
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1112–1124
May 2-6, 2023 ©2023 Association for Computational Linguistics

Semi-supervised Relation Extraction via
Data Augmentation and Consistency-training

Komal K. Teru
The Vanguard Group

komal_teru@vanguard.com

Abstract

Due to the semantic complexity of the Relation
extraction (RE) task, obtaining high-quality hu-
man labelled data is an expensive and noisy pro-
cess. To improve the sample efficiency of the
models, semi-supervised learning (SSL) meth-
ods aim to leverage unlabelled data in addition
to learning from limited labelled data points.
Recently, strong data augmentation combined
with consistency-based semi-supervised learn-
ing methods have advanced the state of the
art in several SSL tasks. However, adapting
these methods to the RE task has been chal-
lenging due to the difficulty of data augmen-
tation for RE. In this work, we leverage the
recent advances in controlled text generation
to perform high quality data augmentation for
the RE task. We further introduce small but
significant changes to model architecture that
allows for generation of more training data by
interpolating different data points in their latent
space. These data augmentations along with
consistency training result in very competitive
results for semi-supervised relation extraction
on four benchmark datasets.

1 Introduction

Relation extraction is one of the essential compo-
nents in constructing structured knowledge bases
(Luan et al., 2018), performing interpretable ques-
tion answering (Sun et al., 2021), improving web
search, and many other information extraction
pipelines. It aims to discover the semantic relation
between a given head entity and tail entity based
on the context in the input sentence. For example,
given a sentence "The battle led to panic on the
frontier, and settlers in the surrounding counties
fled.", the goal is to extract the Cause-Effect
relation between the head entity ‘battle’ and the
tail entity ‘panic’. The RE task requires a high
level of language understanding and involves a sig-
nificant level of semantic complexity (Bach and
Badaskar, 2007). Due to this semantic complexity

Input sentence: The battle led to panic on the
frontier, and settlers in the surrounding counties fled.

Synonym-replacement: The struggle cause scare
on the frontier, and settlers in the surrounding
counties fly.

LM-based augmentation: The battle reduced
panic on the frontier, and settlers in the surrounding
counties relaxed.

Vanilla BT: The war caused panic at the border, and
residents of the nearby counties fled.

Our constrained BT: The battle sparked panic at
the border, with residents fleeing in surrounding
counties.

Figure 1: Different data augmentation techniques ap-
plied to a sample datapoint from SemEval dataset. Ex-
isting methods replace the head/tail entities (highlited
in red), change the original meaning or do not give very
fluent paraphrases.

it often requires extensive and highly skilled human
involvement to obtain good quality labelled data,
making data collection an expensive and noisy pro-
cess. Unsurprisingly, because of the same semantic
complexity of the task, models typically require
large amounts of labelled data to give production-
ready performance.

A common strategy to improve the sample
efficiency of machine learning models is semi-
supervised learning methods which leverage easily
accessible unlabelled data to improve the overall
performance. While there are several paradigms
of semi-supervised learning methods, consistency
training based methods have advanced the state of
the art in several SSL tasks (Ghosh and Thiery,
2021). These methods can typically reach perfor-
mances that are comparable to their fully super-
vised counterparts while using only a fraction of la-
belled data points. Recently, strong data augmenta-
tion combined with consistency training algorithms
have shown great success, even surpassing fully su-
pervised models, in low-data settings of various
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tasks (Xie et al., 2020). Adapting these methods to
the task of relation extraction has been challenging
due to the difficulty of data augmentation for RE
task. This is because, in addition to the input sen-
tence, each data point also consists of a head entity
and a tail entity contained in the input sentence.
Typical data augmentation techniques used in NLP
such as back-translation, synonym-replacement,
language-model based augmentation, etc. (Feng
et al., 2021) can not be easily applied to such ‘struc-
tured’ input as they do not guarantee the integrity
of either a) the entities in the input sentence or,
b) the meaning of the input sentence itself. Fig-
ure 1 shows that using synonym-replacement and
vanilla back-translation (BT) methods (Sugiyama
and Yoshinaga, 2019) the entities themselves could
be paraphrased or replaced. Matching the new and
the old entities is a whole problem in itself. In
the Language Model-based augmentation method
(Anaby-Tavor et al., 2020), the semantic meaning
of the input sentence changes altogether, which
makes it difficult to employ consistency training.

Present work. In this work, we leverage the re-
cent advances in controlled text generation to per-
form high quality data augmentation for the rela-
tion extraction task that not only keeps the meaning
and the head/tail entities intact but also produces
fluent and diverse data points. In particular, we
modify back-translation to leverage lexically con-
strained decoding strategies (Post and Vilar, 2018;
Hu et al., 2019) in order to obtain paraphrased
sentences while retaining the head and the tail en-
tities. We further propose novel modifications to
the widely popular relation extraction model archi-
tecture, that allows for generation of more samples
by interpolating different data points in their latent
space, a trick that has been very successful in other
domains and tasks (Berthelot et al., 2019; Chen
et al., 2020b,a). Additionally, we leverage the en-
tity types of the head and the tail entities, when
available, in a way that effectively exploits the
knowledge embedded in pre-trained language mod-
els. These data augmentations, when applied to
unlabelled data, let us employ consistency training
techniques to achieve very competitive results for
semi-supervised relation extraction on four bench-
mark datasets. To the best of our knowledge, this is
the first study to apply and show the merit of data
augmentation and consistency training for semi-
supervised relation extraction task.

2 Related work

Semi-supervised learning for NLP
Semi-supervised learning algorithms can be cate-
gorized into two broad classes–1) self-ensembling
methods and 2) self-training methods.
Self-ensembling methods leverage the smoothness
and cluster/low-density assumptions of the latent
space (Chapelle and Zien, 2005). They train the
models to make consistent predictions under vari-
ous kinds of perturbations to either a) the data (Miy-
ato et al., 2019; Xie et al., 2020), or b) the model pa-
rameters themselves (Tarvainen and Valpola, 2017).
The former methods are broadly referred to as
consistency training methods and have resulted
in state-of-the-art performances for several semi-
supervised NLP tasks. Sachan et al. (2019) add ad-
versarial noise to both labelled and unlabelled data
and train models to make consistent predictions on
the original and the corresponding noisy data-point.
Many recent methods leverage large pre-trained
language models for more advanced data augmen-
tation techniques, like back-translation (Edunov
et al., 2018), and further improve performance in
the low-data regime (Xie et al., 2020). Recently,
Chen et al. (2020b,a) adapted the Mixup algorithm
(Zhang et al., 2018) as another form of data aug-
mentation for textual data and show state-of-the-art
performance on text classification and NER tasks.
Due to the difficulty of data augmentation for rela-
tion extraction task (Figure 1), these methods have
not been adapted for semi-supervised relation ex-
traction (SSRE) task so far. In this work, we fill
that gap and demonstrate the empirical success of
consistency training for SSRE.
Self-training methods are the oldest heuristic
methods of iteratively expanding the labelled train-
ing set by including high-confidence pseudo-labels
from the unlabelled data. All of the existing works
on SSRE fall under this paradigm. These methods
famously suffer from the confirmation bias prob-
lem where the incorrect predictions of the initially
trained model affect the quality of pseudo-labels
and eventually cause the label distribution to drift
away from the true data distribution, resulting in a
semantic drift. Lin et al. (2019) was one of the first
works to address this by training two different mod-
els and augmenting the labelled set with the ‘con-
sensus’ set, i.e., the data points which are labelled
the same by both models. Several works have de-
veloped on this idea of improving the pseudo-label
quality via various strategies like meta-learning
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(Hu et al., 2021a) or reinforcement learning (Hu
et al., 2021b). These set of methods constitute our
baselines.

Data augmentation for NLP

In this work, we concentrate on two major
classes of data augmentation techniques for NLP –
sentence-level data augmentation and latent space
augmentations. Sentence-level data augmenta-
tion techniques include back-translation (Edunov
et al., 2018), language-model based augmentations
(Anaby-Tavor et al., 2020), and word-replacement
strategies (Zhang et al., 2015). We adapt the back-
translation techniques to the RE task.

In latent space augmentations one generates
more samples by interpolating between pairs of
given data points in their latent space. This
was originally introduced for image classification
(Zhang et al., 2018; Verma et al., 2019; Yun et al.,
2019) as a data augmentation and regularization
method. Previous works have generalized this idea
to the textual domain by proposing to interpolate in
embedding space (Cheng et al., 2020) or the gen-
eral latent space (Chen et al., 2020b,a) of textual
data and applied the technique to NLP tasks such as
text classification, machine translation, NER task
and achieved significant improvements. We show
that both these styles of augmentations can be ef-
fectively applied to improve performance on SSRE
task.

3 Background

Task formulation. In this work, we focus on the
sentence-level relation extraction task, i.e., given
a relation statement x : (s, eh, et) consisting of
a sentence, s, a head entity, eh, and a tail entity,
et (both the entities are mentioned in the given
sentence s), the goal is to predict a relation r ∈
R ∪ {NA} between the head and the tail entity,
where R is a pre-defined set of relations. If the
sentence does not express any relation from the
set R between the two entities, then the relation
statement x is accordingly labelled NA.

This is typically done by learning a relation en-
coder model Fθ : x 7→ hr that maps an input
relation statement, x, to a fixed length vector hr

that represents the relation expressed in s between
eh and et. This relation representation, hr, is then
classified to a relation r ∈ R ∪ {NA} via an MLP
classifier.
Base model architecture. Most recent methods for

RE use a Transformer-based architecture (Devlin
et al., 2019; Vaswani et al., 2017) for the relation
encoder model, Fθ. To represent the head and tail
entities in the input to the encoder, the widely ac-
cepted strategy is to augment the input sentence s
with entity marker tokens–[E1], [/E1], [E2],
[/E2]–to mark the start and end of both entities.
Concretely, an input sentence like "Lebron James
currently plays for LA Lakers team." when aug-
mented with entity marker tokens becomes

[E1] Lebron James [/E1] currently

plays for [E2] LA Lakers [/E2] team.

This modified text is input to the Transformer-
based sequence encoder. Next, the encoder output
representations1 of the tokens [E1] and [E2] are
concatenated to give the fixed length relation repre-
sentation, hr = [h[E1] ⊕ h[E2]]. This fixed length
vector is in turn passed through an MLP classifier,
pϕ(hr), to give a probability vector, y, over the
relation set R∪ {NA}.

4 Proposed approach

In our approach we build on the base model archi-
tecture described in §3 and introduce additional
model design elements that are necessary to ob-
tain an improved performance in semi-supervised
relation extraction (SSRE) task.

We first describe the two data augmentation tech-
niques we perform, and the model architectural
changes we introduce that facilitate these augmen-
tations. Then, we describe the training procedure
we follow to leverage unlabelled data and achieve
state-of-the-art performance on three out of four
benchmark datasets for SSRE.

4.1 Constrained back-translation
Back-translation (Edunov et al., 2018) generates
diverse and fluent augmentations while retaining
the global semantics of the original input. Specif-
ically, one translates a given text into an interme-
diate language, say, German, and translates it back
to the source language, say English. Using differ-
ent intermediate languages and temperature-based
sampling results in a diverse set of paraphrases. Ap-
plying this back-translation technique in a vanilla
fashion is not possible for RE task because one has
little control over the retention of the head and tail
entities (Figure 1). Thus, when translating back

1hidden state from the last layer of the Transformer model

1114



Figure 2: Constrained back-translation process

to the source language from the intermediate lan-
guage we perform lexically-constrained decoding
(Hu et al., 2019), i.e., force the inclusion of pre-
specified words and phrases–positive constraint
set–in the output. In our case the original head
and tail entity words/phrases make up this posi-
tive constraints set. We use German and Russian
as intermediate languages and use the pre-trained
WMT’19 English-German and English-Russian
translation models (in both directions) and their im-
plementations provided by Ott et al. (2019). This
methodology generates diverse data augmentations
for a given sentence. For example, the sentence
"The battle led to panic on the frontier, and settlers
in the surrounding counties fled." is converted to
"The battle sparked panic at the border, with resi-
dents fleeing in surrounding counties" when back-
translated via German, and to "The battle caused
panic on the border and settlers in nearby counties
fled." when done via Russian. This is illustrated
in Figure 2. This strong data-augmentation tech-
nique for RE can be applied to both labelled and
unlabelled data opening the doors to consistency
training (Xie et al., 2020) as we will see in §4.3.

4.2 Latent-space interpolation

Here, we adapt a mixup-based data augmentation
technique to the RE task by making necessary mod-
ifications to the base model architecture we de-
scribed in §3. As done in previous works (Chen
et al., 2020b,a), we sample two random data points–
(x,y) and (x′,y′), where x and y denote the rela-
tion statement and the corresponding relation label–
from the training data and separately compute the
respective latent representations, hm and h′m, upto

the layer m of the relation encoder Fθ as follows:

hl = F l
θ(h

l−1); l ∈ [1,m],

h′l = F l
θ(h

′l−1); l ∈ [1,m],

where hl is the latent representation of all tokens in
the sentence x at the lth layer of the encoder. Next,
the latent representations of each token in x at the
mth layer are linearly interpolated:

h̃m = λhm + (1− λ)h′m,

where λ is the mixing coefficient which is sam-
pled from a Beta distribution, i.e., λ ∼ Beta(α, β).
Then, the interpolated latent representation is
passed through the rest of the encoder layers:

h̃l = F l
θ(h̃

l−1); l ∈ [m+ 1, L].

This final encoder output representation, h̃L, can be
interpreted as the encoder output representation of
a virtual input x̃, i.e., h̃L = Fθ(x̃). We denote this
whole mixup operation2 as h̃L := REMix(x,x′).
The label for this augmented virtual sample is given
by the linear interpolation of the respective labels,
y and y′, with the same mixing coefficient λ i.e.,
ỹ := mix(y,y′) = λy + (1 − λ)y′. This virtual
data point, (x̃, ỹ), is the augmented data point and
can be used as additional training data.
Proposed architecture change. Now, for the RE
task we need to extract a fixed-length relation rep-
resentation from the encoder output representation
of the entire input sequence. The traditional way to
do this for RE task is by concatenating the encoder
output representations of the entity marker tokens
[E1] and [E2]. However, it is challenging to do
this for a virtual sample, x̃, as the entity markers
are not clearly defined in this case. We thus mod-
ify the relation representation to be the encoder
output representation of the [CLS] token. How-
ever, Baldini Soares et al. (2019) have shown this
choice to be sub-optimal compared to concatena-
tion of marker tokens. This is because the marker
token representations provide direct access to the
contextual information of the respective entities.
Although the [CLS] token, in theory, has access
to the entire context of the sentence, it might be
difficult to capture the nuances like the head entity
type, tail entity type, and the contextual informa-
tion around the two entities all in a single vector.

2REMix entails the model architecture changes discussed
below.
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On the other hand, entity type information is
easily accessible in most RE benchmarks3. So, to
compensate for the sub-optimal choice of using
[CLS] token representation as the relation repre-
sentation, we modify how we represent the entity
spans in the input token to more effectively use
the easily accessible entity type information. In
particular, we note that the entity type labels can
trivially be mapped to tokens from any pre-trained
language model’s vocabulary. For example, entity
types like PERSON and STATE_OR_PROVINCE
can be tokenized into a word/phrase like ‘person’
and ‘state or province’, respectively. In such cases
when entity type information is available, instead of
using special marker tokens like [E1] and [E2]
we prepend the entity spans in the input sequence
with the word/phrases corresponding to their re-
spective types and enclose these ‘type-words’ in
punctuation marks (Zhou and Chen, 2021). The
modified input to the transformer along with the
[CLS] token looks as follows:

[CLS]@ * person * Lebron James @ plays

for & * organization * LA Lakers & team.

We use different punctuation symbols to distinguish
between subject and object entities. Specifically,
we use ‘@’ for subject and ‘&’ for object entities.
This representation helps leverage the knowledge
already contained in the pre-trained large-language
model about the type of the entity and offset some
of the downside of using a simplified relation repre-
sentation in the [CLS] token. As we will empiri-
cally see in §5.4, this use of entity type information
is not only effective but is necessary for the optimal
functioning of our approach. Zhou and Chen (2021)
recently showed the success of this method in the
fully supervised setting. Here we use it in conjunc-
tion with a simplified relation representation and
show its merit in semi-supervised RE setting.

4.3 Consistency training for SSRE
Let the given limited labelled set be Xl =
{xl

1, ...,x
l
n}, with their relation labels Yl =

{yl
1, ...,y

l
n}, where yl

i ∈ {0, 1}|R∪{NA}| is a one-
hot vector and R is the set of pre-defined relations.
Let Xu = {xu

1 , ...,x
u
m} be a large unlabelled set.

The goal is to apply both the data augmentation
techniques described above and train a model with

3From new datasets/applications viewpoint, when entities
are identified in a piece of text it is safe to assume that their
types would also be identified.

consistency loss to effectively leverage unlabelled
data along with the limited labelled data.

We largely adapt the semi-supervised training
techniques introduced by Chen et al. (2020b). For
each xu

i in the unlabelled set Xu, we generate K
augmentations xa

i,k, k ∈ {1, 2, ...,K} using the
constrained back translation technique with differ-
ent intermediate languages4. These augmentations
make up the set Xa = {xa

i,k}. For a given unla-
belled data point xu

i and its K augmentations xa
i,k

the label is given by the average of current model’s
predictions on all K + 1 data points:

yu
i =

1

K + 1

(
pϕ(Fθ(x

u
i )) +

K∑

k=1

pϕ(Fθ(x
a
i,k))

)
,

where yu
i is a probability vector. This not only en-

forces the constraint that the model should make
consistent predictions for different augmentations
but also makes the predictions more robust by en-
sembling all the predictions. We merge the un-
labelled set and the augmented set into Xua =
Xu ∪ Xa and the corresponding (pseudo-)labels
are given by Yua = Yu ∪Ya, where Yu = {yu

i },
Ya = {ya

i,k}, and ya
i,k = yu

i ∀k ∈ {1, 2, ...,K},
i.e., all the augmented data points share the same
label as the original unlabelled data point.

Given this cumulative set Xua and their gener-
ated labels Yua as additional training data, we
employ the REMix augmentation technique to
generate arbitrary amounts of training data. In
particular, we randomly sample two data points
xua
s ,xua

t ∈ Xua, and compute the encoder output
representation of a new virtual data point with
REMix(xua

s ,xua
t ) and the corresponding target la-

bel with mix(yua
s ,yua

t ).
Additionally, while computing the final unsuper-

vised loss in each training iteration we filter out
the unlabelled data points with prediction confi-
dence below a certain threshold γ (Xie et al., 2020).
Finally, to encourage low-entropy predictions on
unlabelled data, we sharpen the predictions with a
sharpening coefficient T :

ŷua
i =

(yua
i )

1
T

||(yua
i )

1
T ||1

.

Everything put together, the final unsupervised loss
in each training iteration with mini-batch size B is

4In our specific implementation K = 2; with German and
Russian as intermediate languages.
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computed as:

Lunsp =
1

B

B∑

xua
s ,xua

t ∼Xua

m(xua
s ,xua

t )Lmix(x
ua
s ,xua

t ),

where

Lmix(x
ua
s ,xua

t ) = CE(mix(ŷua
s , ŷua

t )||
pϕ(REMix(xua

s ,xua
t ))),

m(xua
s ,xua

t ) = I(maxyua
s > γ)I(maxyua

t > γ).

Here, I(.) is an indicator function and m(.) denotes
the confidence masking function which filters out
the low-confidence datapoints. In our implementa-
tion pϕ(.) is a two-layer MLP classifier on top of
the relation encoder model. CE denotes the cross
entropy loss function. 5

This combined with the traditional supervised
loss, Lsup =

∑B
xi∼Xl

CE(yl
i||pϕ(Fθ(xi))), consti-

tutes the total loss:

Ltotal = Lsup + γmLunsp,

where γm is a parameter which controls the trade-
off between supervised and unsupervised loss.

5 Experiments

We perform experiments on four benchmark
datasets for sentence-level RE and compare the
proposed model, REMix, against current state-of-
the-art SSRE approaches. We further conduct abla-
tion studies and sensitivity analysis to expose the
significance of different design choices of REMix.

5.1 Datasets
We use two widely popular relation extraction
benchmark datasets: SemEval 2010 Task 8 (Se-
mEval) (Hendrickx et al., 2010), and the TAC
Relation Extraction Dataset (TACRED) (Zhang
et al., 2017). SemEval is a standard benchmark
dataset for evaluating relation extraction models
containing 10717 examples in total. Each sen-
tence is annotated with a pair of untyped nomi-
nals (concepts; example in Figure 1) that are re-
lated via one of 19 semantic relation types (in-
cluding no_relation). TACRED is a large-
scale crowd-sourced relation extraction dataset

5Note that we only apply the augmentation techniques on
the unlabelled data set. Initial experiments applying these to
the labelled data set resulted in only marginal improvements
and even performance deterioration in some cases, likely due
to introduction of too much noise into an already limited
labelled set.

Table 1: Dataset statistics

Dataset # rel. examples # no_relation

TACRED 42 106264 79.51%
RE-TACRED 40 91467 63.17%
KBP37 37 21046 10.33%
SemEval 19 10717 17.39%

with 106264 examples which is collected from all
the prior TAC KBP relation schema. Unlike Se-
mEval, sentences in TACRED are labelled with
pairs of typed-entities that are related via one of
42 person- and organization-oriented relation types
(including no_relation). In addition to these
standard benchmark datasets, we also show results
on two more datasets: RE-TACRED (Stoica et al.,
2021) and KBP37 (Zhang and Wang, 2015). RE-
TACRED is a re-annotated version of the original
TACRED dataset using an improved annotation
strategy to ensure high-quality labels. Zhou and
Chen (2021) provide a compelling analysis and rec-
ommend using this as the evaluation benchmark
for sentence-level RE. KBP37 is another sentence-
level RE dataset with 21046 total examples col-
lected from 2010 and 2013 KBP documents as well
as July 2013 dump of Wikipedia. In terms of size,
this falls between SemEval and TACRED. Similar
to SemEval the entity types are not available in this
dataset, however the 37 relation types are person-
and organization-oriented like in TACRED. This
dataset is thus a good segue between the two stan-
dard benchmarks. The statistics of these datasets is
given in Table 1.

5.2 Baselines and implementation details

We compare REMix with three state-of-the-art
models that are representative of the existing class
of methods for SSRE: MRefG (Li et al., 2021),
MetaSRE (Hu et al., 2021a), and GradLRE (Hu
et al., 2021b). MRefG leverages the unlabelled data
by semantically or lexically connecting them to la-
belled data by constructing reference graphs, such
as entity reference or verb reference. This approach
heavily leverages the linguistic structure of the data
and is the only existing method that falls outside the
self-training class of methods. MetaSRE generates
pseudo labels on unlabelled data by learning from
the mistakes of the classification model as an addi-
tional meta-objective. GradLRE on the other hand
generates pseudo label data to imitate the gradient
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Table 2: F1 score with various amounts of labelled data and 50% unlabelled data. Mean and standard deviation of 5
different runs is reported. Best performance on each configuration is bolded and second best is underlined.

TACRED KBP37

%labelled Data 3% 10% 15% 5% 10% 30%

MRefG 43.81± 1.44 55.42± 1.40 58.21± 0.71 - - -
MetaSRE 46.16± 0.74 56.95± 0.33 58.94± 0.31 59.29± 0.92 61.83± 0.21 63.51± 0.69

GradLRE 47.37± 0.74 58.20± 0.33 59.93± 0.31 59.98± 0.37 62.67± 0.54 66.41± 0.28

REMix(ours) 55.80± 1.33 61.30± 0.70 63.07± 0.93 60.84± 0.40 63.82± 0.71 66.46± 0.69

RE-TACRED SemEval

%labelled Data 3% 10% 15% 5% 10% 30%

MRefG - - - 75.48± 1.34 77.96± 0.90 83.24± 0.71

MetaSRE 44.42± 3.02 58.71± 1.70 61.71± 3.70 78.33± 0.92 80.09± 0.78 84.81± 0.44

GradLRE 61.22± 0.58 74.03± 1.74 79.46± 0.82 79.65± 0.68 81.69± 0.57 85.52± 0.34

REMix(ours) 71.33± 1.22 77.94± 0.59 79.76± 0.47 77.58± 0.59 81.13± 0.82 85.51± 0.38

descent direction on labelled data and bootstrap
its optimization capability through trial and error
(Hu et al., 2021b). MetaSRE and GradLRE are
two of the strongest methods in the widely adapted
self-training methods for SSRE.
Implementation details. We follow the estab-
lished setting to use stratified sampling to divide
the training set into various proportions of labelled
and unlabelled sets so that the relation label dis-
tribution remains the same across all subsets. Fol-
lowing existing work, we sample 5%, 10%, and
30% of the training set as labelled data for the Se-
mEval and KBP37 datasets, and 3%, 10%, and
15% of the training set as labelled data for TA-
CRED and RE-TACRED datasets. For all datasets
and experiments, unless otherwise specified, we
sample 50% of the training set as the unlabelled
set. For TACRED and SemEval datasets we take
the performance numbers of all baseline models
reported by Hu et al. (2021b). For other datasets,
we re-run the models with their best configuration
as provided in their respective implementations,
when available. To be consistent with all the base-
lines we initialize the text encoder of REMix with
the bert-base-cased model architecture and
pre-trained weights. Full details of all the hyperpa-
rameters can be found in Appendix A.2.

5.3 Main Results

Table 2 shows F1 results of all baseline models and
our proposed model, REMix, on the four datasets
when leveraging various amounts of labelled data
and 50% unlabelled data. We report the mean and

standard deviation of 5 different runs (with differ-
ent seeds) of training and testing. REMix gives
state-of-the-art performance on 10 out of 12 dif-
ferent configurations across all four datasets. This
reinforces the importance of consistency regular-
ization beyond the currently popular self-training
methods for SSRE. Interestingly, the performance
gains are significantly higher for TACRED and RE-
TACRED datasets–we see an average improvement
of as much as 17% when trained on 3% labelled
data. This can be attributed to the fact that entity
type information is available for these datasets and
entity type markers are very effective in exploit-
ing the knowledge embedded in the pre-trained
language models. We revisit this observation in
our ablation studies (§5.4) where we concretely
establish the benefits of using entity type markers.

5.4 Analysis and discussion

We first conduct experiments to empirically demon-
strate the effectiveness of three components of our
proposed model: i) data augmentation by latent
space interpolation (Mix-DA), ii) data augmenta-
tion by constrained back-translation (BT-DA), and
iii) entity type markers (ET). In Table 3, we report
the mean F1 score of five different runs for differ-
ent variations of our model by removing a certain
combination of these components6. As can be seen
from Table 3, each of these components contributes
to the overall success of REMix. For contribution
of just the Mix-DA: we compare i) row 1 v/s row

6We omit standard deviation values for brevity. See the
full results and comparisons in Appendix B
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Figure 3: F1 Performance with various unlabelled data and 10% labelled data
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Figure 4: F1 Performance of REMix with 50% unlabelled and 10% labelled data with changing mixing coefficient λ

3, and ii) row 2 v/s row 4. All comparisons show
positive improvement. For contribution of just the
BT-DA: we compare i) row 1 v/s row 2, and ii) row
3 v/s row 4. We note that BT-DA results only in
marginal improvements in most cases. Upon closer
inspection we note that the constrained-decoding al-
gorithms we implement for BT-DA are actually not
perfect, especially when combined with translation
models. It sometimes misses the constraints and
sometimes falls into repetitive loops in an attempt
to satisfy the constraint. With the ever-improving
language generation capabilities, we believe the
quality of data augmentation will only improve
with time and result in more significant perfor-
mance improvements. For contribution of both
DA techniques together: we compare row 1 v/s row
4. All comparisons show significant improvements
with data augmentation. The contribution of entity
type markers can be noted in TACRED and RE-
TACRED datasets. We see an average drop of 5.4%
in F1 score across all 8 comparisons. Although our
data augmentation techniques are effective, with-
out the entity type information our method doesn’t
result in state-of-the-art performance. This rein-
forces our architectural choice to include entity
type markers when using [CLS] token for relation
representation (§4.2).

Next we examine the effect of using different
amounts of unlabelled data. In Figure 3, we report
the average F1 score for different models trained
with different amounts of unlabelled data and 10%
labelled data. REMix outperforms the baselines in

Table 3: Ablation results on all datasets using 10%
labelled set and 50% unlabelled set.

Mix. BT-DA ET TACRED RE-T KBP37∗ SemEval∗

✓ ✓
✓ 61.30 77.94

63.82 81.13
✗ 56.82 75.11

✓ ✗
✓ 60.81 77.77

63.48 79.71
✗ 56.35 74.67

✗ ✓
✓ 59.65 76.80

62.64 79.17
✗ 55.52 73.78

✗ ✗
✓ 58.96 77.25

63.14 79.20
✗ 55.25 74.58

* these datasets do not have entity type information

all settings except on SemEval dataset, and, inter-
estingly, the performance only marginally changes
with the change in the amount of unlabelled data.
Note that we train the models until the performance
on the validation set stops improving for more than
5 epochs. Hence, REMix generates, in principle,
an infinite amount of unlabelled data via the mixup
strategy. Coupled with the fact that the label dis-
tribution remains the same in all settings, adding
more unlabelled data does not seem to add a lot
of new information. This explains why the model
performance is relatively insensitive to changing
amounts of unlabelled data. This also implies that
REMix can leverage low amounts of unlabelled
data better than the baselines.

Finally, in Figure 4 we show how the perfor-
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mance of REMix changes with a change in the
mean of the Beta distribution from which λ is
sampled on each iteration. Note that a value near
0 and 1 for λ means the augmented virtual data
point will be closer to one of the underlying data
points. As we get closer to 0.5 the virtual data
points get further from the original data mani-
fold and become more ‘novel’. On TACRED and
RE-TACRED datasets the performance peaks at
E(λ) = 0.15(or 0.85) and drops in the mid-values.
This can be interpreted as: adding datapoints far
from the original data manifold is detrimental for
these datasets. Interestingly, on KBP37 and Se-
mEval the pattern inverts, i.e., the performance in-
creases as E(λ) approaches 0.5, implying that more
‘novel’ augmentations help for these datasets.

6 Conclusion

In this paper, we propose a consistency-training-
based semi-supervised algorithm for relation ex-
traction and empirically show the merit of this class
of methods in comparison to the current state-of-
the-art self-training class of methods. In future
work, one could bootstrap the self-training methods
with consistency training as done in some previous
works on vision tasks (Pham et al., 2021). Addi-
tionally, we show how the entity type information,
when available, can result in massive performance
boosts in the semi-supervised scenario. This is im-
portant because in most practical use cases when
entities have already been identified, the entity type
information is easy available and could be effec-
tively leveraged in the proposed fashion.

7 Limitations

One of the key limitations of our proposed method
compared to the baseline methods is the tight de-
pendence on a strong external translation system
to get good quality back-translated data augmen-
tations. Secondly, since we use [CLS] token em-
beddings instead of entity-specific embeddings for
final classification, it is more challenging to deci-
pher entity-specific context. This is evident from
the fact that our method performs relatively the
weakest on the SemEval dataset which consists
of untyped nominals (concepts) as entities and ab-
stract relations which we believe need more entity-
specific context to understand. Hence, our pro-
posed method, REMix, shines bright when the enti-
ties in the dataset are typed or named entities whose
meaning or type is relatively context-agnostic.
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A Reproducibility checklist

A.1 Datasets

The sources of all the datasets are given in Table
4. We use the given train/validation/test splits for
TACRED, RE-TACRED and KBP37 datasets. For
SemEval dataset, we use the same splits as all the
baselines, i.e., we split the original training set into
90% training set and 10% validation set.

A.2 Hyperparameters

We use the BERT tokenizer and set maximum se-
quence length to 256 to pre-process all datasets. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with 5e-5 learning rate and 0.1 warmup ra-
tio. We sweep over the following hyperparameters:
sharpening coefficient T , confidence threshold γ,
the Beta-distribution parameters (α, β)7, and the
unsupervised loss weight γm. We perform incre-
mental grid search to get the best performing con-
figuration based on the F1 score on validation set.
Table 5 shows the set of values we use for each
parameter. Table 6 shows the best parameter values
on each dataset and configuration. Following Chen
et al. (2020b), we use {7, 9, 12} for the mixup layer
set; this layer subset contains most of the syntactic
and semantic information as suggested by Jawahar
et al. (2019).

Table 5: Hyperparameter search values

Parameter Values

T {0.4, 0.6, 0.8, 1.0}
γ {0, 0.15, 0.2, 0.25}
β {1, 10, 30, 60, 120, 190, 300, 600}*
γm {0.01, 0.1, 1}

* corresponding means of the sampled mixing
coefficient, λ, are given by {0.04, 0.09, 0.17, 0.24,
0.33, 0.50, 0.67, 0.86, 0.98}

7α is fixed to be 60 and we change the values of β to
control the mean of the distribution

Table 6: Best hyperparameter values

TACRED KBP37

3% 10% 15% 5% 10% 30%

T 0.8 0.8 0.8 0.8 0.8 0.8
γ 0.15 0.15 0.90 0.25 0.25 0.70
β 10 10 10 120 120 190
γm 0.01 0.1 0.1 0.1 1.0 1.0

RE-TACRED SemEval

3% 10% 15% 5% 10% 30%

T 0.4 0.4 0.4 0.8 0.8 0.8
γ 0.0 0.0 0.9 0.2 0.2 0.7
β 10 10 10 60 60 60
γm 0.01 0.1 0.1 0.1 1.0 1.0

A.3 Training details
We train each model on a single NVIDIA Tesla T4
GPU with 16GB memory. We employ mixed preci-
sion training and gradient checkpointing techniques
for faster and memory-efficient training. Note that
we train the models until the performance on the
validation set plateaus. The full REMix model
roughly takes about 6 hours to train on TACRED, 5
hours in RE-TACRED, 1 hour in KBP37, and about
30 minutes on SemEval. Note that the training time
slightly varies (± 30 minutes) depending on the
percentage of labelled and unlabelled data we use.
The number of parameters in all our models are
largely dominated by the bert-base-cased
that we use as the text encoder. The relatively
negligible varying component is the MLP classifier
that varies with the varying number of relations in
each dataset.

B Full Ablation results

We conduct experiments to empirically demon-
strate the effectiveness of three components of our
proposed model: i) data augmentation by latent
space interpolation, ii) data augmentation by con-
strained back-translation, and iii) entity type mark-

Table 4: Dataset sources

Dataset Source

TACRED https://catalog.ldc.upenn.edu/LDC2018T24
RE-TACRED https://github.com/gstoica27/Re-TACRED
KBP37 https://github.com/zhangdongxu/kbp37
SemEval https://semeval2.fbk.eu/semeval2.php?location=data
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Table 7: F1 score with 10% of labelled data and 50% unlabelled data. Mean and standard deviation of 5 different
runs is reported.

Mix. BT aug. Ent. type TACRED RE-TACRED KBP37 SemEval

a) ✓ ✓
✓ 61.30± 0.70 77.94± 0.59

63.82± 0.71 81.13± 0.82
✗ 56.82± 0.64 75.11± 1.16

b) ✓ ✗
✓ 60.81± 1.31 77.77± 0.96

63.48± 0.53 79.71± 0.83
✗ 56.35± 0.97 74.67± 1.04

c) ✗ ✓
✓ 59.65± 0.92 76.80± 0.98

62.64± 0.69 79.17± 1.64
✗ 55.52± 0.89 73.78± 1.34

d) ✗ ✗
✓ 58.96± 1.21 77.25± 0.70

63.14± 0.90 79.20± 0.32
✗ 55.25± 1.53 74.58± 0.91

ers. In Table 7, we report the performance of differ-
ent variations of our model by removing a certain
combination of these components. As can be seen
from Table 7, each of these components contributes
to the overall success of REMix. To see the impact
of data augmentation by latent space interpolation,
we compare the results in row ‘a’ with the corre-
sponding ones in row ‘c’, and similarly row ‘b’ with
row ‘d’. We see a significant and consistent drop in
every comparison with and without that component.
Specifically, we see a drop of an average 1.6% in F1
score over all the 12 comparisons. Another inter-
esting pattern that stands out is the significant and
consistent drop in performance (average 5.4% in
F1 score across all 8 comparisons) when not using
entity type markers. When we drop the entity type
markers from the input representation, we use the
basic entity start and end markers–[E1], [/E1],
[E2], [/E2]. This only applies to TACRED
and RE-TACRED since only these datasets have
entity type information readily available. Note that
when we do not use any of the data augmentations,
consistency training is not possible and we are ef-
fectively using only the labelled set for training
the model (fourth row in Table 7). Surprisingly,
even without any unlabelled data using the entity
type markers alone gives better performance than
the current state-of-the-art results by GradLRE (Hu
et al., 2021b), i.e., an F1 score of 58.96 vs 58.20
on TACRED and 77.25 vs 74.03 on RE-TACRED.
This proves the effectiveness of using entity type in-
formation in the fashion we use, i.e., by tokenizing
the type words to leverage the knowledge embed-
ded in pre-trained language models.
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