-order logic sentence.

The task is to translate each of the premises
↪→ and conclusions into FOL expressions, so
↪→ that the expressions can be evaluated by
↪→ a theorem solver to determine whether the
↪→ conclusion follows from the premises.

Expressions should be adhere to the format of
↪→ the Python NLTK package logic module.

<PREMISES>
All dispensable things are environment-friendly.
All woodware is dispensable.
All paper is woodware.
No good things are bad.
All environment-friendly things are good.
A worksheet is either paper or is environment-

↪→ friendly.
</PREMISES>
<CONCLUSION>
A worksheet is not dispensable.
</CONCLUSION>
<EVALUATE>
TEXT: All dispensable things are environment-

↪→ friendly.
FOL: all x. (Dispensable(x) ->

↪→ EnvironmentFriendly(x))
TEXT: All woodware is dispensable.
FOL: all x. (Woodware(x) -> Dispensable(x))
TEXT: All paper is woodware.
FOL: all x. (Paper(x) -> Woodware(x))
TEXT: No good things are bad.
FOL: all x. (Good(x) -> -Bad(x))
TEXT: All environment-friendly things are good.
FOL: all x. (EnvironmentFriendly(x) -> Good(x))
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TEXT: A worksheet is either paper or is
↪→ environment-friendly.

FOL: ((Paper(Worksheet) & -EnvironmentFriendly(
↪→ Worksheet)) | (-Paper(Worksheet) &
↪→ EnvironmentFriendly(Worksheet)))

TEXT: A worksheet is not dispensable.
FOL: -Dispensable(Worksheet)
</EVALUATE>

<PREMISES>
...premises for sample here, one premise per

↪→ line
</PREMISES>
<CONCLUSION>
...conclusion for sample here
</CONCLUSION>
<EVALUATE>

E FOLIO Error Analysis

E.1 Ambiguity of “Either” statements
Depending on the context, the phrase “either x or
y” could mean x XOR y, x OR y, or be ambiguous.
Throughout our experiments, we found that models
had many creatively incorrect ways of translating
these statements. One reoccurring error was that
statements that clearly intended x XOR y (such as,
“an animal is either a rabbit or a squirrel”) were
translated into x OR y. We tried to account for
this into account by including multiple samples
with this construct in the few shot examples (see
Sec. D.4). However, the models still handle this
construct inconsistently and incorrectly.

In addition, we find that throughout the FOLIO
dataset, by matching the natural language premises
to the FOL premises, we find no consistent or pre-
dictable pattern as to how “either x or y” state-
ments are translated. For example, “an animal is
either a rabbi or a squirrel” is translated as all
x. Rabbit(x) | Squirrel(x), while we believe
this instance should clearly be XOR. Therefore, we
believe that some of these samples are inherently
ambiguous or malformed.

To highlight model behavior on these exam-
ples, four representative examples from the FO-
LIO validation set are shown below; examples
have multiple translations because we used tem-
perature T = 0.8. Here, Correct/Incorrect indicate
whether the translations match the ground truth
(which doesn’t necessarily match how we would
translate it).

Premise: an animal is either a rabbit or a
↪→ squirrel

(Ground Truth) Translation: all x. (Rabbit(x) |
↪→ Squirrel(x))

(Correct) Translation 1 (GPT-3.5): all x. (
↪→ Animal(x) -> (Rabbit(x) | Squirrel(x)))

(Incorrect) Translation 2 (StarCoderPlus): ((
↪→ Rabbit(Animal) & -Squirrel(Animal)) | (-
↪→ Rabbit(Animal) & Squirrel(Animal)))

(Incorrect) Translation 3 (GPT-4): all x. ((
↪→ Animal(x) & Rabbit(x)) | (Animal(x) &
↪→ Squirrel(x)))

Premise: a person either studys or teaches
(Ground Truth) Translation: all x. (Study(x) |

↪→ Teaches(x))
(Incorrect) Translation 1 (StarCoderPlus):

↪→ Studys(Person) | Teaches(Person)
(Incorrect) Translation 2 (StarCoderPlus): ((

↪→ Study(Person) & -Teach(Person)) | (-Study
↪→ (Person) & Teach(Person)))

(Correct) Translation 3 (GPT-4): all x. (Studies
↪→ (x) | Teaches(x))

Premise: A man is either kind or evil.
(Ground Truth) Translation: all x. (Kind(x) & -

↪→ Evil(x)) | (-Kind(x) & Evil(x))
(Incorrect) Translation 1 (GPT-3.5): ((Man(x) & -

↪→ Kind(x)) | (-Man(x) & Evil(x)))
(Incorrect) Translation 2 (StarCoderPlus): Kind(

↪→ AMan) | Evil(AMan)
(Incorrect) Translation 3 (StarCoderPlus): (Kind

↪→ (x) | Evil(x))

Premise: Ben is either from The Simpsons or
↪→ funny.

(Ground Truth) Translation: (Simpsons(Ben) & -
↪→ Funny(Ben)) | (-Simpsons(Ben) & Funny(Ben
↪→ ))

(Correct) Translation 1 (StarCoderPlus): ((
↪→ Simpsons(Ben) & -Funny(Ben)) | (-Simpsons
↪→ (Ben) & Funny(Ben)))

(Incorrect) Translation 2 (GPT-3.5): (
↪→ FromTheSimpsons(Ben) | Funny(Ben))

(Incorrect) Translation 3 (GPT-4):
↪→ FromTheSimpsons(Ben) | Funny(Ben)

E.2 GPT-4 LINC Failure Modes

L1: FOL fails to capture implicit information
not mentioned in the premises. Three examples
of errors from the FOLIO validation set are shown
below. The first two occurring in both GPT-3.5 and
GPT-4, and the latter only occurs in GPT-3.5 and
interestingly, is correct in GPT-4. In Example 1,
to make the correct conclusion, we must encode in
FOL that Harry is a person (Person(Harry)) and
that Walden is a book (Book("Walden")). Harry
being a person is implicit, but “Walden” being a
book is explicitly mentioned in premise 4 but fails
to be explicitly encoded by the model. In Exam-
ple 2, we must encode that KiKi is an animal to
make the correct deduction. One can argue that
this example is ambiguous, but from the context,
most would make this inference. In Example 3, we
need a clause that says LGA and LGA are the same
airport (SameAirport(LGA, LGA)).

Example 1 (GPT-4)
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Premises:
Books contain tons of knowledge.
When a person reads a book, that person gains

↪→ knowledge.
If a person gains knowledge, they become smarter.

↪→
Harry read the book "Walden" by Henry Thoreau.

Conclusion (Ground Truth: True)
Harry is smarter than before.

FOLs:
all x. (Book(x) -> Contains(x, Knowledge))
all x. all y. (Person(x) & Reads(x, y) & Book(y)

↪→ -> Gains(x, Knowledge))
all x. (Gains(x, Knowledge) -> Smarter(x))
Reads(Harry, Walden)

Conclusion (Prover9 Deduction: Uncertain)
Smarter(Harry)

Example 2 (GPT-4)
Premises:
If an animal barks, then Jane does not like it.
All dogs are animals that bark.
If an animal jumps, then Jane likes it.
If an animal has legs, then it jumps.
If an animal is terricolous, then it has legs.
If KiKi neither jumps nor has legs, then KiKi is

↪→ terricolous or has legs.

Conclusion (Ground Truth: True)
KiKi neither barks nor is a dog.

FOLs:
all x. (Animal(x) & Barks(x) -> NotLike(Jane, x)

↪→ )
all x. (Dog(x) -> Animal(x) & Barks(x))
all x. (Animal(x) & Jumps(x) -> Like(Jane, x))
all x. (Animal(x) & HasLegs(x) -> Jumps(x))
all x. (Animal(x) & Terricolous(x) -> HasLegs(x)

↪→ )
(-Jumps(KiKi) & -HasLegs(KiKi)) -> (Terricolous(

↪→ KiKi) | HasLegs(KiKi))

Conclusion (Prover9 Deduction: Uncertain)
-Barks(KiKi) & -Dog(KiKi)

Example 3 (GPT-3.5):
Premises:
Susan flies to LGA airport.
The departure and arrival can not be the same

↪→ airport.
John flies from LGA airport.

Conclusion (Ground Truth: False)
Susan flies from LGA airport.

FOLs:
Flies(Susan, LGA)
all x. all y. (Departure(x) & Arrival(y) & -

↪→ SameAirport(x, y))
Flies(John, LGA)

Conclusion (Prover9 Deduction: Uncertain):
Flies(Susan, LGA)

L2: FOL fails to capture information ex-
plicitly mentioned in the premises due to the

choice of representation. We show four illus-
trative examples: the first two examples occur
in both GPT-3.5 and GPT-4, while the last two
examples only occur in GPT-3.5 and are correct
when using GPT-4. The first example is described
in the main text. In example 2, we know that
Barutin Cove is a cove, but this lost information
is not encoded in the FOL, so we cannot conclude
Cove(BarutinCove), although this is crucial in-
formation for making the deduction. In Example 3,
we must deduce that Tom’s license plate is a license
plate (FromIstanbul(TomPlate)), which is obvi-
ous but is not encoded by the model. In the final
example, the idea that an object has four sides is ex-
pressed both as FourSided(x) and FourSides(x),
so the model is unable to make the correct deduc-
tion.

Example 1 (GPT-4)
Premises:
Heinrich Scmidt was a Nazi German politician.
Heeinrich Scmidt was also a member of the

↪→ Prussian State Parliament and the Nazi
↪→ Reichstag.

Conclusion (Ground Truth: True):
Heinrich Schmidt was either German or Russian.

FOLs:
GermanPolitician(HeinrichSchmidt) & Nazi(

↪→ HeinrichSchmidt)
MemberPrussianStateParliament(HeinrichSchmidt) &

↪→ MemberNaziReichstag(HeinrichSchmidt)

Conclusion (Prover9 Deduction: Uncertain):
German(HeinrichSchmidt) | Russian(

↪→ HeinrichSchmidt)

Example 2 (GPT-4)
Premises:
Barutin Cove is named after the Bulgarian

↪→ settlement of Barutin.
Barutin Cove is on the southwest coast of Snow

↪→ Island.
The South Shetland Islands include Snow Island,

↪→ Greenwich Island, and Deception Island.
The South Shetland Islands are considered part

↪→ of Antarctica.
If A is located in B and B is located in C, then

↪→ A is located in C.

Conclusion (Ground Truth: True)
There is at least one cove in Antarctica named

↪→ after a place in Bulgaria.

FOLs:
NamedAfter(BarutinCove, Barutin) & In(Barutin,

↪→ Bulgaria)
On(BarutinCove, SnowIsland)
In(SnowIsland, SouthShetlandIslands) & In(

↪→ GreenwichIsland, SouthShetlandIslands) &
↪→ In(DeceptionIsland, SouthShetlandIslands)

In(SouthShetlandIslands, Antarctica)
all x. all y. all z. ((In(x, y) & In(y, z)) ->
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↪→ In(x, z))

Conclusion (Prover9 Deduction: Uncertain)
exists x. (Cove(x) & In(x, Antarctica) & exists

↪→ y. (In(y, Bulgaria) & NamedAfter(x, y)))

Example 3 (GPT-3.5)
Premises:
All vehicle registration plates in Istanbul

↪→ begin with the number 34.
Plates that do not begin with the number 34 are

↪→ not from Istanbul.
Joe's vehicle registration plate is from

↪→ Istanbul.
Tom's license plate begins with the number 35.
If a license plate begins with the number 35,

↪→ then it does not begin with the number
↪→ 34.

Conclusion (Ground Truth: False):
Tom's license plate is from Istanbul.

FOLs:
all x. (VehicleRegistrationPlate(x) ->

↪→ BeginsWith(x, 34))
all x. (-BeginsWith(x, 34) -> -FromIstanbul(x))
FromIstanbul(JoePlate)
BeginsWith(TomPlate, 35)
all x. (LicensePlate(x) & BeginsWith(x, 35) -> -

↪→ BeginsWith(x, 34))

Conclusion (Prover9 Deduction: Uncertain):
FromIstanbul(TomPlate)

Example 4 (GPT-3.5)
Premises:
All squares have four sides.
All four-sided things are shapes.

Conclusion (Ground Truth: True):
All squares are shapes.

FOLs:
all x. (Square(x) -> FourSides(x))
all x. (FourSided(x) -> Shape(x))

Conclusion (Prover9 Deduction: Uncertain)
all x. (Square(x) -> Shape(x))

L3: FOL contains syntax errors. This is one
reason that we observe majority voting helps sig-
nificantly for neurosymbolic methods, as multiple
generations increase the likelihood that at one least
one FOL representation successfully compiles. As
stated in the main text, the most common error
is that the same symbol is used with multiple ari-
ties. Two examples of this are shown below: in the
first example, the primitive Summer is both used as
a function representing that a year has a summer
(in the first premise) and as a constant represent-
ing that a student loves summer. A similar phe-
nomenon occurs in the second example with the
symbol Badults.

Example 1

Premises:
There are four seasons in a year: Spring, Summer,

↪→ Fall, and Winter.
All students who want to have a long vacation

↪→ love summer the most.

FOLs:
all x. (Year(x) -> (Spring(x) | Summer(x) | Fall

↪→ (x) | Winter(x)))
all x. (Student(x) & WantsLongVacation(x) ->

↪→ Loves(x, Summer))

Prover9 Error:
The following symbols are used with multiple

↪→ arities: Summer/1, Summer/0.

Example 2
Premises:
Badults is a British Sitcom series, starring

↪→ members of Pappy's.
Badults piloted in July 2013 on BBC Three.

FOLs:
exists x. (Badults(x) & BritishSitcom(x) &

↪→ StarringMembersOf(x, Pappys))
Piloted(Badults, July2013, BBCThree)

Prover9 Error:
The following symbols are used with multiple

↪→ arities: Badults/1, Badults/0.

While rarer, there are also syntax errors. For
illustration, two examples from GPT-4 are shown
below:
Premise: Ailton Silva foes not play for a

↪→ football club.
FOL: -Exists x. (FootballClub(x) & PlaysFor(

↪→ AiltonSilva, x))
Error: Exists should not be capitalized

Premise: The security deposit can be either
↪→ equal to one month's rent or more.

FOL: all x. all y. (Rent(x, y) -> (Deposit(x) =
↪→ y | Deposit(x) > y))

Error: > is not allowed in Prover9's FOL

L4: There are mistakes in the FOL trans-
lation. For GPT-4, there are very few transla-
tion mistakes, but we still find a couple instances
where GPT-3.5 fails to capture the semantic mean-
ing of the NL examples properly. Two examples
are shown here:
Premise: Platypus have no teeth
Incorrect FOL: -NoTeeth(Platypus)

Premise: Imperium doesn't have a feud with a
↪→ professional wrestling stable that
↪→ includes Ivy Nile.

Incorrect FOL: -all x. (Includes(x, IvyNile) -> -
↪→ HasFeud(Imperium, x))

E.3 GPT-4 CoT Failure Modes
C1: CoT concludes something different than it
suggests. We show two examples of this below

5172



(both of which LINC solves correctly).

Example 1
Premises:
Plungers suck.
Vacuums suck.
Vampires suck.
Space is a vacuum.
A duster is a household appliance that doesn't

↪→ suck.

Conclusion:
Space is a vampire.

(GPT-4 Incorrect CoT): Let's think step by step.
↪→ We want to evaluate if Space is a
↪→ vampire. We know that Space is a vacuum
↪→ and that vacuums suck. However, while it'
↪→ s true that vampires also suck, this
↪→ doesn't mean that everything that sucks
↪→ is a vampire. Therefore, there is no
↪→ reason to believe that Space is a vampire
↪→ based on these premises, so the
↪→ statement is false.

ANSWER: False

Example 2
Premises:
Some mammals have teeth.
Platypus have no teeth.
Platypus are mammals.
Humans have teeth.

Conclusion:
Platypus are reptiles.

(GPT-4 Incorrect CoT): Let's think step by step.
↪→ We want to evaluate if platypus are
↪→ reptiles. We know from the premises that
↪→ platypus are mammals and that they have
↪→ no teeth. The fact that some mammals have
↪→ teeth does not contradict the fact that
↪→ platypus, although mammals, do not have
↪→ teeth. Moreover, the statement about
↪→ humans having teeth is unrelated to the
↪→ classification of platypus. There's no
↪→ evidence in the premises that would
↪→ suggest platypus are reptiles. Therefore,
↪→ the statement is false.

C2: CoT makes incorrect logical deductions.

Example 1
Premises:
International students in US have either an F1

↪→ visa or a J1 visa.
An international student in US with an F1 visa

↪→ needs to apply for CPT or OPT if the
↪→ student wants to work in the US.

Mike is an international student.
Mike needs to apply for CPT if he wants to work

↪→ in the US.

Conclusion (Ground Truth: Uncertain):
Mike has an F1 visa.

(GPT-4 Incorrect CoT): Let's think step by step.
↪→ We want to evaluate if Mike has an F1
↪→ visa. From the premises, we know that
↪→ Mike is an international student and

↪→ needs to apply for CPT if he wants to
↪→ work in the US. We also know that an
↪→ international student in the US with an
↪→ F1 visa needs to apply for CPT or OPT if
↪→ the student wants to work in the US. So,
↪→ it is clear that Mike has an F1 visa
↪→ since he fits the criteria. Therefore,
↪→ the conclusion is true.

Example 2
Premises:
If people perform in school talent shows often,

↪→ then they attend and are very engaged
↪→ with school events.

People either perform in school talent shows
↪→ often or are inactive and disinterested
↪→ members of their community.

If people chaperone high school dances, then
↪→ they are not students who attend the
↪→ school.

All people who are inactive and disinterested
↪→ members of their community chaperone high
↪→ school dances.

All young children and teenagers who wish to
↪→ further their academic careers and
↪→ educational opportunities are students
↪→ who attend the school.

Bonnie either both attends and is very engaged
↪→ with school events and is a student who
↪→ attends the school, or she neither
↪→ attends and is very engaged with school
↪→ events nor is a student who attends the
↪→ school.

Conclusion (Ground Truth: Uncertain):
Bonnie performs in school talent shows often.

(GPT-4 Incorrect CoT): Let's think step by step.
↪→ We want to evaluate if Bonnie performs
↪→ in school talent shows often. Based on
↪→ the last premise, if Bonnie is a student
↪→ who attends the school and is very
↪→ engaged with school events, this is only
↪→ possible if she performs in school talent
↪→ shows often, as per the first premise.
↪→ If she doesn't attend and is not engaged
↪→ with school events, she is an inactive
↪→ and disinterested member of her community
↪→ . But the fourth premise states that
↪→ these individuals chaperone high school
↪→ dances, meaning they cannot be students,
↪→ which would contradict the last premise.
↪→ Therefore, Bonnie performs in school
↪→ talent shows often, so the statement is
↪→ true.

C3: CoT fails to find complex paths of reason-
ing. We highlight two examples below: in the first
example, the ground truth is false. To make this
deduction, one must reason that if a Greyhound is
a Boeing 707, then it is a plane, which means it is
empty, which means it cannot transport multiple
passengers, which means it is not an airline, which
means there are no Greyhound planes, which is a
contradiction. Looking at the CoT generations, the
first CoT attempt gives up after failing to find any
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link between Greyhound and Boeing 707. The sec-
ond generation attempts to make deductions from
the premises. In this case, none of the 10 CoT rea-
soning chains begin with the correct step of starting
from the negation of the conclusion and deducing
it false.

In the second example, to make the correct de-
duction, we need to start from the fact that Rose is
young or a student. If Rose is young, then they do
not teach, which means they study, which means
they are a student, which means they are a human.
If Rose is a student, then they are humans. Neither
of the CoT generation is able to make progress on
the deduction from the information that Rose is
young. In addition, the first CoT generation also
has a logical error at the last step, where it asserts
that “A or False” is False when the truthness of A
is uncertain.

Example 1
Premises:
If something can transport multiple passengers,

↪→ then they are not empty.
All airlines can transport multiple passengers.
All planes are empty.
All Boeing 707s are planes.
If Greyhound is not an airline, then there are

↪→ no Greyhound planes.

Conclusion (Ground Truth: False)
A Greyhound is a Boeing 707.

(GPT-4 Incorrect CoT, 1): Let's think step by
↪→ step. We want to evaluate if a Greyhound
↪→ is a Boeing 707. Looking at our premises,
↪→ we have no direct or indirect
↪→ information linking Greyhounds to Boeing
↪→ 707s. Given the information available, we
↪→ cannot make any certain conclusion about
↪→ a Greyhound being a Boeing 707.
↪→ Therefore, it is uncertain whether a
↪→ Greyhound is a Boeing 707.

(GPT-4 Incorrect CoT, 2): Let's think step by
↪→ step. We want to evaluate if a Greyhound
↪→ is a Boeing 707. The first three premises
↪→ don't provide any information about
↪→ Greyhound or Boeing 707s. The fourth
↪→ premise tells us that all Boeing 707s are
↪→ planes but doesn't tell us anything
↪→ about Greyhound. The fifth premise tells
↪→ us that if Greyhound is not an airline,
↪→ then there are no Greyhound planes, but
↪→ this still doesn't imply that a Greyhound
↪→ is a Boeing 707. Therefore, we do not
↪→ have enough information to conclude
↪→ whether a Greyhound is a Boeing 707 or
↪→ not. So, the statement is uncertain.

Example 2
Premises:
All students are humans.
If someone studies, then they are a student.
A person either studies or teaches.

No young person teaches.
Jerry neither teaches nor is a manager.
Rose is young or a student.

Conclusion (Ground Truth: True)
Rose is a human or Jerry is a manager.

(GPT-4 Incorrect CoT, 1): Let's think step by
↪→ step. We want to evaluate if Rose is a
↪→ human or Jerry is a manager. Let's first
↪→ look at Rose. From premise 6, we know
↪→ that Rose is either young or a student.
↪→ If Rose is a student, then from premise 1
↪→ we know that Rose is a human. If Rose is
↪→ young, we don't know from the premises
↪→ whether she is a human. Therefore, it is
↪→ uncertain whether Rose is a human. Now
↪→ let's look at Jerry. From premise 5, we
↪→ know that Jerry is not a manager.
↪→ Therefore, Jerry is not a manager. So, it
↪→ is uncertain whether Rose is a human,
↪→ but we know that Jerry is not a manager,
↪→ so the statement is false.

(GPT-4 Incorrect CoT, 2): Let's think step by
↪→ step. We want to evaluate if Rose is a
↪→ human or Jerry is a manager. First, we
↪→ know that Jerry neither teaches nor is a
↪→ manager, which means Jerry is not a
↪→ manager. Therefore, the only way for the
↪→ conclusion to be true is if Rose is a
↪→ human. We know that Rose is either young
↪→ or a student. If she's a student, since
↪→ all students are humans, then she is a
↪→ human. However, if Rose is young, we don'
↪→ t have enough information to determine
↪→ whether she's a human. Therefore, it's
↪→ uncertain whether Rose is a human or
↪→ Jerry is a manager.

E.4 Shared mistakes between GPT-4 CoT and
LINC

As shown in Fig. 5c, there are 21 common errors
between GPT-4 CoT and GPT-4 LINC. After an in-
depth analysis of the examples, we see that 16 of
these arise due to inherent errors in the dataset:

• 2 of these samples contain the sentence frag-
ment “Either Zaha Hadid’s design style or
Kelly Wearstler’s design style.” as a premise.
This premise is likely intended to mean all
design styles are one of these two styles, but
this is hard for the model to grasp from just
the fragment (sample 41, 42).

• 2 of these samples contain the sentence frag-
ment “Either female tennis players at Roland
Garros 2022 or male tennis players at Roland
Garros 2022.” as a premise (sample 43, 45).

• 2 of these samples have an ambiguous use of
“either”: “Ben is either from The Simpsons or
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funny,” which in this case ambiguously means
XOR. We believe this sentence is an unnatural
usage of “either” (sample 142, 143).

• In 4 samples, there is a name that is implicitly
an animal, but this is not clear (sample 126,
127, 128, 199). Also, in samples 126-128,
there is a statement “If Rock is neither a fly nor
a bird, then Rock neither flies nor breathes.”
that should likely say “If Rock neither flies nor
is a bird, ...”. With the original formulation,
everything could be uncertain because nothing
is known in the case that Rock is a fly (and
this is a reasonable interpretation).

• In 5 samples, the ground-truth FOL represen-
tation of the natural language premise is incor-
rect, causing the label to be incorrect (samples
29, 79, 85, 86, 87).

• There is a sample where the conclusion is
likely mis-worded and should be “Barutin
Cove is not located in Antarctica.” instead
of “Barutin is not located in Antarctica.” This
changes the ground truth label. (sample 121).

The remaining 5 samples are examples where
both methods fail. In all cases, CoT fails to find the
correct reasoning chain, as the premises/reasoning
path is convoluted and complex. Meanwhile, LINC
fails as follows:

• In sample 104, LINC generates separate sym-
bols for NotLiveAtHome and -LiveAtHome,
which are semantically equivalent.

• In sample 149, LINC generates FOLs that miss
implicit information; i.e. that people with
names Rose and Jerry are humans.

• In samples 172 and 173, LINC does not gener-
ate a single valid set of FOL premises because
all generated expressions have a mismatched
arity issue.

• In sample 193, LINC fails to express the con-
clusion correctly: the conclusion is “If Yuri
is not an American basketball player, then
Yuri is a basketball player.”, but the FOLs
outputted are either -American(Yuri)
& -BasketballPlayer(Yuri)
or -American(Yuri) &
BasketballPlayer(Yuri)

F Proofwriter StarCoder+ Errors

We also analyzed, qualitatively, the errors that Star-
Coder+ makes on the ProofWriter dataset. Since
premises from the ProofWriter dataset are relatively
simple and direct, lossy translation is rarer. Most er-
rors are due to syntax or improper representations.
We show five representative errors below:

Premise: All quiet people are round.
StarCoder+ FOL: all x. Quiet(x) -> Round(x)
Ground Truth FOL: all x. (Quiet(x) -> Round(x))

Premise: If someone is quiet and nice then they
↪→ are cold.

Starcoder+ FOL: all x. (Quiet(x) \& Nice(x)) ->
↪→ Cold(x)

Ground Truth FOL: all x. ((Quiet(x) \& Nice(x))
↪→ -> Cold(x))

Premise: If something is furry then it is quiet.
Starcoder+ FOL: Furry(x) -> Quiet(x)
Ground Truth FOL: all x. (Furry(x) -> Quiet(x))

Premise: The cow eats the dog.
Starcoder+ FOL: Cow(Eats(Dog))
Ground Truth FOL: Eats(Cow, Dog)

Premise: The cow is blue.
Starcoder+ FOL: Cow(x) \& Blue(x)
Ground Truth FOL: Blue(Cow)

G StarCoderPlus FOLIO Error Analysis

For StarCoder+, we see a slightly different trend.
In Fig. 6a, we see the same pattern as for GPT-4,
with a majority of uncertain predictions. In Fig. 6b,
however, we see that CoT for StarCoder+ primarily
predicts true. This is likely because the model was
trained on much more code than text, and may
not have picked up sophisticated textual chain-of-
thought reasoning capabilities. In Fig. 6c, we
can see that the mispredictions between CoT and
LINC differ much more for StarCoder+ than GPT-
4. Finally, in Fig. 6d, we see the same trends
as we saw with GPT-4 but more pronounced, as
the similarity between mispredictions in LINC and
those in the baseline methods is even lower than
they were for GPT-4.

H The effect of K-way majority voting on
LINC and CoT

In all our experiments, we use 10-way majority
voting, inspired by prior work which found that
Chain-of-Thought prompting benefited therefrom
(Wang et al., 2023b). However, one might won-
der how robust the performance gains seen with
LINC are to the precise value of K. Figure 7 thus
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Figure 6: Analyzing and comparing the mistakes made by StarCoder+ on the FOLIO dataset.

shows, for each model equipped with either LINC
or Chain-of-Thought, how the accuracy on FO-
LIO varies with K ∈ {1, 2, 3, . . . , 10}. We note
that, generally speaking, LINC makes good use of
increased values of K. This is especially true for
the weaker models; these are more prone to gener-
ating syntactically invalid FOL expressions, which
cause the solver to return an Error. Taking the ma-
jority vote over many samples thus lessens the risk
of predicting Error, which is of course always the
wrong label. Notably, our results do not indicate
that CoT benefits from majority voting in this do-
main. Future work is needed to establish how this
relates to the findings in the previously mentioned
prior work.
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Figure 7: Accuracy on FOLIO per value of K (Ap-
pendix H). Shaded areas are ±1 standard deviation over
1000 bootstrapped samples. Note that increasing K
benefits LINC (solid lines; shading in color) but not CoT
(dashed lines; shading in gray) in our experiments on
this dataset.
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