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Abstract

Various NLP tasks require a complex hierar-
chical structure over nodes, where each node
is a cluster of items. Examples include gen-
erating entailment graphs, hierarchical cross-
document coreference resolution, annotating
event and subevent relations, etc. To enable
efficient annotation of such hierarchical struc-
tures, we release CHAMP, an open source tool
allowing to incrementally construct both clus-
ters and hierarchy simultaneously over any type
of texts. This incremental approach signifi-
cantly reduces annotation time compared to the
common pairwise annotation approach and also
guarantees maintaining transitivity at the clus-
ter and hierarchy levels. Furthermore, CHAMP
includes a consolidation mode, where an adju-
dicator can easily compare multiple cluster hi-
erarchy annotations and resolve disagreements.

https://github.com/ariecattan/champ

1 Introduction

In numerous annotation tasks, the annotator needs
to perform individual and independent decisions.
Such tasks include Named Entity Recognition
(NER), text categorization and part-of-speech tag-
ging, among others (Stenetorp et al., 2012; Yimam
et al., 2013; Samih et al., 2016; Yang et al., 2018;
Tratz and Phan, 2018; Mayhew and Roth, 2018).
However, certain annotation tasks are more de-
manding because they involve the construction of
a complex structure that must satisfy global con-
straints. One such complex structure is clustering,
where annotated clusters must respect the equiva-
lence relation. Specifically, if items A and B belong
to the same cluster, and items B and C also belong
to the same cluster, then A and C must belong to the
same cluster as well. Another prominent example
of a global structure is hierarchy, where typically,
if A is an ancestor of B and B is an ancestor of C,
then A must also be an ancestor of C.

Figure 1: Example of hierarchy of clusters from
THINKP (Cattan et al., 2023). Nodes group similar
statements together and arrows represent child-parent
relations, relating specific statements to more general
ones.

In this work, we focus on annotating a hierar-
chy of clusters, a global structure that combines
the constraints of both clustering and hierarchy,
thereby posing further challenges. In this hierar-
chy, nodes are clusters of (text) items, where each
node can have at most a single parent, as illustrated
in Figure 1. Annotating a hierarchy of clusters is
relevant for a multitude of tasks, such as hierar-
chical cross-document coreference resolution (Cat-
tan et al., 2021), structured summarization as a
hierarchy of key points (Cattan et al., 2023), en-
tailment graph construction (Berant et al., 2012)
and event-subevent relations detection (O’Gorman
et al., 2016; Wang et al., 2022). While there are
some annotation tools for annotating either cluster-
ing or a hierarchy (§2.1), to the best of our knowl-
edge there is no available tool allowing to annotate
a hierarchy of clusters simultaneously within the
same tool.
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To address this need, we introduce CHAMP

(Cluster Hierarchy Annotation for Multiple
Participants), an intuitive and efficient tool for an-
notating a hierarchy of clusters in a globally consis-
tent manner, supporting multiple annotators (§3).
Specifically, annotators are presented with input
text spans one by one and form incrementally
and simultaneously the clusters and their hierar-
chy (§3.1).

Additionally to the annotation process, we de-
velop an adjudication mode for easily comparing
multiple annotated hierarchies of clusters (§3.2).
This mode can be used either by an adjudicator,
which is typically a more reliable annotator, or by
the original annotators during discussions to re-
solve conflicts. Indeed, adjudication is crucial to
ensure quality in general (Roit et al., 2020; Klein
et al., 2020), and particularly important for our
structure, requiring a more challenging global an-
notation.

We demonstrate the use of CHAMP in two no-
tably different use-cases, both involving anno-
tating hierarchies of clusters: hierarchical cross-
document coreference resolution (Cattan et al.,
2021) and key point hierarchy (Cattan et al., 2023).
In both settings, CHAMP is significantly more effi-
cient than a pairwise annotation approach, in which
the relation between each pair of items is annotated
independently. Moreover, our consolidation phase
enhances the annotation quality, yielding an im-
provement of 5-6 F1 points (Cattan et al., 2023).

CHAMP was implemented on top of
COREFI (Bornstein et al., 2020), which was
initially designed for coreference, and allowed
only standard (non-hierarchical) annotation.
CHAMP includes a WebComponent, which
can easily be embedded into any HTML page,
including popular crowdsourcing platforms such
as Amazon Mechanical Turk. We also develop an
annotation portal (the link appears in our github
repository), allowing users to perform online
the annotation task and dataset developers to
effortlessly compute inter-annotator agreement.

Overall, CHAMP is an intuitive tool for effi-
ciently annotating and adjudicating hierarchies of
clusters. We believe that CHAMP will remove barri-
ers when annotating such challenging global tasks
and will facilitate future dataset creation.

2 Background

2.1 Tools for Annotating Global Structures

Certain NLP tasks involve a structure that should
be annotated in a global manner due to mutually
dependent labels. In this work, we focus on two
specific structures: clustering and hierarchy.

A prominent clustering task is coreference res-
olution, where the goal is to group mention spans
into clusters. This implies that if A and B are coref-
erent and B and C are coreferent, then A and C
should also be coreferent. However, early tools
for coreference annotation relied on a series of
local binary decisions over all possible mention
pairs (Stenetorp et al., 2012; Widlöcher and Ma-
thet, 2012; Landragin et al., 2012; Kopeć, 2014;
Chamberlain et al., 2016). In contrast, cluster-
based tools aim for global annotation by directly
assigning mentions to clusters (Ogren, 2006; Gi-
rardi et al., 2014; Reiter, 2018; Oberle, 2018; Ara-
likatte and Søgaard, 2020; Bornstein et al., 2020;
Gupta et al., 2023). Among these cluster-based
tools, COREFI (Bornstein et al., 2020) stands out
for its beneficial features that enable cost-effective
and efficient annotation. These features include
quick keyboard operations (instead of slow drag-
and-drop), an onboarding mode for training anno-
tators on the task, and a reviewing mode that facil-
itates systematic review and quality improvement
of a given annotation (as described in §2.2).

Some other tasks such as taxonomy induction
and entailment graph construction also involve
structures (e.g., graphs, DAG, hierarchy) that im-
pose global transitivity constraints. For example, if
a taxonomy includes the relationships “A is a kind
of B” and “B is a kind of C”, then it follows that A
must also be a kind of C. Yet, for example, Berant
et al. (2011) annotated an entailment graph dataset
by annotating all possible edges between predi-
cates, resulting in a complexity of O(n2). Sub-
sequent works follow the pairwise approach but
apply some heuristics for reducing the number of
annotations (Levy et al., 2014; Kotlerman et al.,
2015). Closely related to taxonomy, the Redcoat
annotation tool (Stewart et al., 2019) allows to an-
notate hierarchical entity typing, while allowing to
modify the hierarchy during annotation.

To the best of our knowledge, there is no avail-
able tool that supports joint annotation of a hierar-
chy of clusters, as proposed in CHAMP.
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2.2 Consolidation of Multiple Annotations

To promote quality, datasets often rely on multiple
annotators per instance, especially when the anno-
tation is obtained via crowdsourcing. Then, the
annotations can be combined either automatically,
using simple majority vote or more sophisticated
aggregation techniques (Dawid and Skene, 1979;
Raykar et al., 2010; Hovy et al., 2013; Passonneau
and Carpenter, 2014; Paun et al., 2018), or manu-
ally, by asking the annotators themselves or a more
reliable annotator to adjudicate and resolve anno-
tation disagreements (Pradhan et al., 2012; Roit
et al., 2020; Pyatkin et al., 2020; Klein et al., 2020).
However, those aggregation methods were mostly
investigated for classification tasks where each in-
stance can be annotated independently, but not for
global tasks, like those discussed above (§2.1).

To the best of our knowledge, COREFI (Born-
stein et al., 2020) is the only annotation tool that
supports manual reviewing of a global structure
annotation, specifically for coreference annotation.
In this interface, the reviewer is shown the anno-
tated mentions one by one along with the original
annotator’s cluster assignment. The reviewer can
then decide whether to retain the original annota-
tion or to make a different clustering assignment.
However, showing the original cluster assignment
of each mention in turn is not straightforward, be-
cause earlier reviewer decisions may have devi-
ated from the original clustering annotation. For
instance, consider a scenario where the original an-
notator creates a cluster with the mentions x, y, z.
Subsequently, the reviewer decides that y should
not be linked to x but should instead form a new
cluster. At this point, when the reviewer encoun-
ters the mention z, it becomes uncertain whether it
should be considered by the original annotation as
linked with x or y. To address this issue, when the
reviewer is shown a mention m, the candidate clus-
ters implied by the original annotation becomes the
set of clusters in the current reviewer’s clustering
configuration that include at least one of the previ-
ously annotated antecedents of m according to the
original annotation.

While the reviewing mode in COREFI is effec-
tive, an important limitation is that it enables re-
viewing only a single annotation, not supporting
the consolidation of multiple annotations, as com-
mon in NLP annotation setups. We address this
need in CHAMP by supporting consolidation of
multiple annotations (§3.2).

3 CHAMP

We present CHAMP, a new tool for annotating a
hierarchy of clusters. To annotate such a struc-
ture, the annotators are provided with a list of in-
put spans, denoted as S = {s1, ..., sn}, that they
need to group into disjoint clusters of semantically
equivalent spans C = {C1, ..., Ck}. In addition, an-
notators need to form a directed forest G = (C, E),
constituting a Directed Acyclic Graph (DAG) in
which every node—representing the cluster Ci—
has no more than one parent. Within this structure,
each edge eij represents a hierarchical relation be-
tween clusters Ci −→ Cj , signifying that Ci is a
child of Cj . Considering the example in Figure 1,
the cluster {Starts up very quickly, No waiting for
long boot-ups} is more specific than the cluster
{Very fast for a laptop, Amazingly fast device}. Im-
portantly, input spans can be standalone spans (as
in Figure 1) or appear within a surrounding context.
For the remainder of this section, we will focus
on demonstrating CHAMP using standalone spans,
while an example featuring spans within context is
provided in Appendix A.

We next describe the core annotation inter-
face (§3.1), and then present the adjudication mode,
which allows to effectively compare multiple anno-
tations and build a consolidated hierarchy of clus-
ters (§3.2).

3.1 Cluster Hierarchy Annotation

Figure 2 shows the annotation interface in CHAMP.
A naive approach for supporting the annotation

of a hierarchy of clusters would involve two sep-
arate steps: (1) cluster input spans and (2) con-
struct a hierarchy over the fixed annotated clusters.
Although straightforward, this method lacks the
flexibility for annotators to modify the clustering
annotation while simultaneously working on the
hierarchy. This inflexibility is problematic since
typically many annotation decisions fall at the inter-
section of clustering, which reflects semantic equiv-
alences, and hierarchy, which denotes the relation-
ships between more general and specific clusters
(e.g., Takes a long time for check in vs. The abso-
lute worst check in process anywhere). Moreover,
employing two separate annotation steps would
burden annotators with the additional challenge of
remembering the context of each cluster during
hierarchy annotation.

Therefore, we propose an incremental approach
for annotating both the clustering and the cluster hi-
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Figure 2: User interface for annotating both clustering and hierarchical relations between clusters. The current
statement to assign is underlined in purple: “It’s also very slow”. The annotator can decide whether to add it to
an existing cluster, in which case it will be concatenated in the display of the corresponding node in the hierarchy,
separated by “;”, or to open a new cluster, in which case a new node will be automatically added to the hierarchy,
initiated under the root.

erarchy together as a single annotation task, which
we develop upon COREFI (Bornstein et al., 2020).
At initialization, the first span is automatically as-
signed to the first cluster C1 and to a corresponding
node in the hierarchy. Then, for each subsequent
span s, the annotator first decides its cluster as-
signment, by choosing whether to assign s to an
existing or a new cluster. In the latter case, a new
node is automatically created in the hierarchy un-
der the root and the annotator can drag it to its right
position in the current hierarchy. Considering the
example in Figure 2, the current span to annotate s
is “It’s also very slow” (underlined in purple), the
current clusters C are shown in the cluster bank (in
the footer of the screen), and the current hierarchy
is shown in the lower portion of the window.

Importantly, when the annotator re-assigns a pre-
viously assigned span to another cluster, CHAMP

will automatically update nodes and relations in
the hierarchy. Keeping in sync cluster assignments
and hierarchy is not trivial because different clus-
tering modifications will have different effects on
the resulting hierarchy. In particular, we consider
the following cases of re-assigning the span s:

1. From a singleton cluster Ci to a cluster Cj : s
will be added to Cj and Ci’s children will move

under Cj .

2. From a non-singleton cluster Ci to a cluster Cj :
s will be added to Cj but Ci’s children will stay
under Ci.

3. From a cluster Ci to a new singleton cluster:
a new node Cj will be created in the hierarchy
and will be initially situated as a sibling of Ci.1

Annotators can then drag it to its desired place.

This hierarchy update procedure is a key ingre-
dient for enabling the annotation of hierarchy of
clusters as a single task.

3.2 Adjudication
In order to facilitate the manual adjudication of
multiple hierarchy annotations by different an-
notators, we added an adjudication mode within
CHAMP that supports easily identification and res-
olution of disagreements between any number of
annotations. This mode can be used by an adjudi-
cator, which is usually a more reliable annotator,
or by the original annotators during discussions to
resolve conflicts.

1We take this approach because, when annotators re-assign
s to a standalone cluster, their intention is not to eliminate the
hierarchical relationship between s and its parent cluster.
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(a) Clustering consolidation. The thumb-down at the bottom
left of the screen indicates a clustering disagreement between
the annotators for the span “The directions also leave a lot to
be desired”. Annotator A1 assigned it to “The device itself is
so difficult to use” while annotator A2 created a new cluster,
as indicated in purple.

(b) Hierarchy consolidation. The red thumb-down near the
“Go to next disagreement” button indicates a hierarchy dis-
agreement for the node “Keyboard lacks expected keys for
functionality”. Annotator A1 placed it under “Our computer
never worked right from the start”, while A2 placed it under

“The device itself is so difficult to use.”

Figure 3: Adjudication of multiple annotations of hierarchy of clusters.

Comparing multiple annotations of a hierarchy
of clusters can be challenging due to variations in
annotators’ clustering assignments, leading to dif-
ferent sets of nodes in the respective hierarchies.
To illustrate this issue, consider a scenario where
annotator A1 annotates the relation {s1, s2, s4} −→
{s3, s5}, while A2 annotates {s1, s2, s6} −→ {s3}
and {s4} −→ {s5}. The two hierarchies have sim-
ilarities (e.g. both cluster s1 and s2 together and
have s5 as a parent of s4) but differ in other ways,
making their adjudication process non-trivial.

To tackle this problem, we decoupled the adju-
dication process into two consecutive stages, adju-
dicating separately clustering and hierarchy deci-
sions, as illustrated in Figure 3.

In the first step, the adjudicator is shown the an-
notated spans in a sequential manner, along with
the cluster assignments of each of the original an-
notations. To achieve this, we leverage the review-
ing procedure that COREFI applies for reviewing
a single clustering annotation (§2.2), implement
it separately to each original annotation. We then
present to the adjudicator a set of candidate clusters
per original annotation. These sets of candidates
are displayed in purple at the bottom of the screen,
as illustrated in Figure 3a.

It should be pointed out here that resolving a
cluster assignment disagreement means that the ad-
judicator alters the assignment for at least one of the
annotators. Therefore, we apply the hierarchy up-
date procedure (§3.1) to the modified annotations,
in order to update accordingly the involved cluster
nodes and their hierarchical relations. Considering
the example in Figure 3a with a clustering disagree-
ment for the span “The directions also leave a lot
to be desired (s1)”. In this instance, annotator A1
has merged it with “The device itself is so difficult
to use (s2)”, while annotator A2 has designated
it as a singleton cluster in the hierarchy, as high-
lighted by the purple ‘+’ button. If the adjudicator
follows A1’s decision, A2’s hierarchy will be re-
structured to combine spans {s1, s2} into the same
cluster. Conversely, siding with A2’s decision will
separate s2 from s1 in A1’s hierarchy. This auto-
matic process ensures that the modified hierarchies
will include the exact same set of nodes (clusters)
C at the end of the clustering consolidation step.

In the second step of hierarchy adjudication, as
the sets of nodes C in the hierarchies of all anno-
tators are identical, a disagreement arises when a
node Ci ∈ C has a different direct parent in dif-
ferent hierarchies. To efficiently identify such dis-
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crepancies, the adjudicator can click on the “Go
To Next Disagreement” button, which highlights
the node Ci in blue along with its direct parent
in violet on all input hierarchies. As shown in
Figure 3b, for instance, the node “Keyboard lacks
expected keys for functionality” was placed under

“Our computer never worked right from the start” by
A1, and under “The device itself is so difficult to use”
by A2. The adjudicator then decides the correct
hierarchical relation, manually updates the other
hierarchies accordingly, and moves on to the next
disagreement. Once all hierarchical disagreements
have been resolved, the adjudicator can confidently
submit the obtained consolidated hierarchy.

4 Applications

We used CHAMP for annotating datasets for two
different tasks that require annotating of hierarchy
of clusters:

1. SciCo (Cattan et al., 2021), a dataset for the
task of hierarchical cross-document coreference
resolution (H-CDCR). In this dataset, the inputs
are paragraphs from computer science papers with
highlighted mentions of scientific concepts, specifi-
cally mentions of tasks and methods. The goal is
to first cluster all mentions that refer to the same
concept (e.g., categorical image generation ←→
class-conditional image synthesis) and then infer
the referential hierarchy between the clusters (e.g.,
categorical image generation −→ image synthesis).

2. THINKP (Cattan et al., 2023), a recent bench-
mark of key point hierarchies, where each key
point is a concise statement relating to a particular
topic (Bar-Haim et al., 2020). Key point hierar-
chies were proposed as a novel structured represen-
tation for large scale opinion summarization. The
nodes in these graphs group statements conveying
the same opinion (e.g., the cleaning crew is great!
←→ housekeeping is fantastic) while the edges in-
dicate hierarchical specification-generalization re-
lationships between nodes (e.g., housekeeping is
fantastic−→ the personnel is great). The entailment
graphs in THINKP are designed in a hierarchical
form, where each node has at most a single parent.

Despite the different nature of these tasks and
their unit of annotation (i.e., standalone state,emts
vs. concept spans in context), we seamlessly lever-
aged CHAMP for both with minimal effort (using a
simple JSON configuration schema), as both tasks
involve annotating a hierarchy of clusters.

In our experiments, we observed that annotating
or consolidating a hierarchy of clusters for fifty
statements takes approximately one hour (Cattan
et al., 2023). In contrast, collecting annotations
for all possible pairs, as commonly done in prior
datasets for entailment graphs (Berant et al., 2011),
would have been much more expensive since it
would require at least 1225 decisions on average
for our data, which would obviously take much
more than one hour. Furthermore, unlike the pair-
wise annotation approach, our incremental method
for constructing a hierarchy of clusters guarantees
that the resulting annotation will respect the global
constraint of transitivity. Finally, our experiments
also revealed that the consolidation mode signif-
icantly enhances human performance, yielding a
gain of 5-6 F1 points (Cattan et al., 2023).

5 Implementation Details and Release

We implement CHAMP on top of COREFI (Born-
stein et al., 2020), using the Vue.js framework,
that we open source under the permissive MIT Li-
cense. Following COREFI, we release CHAMP as
a WebComponent, which can easily be embedded
into any HTML page, including popular crowd-
sourcing platforms such as Amazon Mechanical
Turk. Both the annotation and consolidation pro-
cesses share the same interface and are easily con-
figurable using a straightforward JSON schema.
We also develop an annotation portal where users
can upload a configuration file (either for annota-
tion or adjudication), perform the annotation task
and download it upon completion. This portal also
provides the capability to upload multiple annota-
tion files from various annotators and to compute
the inter-annotator agreement. As such, CHAMP is
not only easy-to-use for annotators, but it is also
easy to setup and manage for dataset developers.

6 Conclusion

This paper aims to foster research on global anno-
tation tasks by introducing CHAMP, an efficient
tool designed for annotating a hierarchy of clusters.
This annotation tool also incorporates an adjudica-
tion mode that conveniently supports identification
and consolidation of annotators’ disagreements. As
CHAMP enables efficient and high-quality annota-
tion, we believe that it will facilitate the creation
of datasets for various tasks involving this com-
plex structure, and will inspire tool development
for other global annotation tasks.
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A Appendix

Figure 4 shows the interface of CHAMP for annotat-
ing a hierarchy of clusters over text spans appear-
ing in their context. This example was taken from
SCICO.
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Figure 4: User interface for annotating hierarchy of clusters over textual spans that appear within surrounding
context.
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