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Abstract

The vast majority of evaluation metrics for ma-
chine translation are supervised, i.e., (i) are
trained on human scores, (ii) assume the exis-
tence of reference translations, or (iii) leverage
parallel data. This hinders their applicability
to cases where such supervision signals are
not available. In this work, we develop fully
unsupervised evaluation metrics. To do so,
we leverage similarities and synergies between
evaluation metric induction, parallel corpus
mining, and MT systems. In particular, we
use an unsupervised evaluation metric to mine
pseudo-parallel data, which we use to remap
deficient underlying vector spaces (iteratively)
and to induce an unsupervised MT system,
which then provides pseudo-references as an
additional component in the metric. Finally, we
also induce unsupervised multilingual sentence
embeddings from pseudo-parallel data. We
show that our fully unsupervised metrics are
effective, i.e., they beat supervised competitors
on four out of five evaluation datasets. We make
our code publicly available.!

1 Introduction

Evaluation metrics are essential for judging
progress in natural language generation (NLG) tasks
such as machine translation (MT) and summariza-
tion, as they identify the state-of-the-art in a key
NLP technology. Despite their wide dissemination,
classical lexical overlap evaluation metrics like
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) have difficulties judging the quality of mod-
ern NLG systems (Mathur et al., 2020a; Marie et al.,
2021), necessitating novel metrics that correlate bet-
ter with humans. Lately, this has been a very active
research area (Zhang et al., 2020; Zhao et al., 2019,
2022; Colombo et al., 2021; Yuan et al., 2021).2
Recently, more and more supervised metrics are
being proposed. E.g., BLEURT (Sellam et al.,
lgithub.com/potamides/unsupervised-metrics

20f course, the search for high quality metrics dates back
at least to the invention of BLEU and its predecessors.
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Figure 1: Relationship between metrics m, vector spaces,
parallel data, and MT systems: Metrics build on (poten-
tially deficient) multilingual vector spaces (a), and can
be used to mine (pseudo-)parallel sentences (b), which
in turn can be used to improve deficient vector spaces (c).
(Pseudo-)parallel data can also be used to train MT
systems (d), which can generate pseudo-references (e).
Conversely, metrics can also be optimization criteria
for MT systems, which in turn can generate additional
pseudo-parallel data through translation (f & g; not ex-
plored in this work).

2020) trains on human annotated datasets rang-
ing from 5k-150k pairs, the COMET (Rei et al.,
2020) models regress on 12k-370k data points and
UNIiTE (Wan et al., 2022), before fine-tuning on
the same data as COMET, pre-trains on Sm-10m
parallel sentences. Of course, training on larger
amounts of data leads to better metrics (measured
on in-domain data), but also increases the risk of
learning biases from the data (Poliak et al., 2018)—
and limits the applicability to domains and language
pairs where supervision is available. Here, we go
the opposite route and try to minimize the amount
of supervision as much as possible.

We classify existing metrics making use of dif-
ferent types of supervision as follows (cf. Ta-
ble 1). TYPE-1 metrics are trained on human
assessments such as Direct-Assessment (DA) or
Post-Editing (PE) scores, and compare system out-
puts to either human references (reference-based;
Sellam et al., 2020; Rei et al., 2020) or directly
to source texts (reference-free; Ranasinghe et al.,
2021). TYPE-2 metrics, by comparison, do not
use human assessments for training but still require
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Training References Parallel Data
TYPE-1 v ) )
TYPE-2 X v )
TYPE-3 X X v
Unsupervised X X X

Table 1: Different types of supervision used by TYPE-
1/2/3 metrics compared to unsupervised metrics. Check-
marks surrounded by parentheses denote optional super-
vision signals.

human references, i.e., are untrained and reference-
based (Yuan et al., 2021; Zhao et al., 2019; Zhang
et al., 2020). Finally, TYPE-3 metrics are un-
trained (unlike TYPE-1) and reference-free (unlike
TYPE-2), i.e., do not use supervision as in TYPE-
1 or 2. However, to work well, they still rely on
parallel data (Zhao et al., 2020; Song et al., 2021),
which is considered a form of supervision, e.g., in
the MT community (Artetxe et al., 2018; Lample
etal., 2018).

In contrast, we aim for fully unsupervised eval-
uation metrics (for MT) that do not use any form
of supervision (cf. Table 1). In addition, subject to
the constraint that no supervision is allowed, our
metrics should be of maximally high quality, i.e.,
correlation with human assessments. We have two
use cases in mind: (a) Such sample efficiency? is a
prerequisite for the wide applicability of the metrics.
This is especially important when we want to over-
come the current English-centricity (Anastasopou-
los and Neubig, 2020) of MT systems and evaluation
metrics and also cover low-resource languages like
Nepali or Sinhala (Fomicheva et al., 2021) and
low-resource pairs like Yoruba-German.# (b) Our
fully unsupervised evaluation metrics should be
considered strong lower bounds for any future work
that uses (mild) forms of supervision for metric
induction, i.e., we want to push the lower bounds
for newly developed TYPE-k metrics.

To achieve our goals, we employ self-
learning (He et al., 2020; Wei et al., 2021) and
in particular, we leverage the following dualities to
make our metrics maximally effective, cf. Figure 1:

3We use the term sample efficiency in a generalized sense
to denote the amount of supervision required.

“Neither Yoruba (alanguage spoken in Nigeria) nor German
are classical low-resource languages. For German, this is clear
and Yoruba is even included in MBERT, i.e., belongs to the
languages with 100+ largest Wikipedias. Nonetheless, from
own experience, we find it inherently difficult to obtain high-
quality annotations for the language pair, as a result of few
competent parallel speakers as well as technical difficulties
(e.g., lack of adequate compute infrastructure in Nigeria).

(1) Evaluation metrics and NLG systems are closely
related; e.g., a metric can be an optimization crite-
rion for an NLG system (Bohm et al., 2019), and a
system can conversely generate pseudo references
(a.0.) from which to improve a metric. (2) Evalua-
tion metrics and parallel corpus mining (Artetxe and
Schwenk, 2019) are closely related; e.g., a metric
can be used to mine parallel data, which in turn can
be used to improve the metric (Zhao et al., 2020),
e.g., by remapping deficient embedding spaces.
Our contributions are: (i) We show that effective
unsupervised evaluation metrics can be obtained by
exploiting relationships with parallel corpus mining
approaches and MT system induction; (ii) to do so,
we explore ways to (a) make parallel corpus mining
efficient (e.g., overcome cubic runtime complexity)
and (b) induce unsupervised multilingual sentence
embeddings from pseudo-parallel data; (iii) we
show that pseudo-parallel data can rectify deficient
vector spaces such as MBERT; (iv) we show that
our metrics beat three state-of-the-art supervised
metrics on four of five datasets we evaluate on.

2 Background

We take inspiration from three recent super-
vised (reference-free; TYPE-3) metrics: XMOVER-
Score (Zhao et al., 2020), DisTiLScore (Reimers
and Gurevych, 2020), and SEnTS1M (Song et al.,
2021). Below, we review key aspects of them, and
show where supervision plays a role.

2.1 XMOVERSCORE

Central to XMoVERSCORE is the use of Word
Mover’s Distance (WMD) as a similarity between
two sentences (Zhao et al., 2020). WMD and
further enhancements are discussed below.

WMD WMD is a distance function that com-
pares sentences at the token level (Kusner et al.,
2015), by leveraging word embeddings which in
XMovERScorE’s case come from MBERT (Devlin
et al., 2019). From a source sentence x and an MT
hypothesis y, WMD constructs a distance matrix
C e R where C,; is the distance between two
word embeddings, C;; = [| E(x;) —E(y;)Il; xi,y;
index respective words in x, y. WMD uses this
distance matrix to compute the similarity of the
two sentences. This can be defined as the linear
programming problem

lx| 1yl

WMD(x, y) :mFmZ; .
i=1j

<

F;;Cij, (1)

Il
—_
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where F € RI¥II31 is an alignment matrix with F;;
denoting how much of word x; travels to word ;.
Additional constraints prevent it from becoming a
Zero matrix.

Vector space remapping Zhao et al. (2020), akin
to similar earlier and subsequent work (Cao et al.,
2020; Schuster et al., 2019), argue that the monolin-
gual subspaces of MBERT are not well aligned. As
aremedy, they investigate linear projection methods
which post-hoc improve cross-lingual alignments.
We refer to this approach as vector space remapping.
XMovErScorE explores two different remapping
approaches, CLP and UMD. They both leverage
parallel data on sentence-level from which they
extract word-level alignments using FAST-ALIGN,
which are then used for remapping. We give more
details in the Appendix A.

Language Model XMovERScORE linearly com-
bines WMD with the perplexity of a GPT-2 lan-
guage model (Radford et al., 2019). Allegedly this
penalizes ungrammatical translations. This updates
XMovERScoREs scoring function to

m(x,y) = Wxing WMD(x, y) + wim LM(y). (2)

Here, wxing, wim are weights for the cross-lingual
WMD and LM components of XMOVERSCORE.

2.2 DISTILSCORE

Reimers and Gurevych (2020) show that the co-
sine between multilingual sentence embeddings
captures semantic similarity and can be used to as-
sess cross-lingual semantic textual similarity. Their
approach to inducing embedding models is based
on multilingual knowledge distillation. We refer
to this metric as D1sTiLScore. Their approach re-
quires supervision at multiple levels. First, parallel
sentences are needed to induce multilingual models,
and second, NLI and STS corpora are required to
induce teacher embeddings in the source language.

2.3 SENTSIM

A key difference between XMovERScore and Drs-
TILSCORE is that one approach is based on word-
and the other on sentence embeddings. Song et al.
(2021) and Kaster et al. (2021) show that combining
approaches based on word-level and sentence-level
representations can substantially improve metrics.
The metric of Song et al. (2021), which is called
SENTS1M, combines supervised DiSTILSCORE with
one of two word embedding-based metrics. The
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Figure 2: UScorg,,, with pseudo references (left),
unsupervised remapping (middle) and a LM (right).

first one is quite similar to XMOVERSCORE, as it is
also based on WMD. The other one is a multilingual
variant of BERTScorE (Zhang et al., 2020).

3 Methods

In this section, we introduce our fully unsuper-
vised metric UScore. UScore builds upon the
existing metrics XMovERSCORE, Di1sTILSCORE, and
SEnTSIM, but eliminates all supervision signals and
instead leverages the dualities shown in Figure 1. In
particular, we mine pseudo-parallel data from unsu-
pervised metrics, which we use (iteratively) to (a)
rectify deficient vector spaces (for XMOVERSCORE)
and to (b) train unsupervised MT systems which can
generate pseudo-references (as pseudo-references
are in the same language as the hypothesis, this
eliminates problems of cross-lingual deficiency).
Furthermore, we use pseudo-parallel data to (c)
induce an unsupervised sentence embedding model
analogous to D1sTiLScorE, which we can then (d)
integrate with the unsupervised word based model
analogous to SENTSM. We now give details.

3.1 USCORE,,,

XMOoVERSCORE uses sentence-parallel data to ex-
tract word pairs for vector space remapping. (i)
We replace this parallel data with pseudo-parallel
data.> (ii) In addition, we use pseudo-references
to address the issue of deficient vector spaces. We
now give details on (i) and (ii) below.

Efficient WMD Pseudo-Parallel Data Mining
Metrics such as XMovERScoRrE could in principle
be used for pseudo-parallel corpus mining since

5To extract the word pairs from the sentence-parallel data,
XMOVERSCORE uses FAST-ALIGN (Dyer et al., 2013), but since
this depends directly on how well sentences are aligned, we first
replace it with unsupervised AWESOME-ALIGN (Dou and Neubig,
2021) which only relies on pre-trained language models.
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they can compare arbitrary sentences. However,
when WMD-based metrics are scaled to corpus
mining, algorithmic efficiency problems arise: (a)
the computational complexity of WMD scales cu-
bically with sentence length (Kusner et al., 2015);
(b) to compare m source to m target sentences, m>
WMD invocations are necessary, which quickly
becomes intractable. Thus, we explore ways to
improve the performance of WMD to mine effi-
ciently. In particular, Kusner et al. (2015) define a
linear approximation of WMD called word centroid
distance (WCD) and a mining algorithm that first
sorts all target samples according to their WCD to
a given query and computes exact WMD for the
k nearest neighbors. We use this algorithm for
efficient WMD-based pseudo-parallel data mining.

In our work, we apply this approach iteratively
(cf. Figure 1): we start out with an initial WMD
metric (based on MBERT), obtain sentence-level
pseudo-parallel data with it via the efficient approxi-
mation algorithm described, and obtain a dictionary
of word pairs from unsupervised AWESOME-ALIGN
from the sentence pseudo-parallel data. We use the
pseudo-parallel word pairs with UMD and CLP to
remap MBERT. From this, we obtain a better WMD
metric; then we iterate.

Pseudo References Apart from remapping,
pseudo-parallel data could be used to overcome
problems of deficient vector spaces in other ways.
Specifically, we want to mine enough pseudo-
parallel data to train an unsupervised MT system
to translate source sentences into the target lan-
guage to create pseudo references (Albrecht and
Hwa, 2007; Gao et al., 2020; Fomicheva et al.,
2020b). This would allow for a comparison with
the hypothesis in the target language, similar to
reference-based metrics, circumventing alignment
problems in multilingual embeddings. This ap-

proach updates USCORE,,, to

m(x, Y, y’) = Wxing WMD(n) (x’ y) + Wim LM(y)
+ Wpseudo WMD(y, y’),
(3)
where n denotes the iterations of remapping, and
Wpseudo 18 @ new weight to control the influence

of the pseudo reference y’. All components of
USCORE,, are illustrated in Figure 2.

3.2 USCORE,,

Besides a word-based metric, we use pseudo-
parallel data to induce an unsupervised sentence
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level metric, USCORE,, = cos(x, y), based on the
cosine similarity between sentence embeddings.
One could, similarly to DisTiLScorg, perform
knowledge distillation but since our initial exper-
iments showed that this doesn’t work well with
pseudo-parallel data, we chose another approach.

Contrastive Learning We explore contrastive
learning for unsupervised multilingual sentence
embedding induction, which has recently been suc-
cessfully used to train unsupervised monolingual
sentence embeddings (Gao et al., 2021). In our
context, the basic idea is to pull semantically close
sentences together and to push distant sentences
apart in the embedding space. Let x; and y; be the
embeddings of two sentences that are semantically
related and N an arbitrary batch size. The training
objective for this pair can be formulated as

exp (Cos(f’yi) )

L; = —log 4

N

cos(xi,y;)
j=1,j#i =)

exp(
where 7 is a temperature hyperparameter that can
be used to either amplify or dampen the assessed
distances. For each sentence x;, all remaining sen-
tences y j; in the current batch should be pushed
apart in the embedding space. For positive sen-
tences that should be pulled together, we again use
pseudo-parallel sentence pairs. Since noisy data
is beneficial for contrastive learning (Gao et al.,
2021), we expect this paradigm to work well with
pseudo-parallel data. We use pooled XLM-R em-
beddings as sentence representations, and, as with
unsupervised remapping, we experiment with mul-
tiple iterations of successive mining and sentence
embedding induction operations.

Ratio Margin Pseudo-Parallel Data Mining As
UScorkg,,, is based on sentence embeddings, we
cannot use the WMD-based mining algorithm to
obtain pseudo-parallel sentences since it requires
access to word-level representations. An alternative
would be to just use cosine similarity for mining,
but that approach is susceptible to noise in the
data (Artetxe and Schwenk, 2019). Instead, we
follow Artetxe and Schwenk (2019) and use a ratio
margin function defined as

_ ~ cos(x,y)
margin(x, y) = cos(x.2) cos(y,z)’ )
2 ot X T
Z€Ny ZE€Ny

where N, and N, are the k nearest neighbors of
sentence embeddings x and y in the respective



language. Informally, this ratio margin function di-
vides the cosine similarities of the nearest neighbor
by the average similarities of the neighborhood.

3.3 USCORE ., & nr

Inspired by SeENnTSiM, which combines word
and sentence embeddings, we similarly ensemble
UScorg,,,, and UScorEg,,,. We refer to this final
metric as USCORE = USCORE,, o oy With two
new weights wyrg and wepe = 1 — wyq:

UScore(x, y) = Wyrd USCORE,, (X, y)

(6)

+ Went USCORE (X, ¥).
4 Experiments

In this section, we evaluate all UScoRrE variants
at the segment level® and compare them to TYPE-
1/2/3 upper bounds. We detail additional hyperpa-
rameters in Appendix D.

4.1 Datasets

We use various datasets to assess the performance of
our metrics on MT evaluation, i.e., computing the
correlation with human assessments using Pearson’s
r correlation, and parallel sentence matching, a
standard evaluation measure in the corpus mining
field where a set of shuffled parallel sentences is
searched to recover correct translation pairs (Guo
et al., 2018; Kvapilikova et al., 2020). For this we
report Precision at N (P@N).

MT evaluation In WMT-16 and WMT-17, each
language pair consists of tuples of source sentences,
hypotheses and references. Each tuple was anno-
tated with a direct assessment (DA) score, which
quantifies the adequacy of the hypothesis given the
reference translation. Following Zhao et al. (2020)
and Song et al. (2021), we use these DA scores
to assess the adequacy of the hypothesis given the
source. MLQE-PE has been used in the WMT
2020 Shared Task on Quality Estimation (Specia
etal., 2020), and only provides source sentences and
hypotheses for its language pairs, with no references.
Each source sentence and hypothesis pair was anno-
tated with cross-lingual direct assessment (CLDA)
scores. In terms of annotation, Eval4NLP is very
similar to MLQE-PE but focuses on non-English-
centric language directions, especially de-zh and
ru-de. WMT-MQM uses fine-grained error anno-
tations from the Multidimensional Quality Metrics

SWe do not evaluate at the system level since metrics there

often perform very similarly, making it difficult to determine
the best metric (Mathur et al., 2020b; Freitag et al., 2021b).

(MQM) framework (Freitag et al., 2021a) for ade-
quacy assessments. Like MLQE-PE and Eval4NLP,
WMT-MQM also assigns scores based on source
sentences and hypotheses. Additional statistics can
be found in the appendix in Table 8. Using ISO 639-
1 codes, our datasets cover the language pairs de-zh,
ru-de, en-ru, en-zh, cs-en, de-en, en-de, et-en, fi-en,
Iv-en, ne-en, ro-en, ru-en, si-en, tr-en, zh-en.

Parallel sentence matching To evaluate on par-
allel sentence matching, we use the News Com-
mentary” dataset. It consists of parallel sentences
crawled from economic and political data.

4.2 Fine-grained analysis on de-en

To gain an understanding of the properties of the
iterative techniques and the influence of individual
parameters / components, we conduct a fine-grained
analysis on the de-en language direction of WMT-
16 (for MT evaluation) and News Commentary v15
(for parallel sentence matching). We list examples
of pseudo-parallel data used during training in the
appendix in Table 3. The mined sentences are often
semantically similar, but contain factuality errors
(e.g., have wrong places or numbers in hypotheses).

Vector space remapping We explore if remap-
ping works with pseudo-parallel data. We use News
Crawl for mining. We randomly extract 40k mono-
lingual sentences per language, and select the top
5% sentence pairs with the highest metric scores
for remapping. This gives us the same number of
sentences (2k pairs) as were used for remapping
XMOVERSCORE.

The results for UMD and CLP-based remapping
on de-en can be seen in Figure 3 (top). The figure
contains two graphs, one for correlation with hu-
man judgments and one for precision on parallel
sentence matching. Each graph illustrates model
performance before remapping (Iteration 0) and
after remapping one to five times. After remapping
once, both UMD and CLP improve substantially in
Pearson’s r correlation. The improvement of CLP,
however, is noticeably larger. For subsequent itera-
tions, UMD seems to continue to improve slightly,
but the correlations of CLP seem to drop. This
can be explained by the results for precision where
the P@1 of CLP drops each iteration, meaning
the remapping capabilities of the metrics decrease.
UMD does not exhibit this problem. Thus, UMD

7data.statmt.org/news-commentary
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Figure 3: Results for unsupervised vector space remap-
ping (top) and contrastive learning with UScorgg,,
(bottom) for de-en. Pearson’s r is computed on WMT-16
(MT evaluation) and P@1 on News Commentary v15
(parallel sentence matching).

could be a more robust choice for metrics that
should perform reasonably well on both tasks.

Pseudo References & Language Model Next,
we add a language model to the metric and investi-
gate pseudo-parallel corpus mining to train an MT
system for pseudo references. Tran et al. (2020)
show that fine-tuning MBART using pseudo-parallel
data leads to very promising results, so we use
MBART for our own experiments as well. Since fine-
tuning for MT is a very resource-intensive undertak-
ing requiring many parallel sentence pairs (Barrault
et al., 2020), especially compared to our vector
space remapping experiments, we need consider-
ably more training data. On average, Tran et al.
(2020) use around 200k pseudo-parallel sentence
pairs for training. To obtain the same amount
with our extraction rate of 5%, we now use a
pool of 4m sentences per language for mining.
Our results on the de-en data of WMT-16 are re-
ported in Figure 4, which is similar to an ablation
study. On the x-axis, we vary the weight wpseudo €
{0.0,0.1,...,0.9, 1.0} for UScorg,,,, with pseudo
references, and on the y-axis, we explore different
weights wi, € {0.0,0.1,...,0.9,1.0} for the lan-
guage model. We set wxing = 1 —=Wpseudo—Wim. The
best correlation uses Wpseudo = 0.4, wiy = 0.1, and
Wxing = 0.5. The improvement when pseudo refer-
ences and a language model are included is substan-
tial (over only using WMD)—e.g., we improve from
28% correlation with humans (wpseudo = Wim = 0)

1.0 39.1

0.9 39.439.5

0.8 39.840.040.1

0.7 40.340.540.640.7

0.6 40941.141.241.441.4
41.741.942.142.242.342.4

04 42.643.043.243.443.542.543.5
0.3 439

46.046.847.247.447.347.046.545.9

LRN)45.947.548.549.048.848.247.346.1

34.937.439.139.839.839.037.936.635.2

02 03 04 05 06 07 0.8 09 1.0
Wpseudo

0.0 0.1

Figure 4: Influence of a language model and an MT
system on USCORE,,,,, segment-level Pearson’s r for
different values of wpseudo (Weight for pseudo references)
and wyy (weight for the language model) on WMT-16
de-en data. Note that the point wpseudo = Wim = 0 uses
only WMD(x, y); see Equation 3. Here, n = 1.

to 49% with the best weight combination, an im-
provement of 75%.

Contrastive Learning For UScorg,,,, we also
use 4m monolingual sentences per language for
mining but only retain the top 100k sentence pairs,
as for the contrastive training objective we addi-
tionally have to filter out duplicate sentences. The
results of USCoREq,, are shown in Figure 3 (bot-
tom). The P@1 scores seem to steadily improve
every two training iterations. Beginning with the
sixth iteration, the precision seems to converge.

4.3 Other Languages: Results & Analysis

We now test our metrics on other languages and
datasets. For UScORE,,,, we train its sentence em-
bedding model for six iterations. For USCORE,,,,
we remap MBERT once with UMD and make use of
a language model and pseudo references obtained
from an MT system. Based on Section 4.2, we
set Wpseudo = 0.4, wim = 0.1, and wyj,e = 0.5.
Additionally, based on analogous, unreported ex-
periments, we set wyg = 0.6 and wgy = 0.4 for
ensembling. Since determining the weights for
USCORE,,,,, and USCORE,,, & <\, this way consti-
tutes a form of supervision, we also evaluate weights
chosen independently from our conducted experi-
ments. Namely, we also evaluate UScore* with
Wwrd = Wsnt = 0.5. For wyy,, we follow XMOVER-
Score and set it to 0.1 (setting wi, lower makes
sense because the LM only addresses the hypoth-
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esis without considering the source); accordingly,
we Set Wxing = Wpseudo = 0.45. Since wy, = 0.1
coincides with our findings in Section 4.2, we also
evaluate UScore™ where each component uses
entirely uniform weights, i.e., Wyrd = Wgnt = % and
Wim = Wxlng = Wpseudo = %

Correlations with human judgments averaged
over language pairs are shown in Table 2 (individ-
ual results are in the appendix). We also present
the results of the popular TYPE-2 metric BLEU,
where possible, and the recent TYPE-1 metrics
MonoTransQuEsT (Ranasinghe et al., 2020b,a)
and COMET-QE (Rei et al., 2021). Finally, as more
direct competitors, we compare to the TYPE-3 met-
rics XMoVvERSCORE, SENTSIM, and DiSTILSCORE.
We compute all reported scores ourselves.

Overall, the tuned weights of UScore per-
form marginally better than UScore* on most
datasets, but UScore™ is usually a very close sec-
ond. UScore™ performs worse, however, and only
competitively on two of the five datasets. This
indicates that the language model should be set to a
lower value, a choice that makes intuitively sense.

Expectedly, DistiLScorg, which uses parallel
data, is always better than UScorg,,, which uses
pseudo-parallel data. In contrast, USCORE,,,,, 1S
generally on par with XMovERSCORE, even though
XMovERSCcORE uses real parallel data—the dif-
ference is that UScoRrE,,,, also leverages pseudo-
references which XMovEeERScore does not. In-
deed, from Figure 4, we observe that the pseudo-
references can make an improvement of up to 1-11
points in correlation (comparing ‘column’ labeled
Wpseudo = 0 to the columns wpseudo > 0).

Our metrics beat reference-based TYPE-2 BLEU
across the board. TYPE-1 metrics, which are fine-
tuned on human scores, are generally the best.
Intriguingly, the only two language pairs where our
metrics are on par with them are the non-English
de-zh and ru-de from Eval4NLP. These languages
are outside the training scope of the current TYPE-1
metrics and thus test their generalization abilities.
For example, on ru-de our best metric outperforms
MoNoTRrRANSQUEST by 5 points correlation and
COMET-QE by 9 points (Table 7 in the appendix).

UScore and UScore® also outperform the
TYPE-3 upper bounds on four of five datasets. On
WMT-16, WMT-17 and Eval4NLP, they have the
best overall results. On WMT-MQM, UScorEg,,,,
alone is best. The drop in performance for the

combined metric is caused by UScorE,,, which

on its own performs very badly. As supervised
DistiLScore exhibits the same issues, this could be
a general problem for sentence embeddings based
metrics on this dataset. We identify further reasons
in Appendix E.

For MLQE-PE, the SENTS1M metrics perform
best on average among TYPE-3 and our metrics—
although our reproduced scores for this dataset differ
noticeably from the authors’ results, due to issues
in their original code (Chen et al., 2022). Among
our self-learned metrics, the combined variant per-
forms best on average again, but still is 3—5 points
below SENTS1M and DisTiLSCORE, even though it
outperforms both XMovERSCORE variants by over 6
points. Interestingly, UScorgg,, works better than
UScoRrE,,,,, unlike for the other datasets. Similarly,
DistiLScorE clearly outperforms XMOVERSCORE.
This could be because MLQE-PE contains Sinhala,
a language MBERT was not trained on. Another
explanation is the data collection scheme for ru-en,
which uses different sources of parallel sentences,
mainly colloquial data and Russian proverbs, which
use rather unconventional grammar (Fomicheva
etal., 2022). This apparently confuses the language
model and MT system which have been trained
on data from other domains. When we exclude
si-en and ru-en from MLQE-PE, USCORE,,, ¢ sur
performs best, with an average Pearson’s r of 44.22
for tuned weights and 44.45 for default weights vs.
43.82 for SENTSIM (BERTScoRE). In Appendix C,
we show that incorporating real parallel data (in
addition to pseudo-parallel data) at an order of mag-
nitude lower than SENTS1™ allows us to outperform
SENTSIM on MLQE-PE also.

5 Discussion

Throughout, we have presented a mix of results and
analysis, which we now summarize and discuss. In
Figure 4, we conducted an ablation study on the
individual components of UScorg,,,, (on de-en).
This showed that all three components (pseudo-
references, language model, WMD) matter; by
itself, the LM is more important than the pseudo-
references which are more important than WMD.
However, in combination, the LM is least impor-
tant. We also showed that pseudo-parallel data can
successfully rectify deficient multilingual vector
spaces, similar to real parallel data, see Figure 3.
We note, however, that pseudo-parallel data may
introduce an important bias in our data sampling:
namely, it may mine factually incorrect parallel
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Metric WMT-16 WMT-17 MLQE-PE EvadNLP WMT-MQM
) MoNOTRANSQUEST 64.68 66.47 66.28 42.21 42.23
qTY PEil/Zl COMET-QE 65.76 68.77 49.97 40.00 45.89
Supervised
P BLEU 47.82 47.01 . - 19.76
XMoverScore (UMD)  49.96 51.02 33.99 29.60 20.07
TYPE-3 XMoverScore (CLP)  53.10 55.09 31.98 36.93 20.59
Supervised  SENTSIM (BERTScorE)  51.86 55.57 45.36 26.60 13.71
P SENTSIM (WMD) 50.66 54.29 44.72 24.44 12.24
DisTILSCORE 43.79 51.22 43.31 28.90 2.20
USCOREy gy, 53.87 53.52 31.13 36.96 23.28
USCOREy; 36.06 42.68 37.51 20.39 -0.47
USCORE ) sr 55.78 57.55 40.60 39.87 19.35
Unsupervised USCORE?, 53.66 52.97 30.94 36.29 23.15
USCORE}, 1 & sur 55.28 57.29 41.41 38.22 17.71
UScoreth 51.88 51.73 23.76 25.42 19.00
USCORES: & or 54.99 56.49 34.15 32.05 17.08

Table 2: Segment-level Pearson’s r correlations with human judgments, averaged over language directions. The best
results are highlighted in bold, while results that are not significantly worse (as determined by a two-sample t-test

with 10% significance level) are underlined.

sentences, see Table 3 in the appendix, which may
amplify issues of adversarial robustness; see our
discussion in Section 8.

We remark that, depending on the annotation
scheme, better correlations with human judgments
do not necessarily entail better metrics (Freitag et al.,
2021a). The datasets in this work were annotated
using either DA, CLDA, or MQM scores, with
MOQM explicitly addressing this problem. Since our
metrics are consistent regardless of the annotation
scheme, they are unlikely to overfit a particular one.

We finally note that combining word and
sentence-level models is meaningful, because they
offer complementary views (Song et al., 2021).
Kaster et al. (2021) also show that they capture or-
thogonal linguistic factors to varying degrees. Such
complementarity may also stem from different un-
derlying vector spaces, i.e., MBERT vs. XLM-R
that we use in sentence- and word-level metrics.

6 Related Work

All metrics in this work presented so far treated the
MT model generating the hypotheses as a black-
box. There also exists a recent line of work of
so-called glass-box metrics, which actively incor-
porate the MT model under test into the scoring
process (Fomicheva et al., 2020a,b). In particular,
Fomicheva et al. (2020b) explore whether the MT
model under test can be used to generate additional
hypotheses (Dreyer and Marcu, 2012). A crucial
difference to our metrics is the required availability
of the original MT model, which we are agnostic

about. The MT models used in Fomicheva et al.
(2020b) are all trained on parallel data, which makes
their approach a supervised metric in our sense.

Other recent metrics that leverage the re-
lationship between metrics and (MT) systems
are Prism (Thompson and Post, 2020) and
BARTScore (Yuan et al., 2021). We do not classify
them as unsupervised, however, as Prism is trained
from scratch on parallel data and BARTScoRE uses
a BART model fine-tuned on labeled summarization
or paraphrasing datasets.

There are also multilingual sentence embedding
models which are highly relevant in our context.
Kvapilikova et al. (2020), for example, fine-tune
XLM-R on synthetic data translated with an unsu-
pervised MT system. Similar to our contrastive
learning approach, the resulting embedding model
is completely unsupervised. Important differences
are that our sentence embedding model can be
improved iteratively and does not rely on an MT
system. We leave a comparison to future work.

Finally, the idea of fully unsupervised text gen-
eration systems has originated in the MT commu-
nity (Artetxe et al., 2018; Lample et al., 2018;
Artetxe et al., 2019). Given the similarity of MT
systems and evaluation metrics, designing fully un-
supervised evaluation metrics is an apparent next
step, which we take in this work.

7 Conclusion

In this work, we aimed for sample efficient evalua-
tion metrics that do not use any form of supervision.
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In addition, our novel metrics should be maximally
effective, i.e., of high quality. To achieve this,
we leveraged pseudo-parallel data obtained from
fully unsupervised evaluation metrics in three ways:
we (i) remapped deficient vector spaces using the
pseudo-parallel data, (ii) trained an unsupervised
MT system from it (yielding pseudo references),
and (iii) induced unsupervised multilingual sen-
tence embeddings. To enable our approach, we also
explored efficient pseudo-parallel corpus mining
algorithms based on our metrics as an orthogonal
contribution. Finally, we showed that our approach
is effective and can outperform three supervised
upper bounds (making use of parallel data) on 4
out of 5 datasets we included in our comparison.

In future work, we want to aim for algorithmic
efficiency, include pseudo source texts as additional
components (using the MT system in backward
translation), and address the missing dualities dis-
cussed in Figure 1 (i.e., use of metrics as optimiza-
tion criteria and MT systems to generate additional
pseudo-parallel data). Further, our approach has
substantial room for improvement given that we
selected hyperparameters completely unsupervised
or based on one high-resource language pair (de-en).
Thus, it will be particularly intriguing to explore
weakly-supervised approaches which leverage min-
imal forms of supervision.

8 Limitations

Limitations of our metrics include (1) algorith-
mic inefficiency, (2) resource inefficiency, (3) the
brittleness of unsupervised MT systems in certain
situations, and (4) issues of adversarial robustness.

(1) Some of the components of USCORE,,,
(mainly the MT system) have high computa-
tional costs. For example, XMovERSCORE and
SENTSIM (BERTSCORE) take less than 30 seconds
to score 1000 hypotheses on an Nvidia V100 GPU.
USCORE,,,,, On the other hand, takes over 2.5 min-
utes. This algorithmic inefficiency trades off with
our sample efficiency, by which we did not use
any supervision signals. In future work, we aim
to experiment with efficient MT architectures to
reduce computational costs (Kamal Eddine et al.,
2022; Griinwald et al., 2022).

(2) Similarly to XMovERSCORE, MONOTRANS-
QuEsT or SENTS1M, our metrics use high-quality
encoders such as MBERT, which are not only mem-
ory and inference inefficient but also leverage large
monolingual resources. Future work should thus

not only investigate using smaller MBERT mod-
els but also models that leverage smaller amounts
of monolingual resources. Wang et al. (2020),
for example, propose a competitive LSTM-based
approach that completely forgoes monolingual re-
sources and instead uses small parallel corpora
(i.e., a few hundred parallel sentences as a weak
supervision signal). Similarly, we give a recipe
for improving MBERT for unseen languages using
limited amounts of parallel data in Appendix C.

(3) Using unsupervised MT approaches, as we do
via pseudo references, may be less effective for truly
low-resource languages (Marchisio et al., 2020).
However, this remains a very active research field
with a constant influx of more powerful solutions
(Ranathunga et al., 2022; Sun et al., 2021).

(4) As indicated in Sections 4.2 and 5, our mined
pseudo-parallel data tends to contain factual incon-
sistencies such as “Uruguay was seventh” vs. (a
translation of) “Russia was second”. As a conse-
quence, our induced metrics may be less robust
than existing metrics (Chen and Eger, 2022; Rony
et al., 2022). An approach to address this incon-
sistency would be to retain only high probability
aligned words in parallel sentences (recall that we
infer word-level parallel data from sentence-level
parallel data).
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A Vector Space Remapping

Zhao et al. (2020) explore two different remapping
approaches for XMovERScoORE, which are defined
as follows:

Procrustes alignment Mikolov et al. (2013)
propose to compute a linear transformation ma-
trix W which can be used to map a vector x of
a source word into the target language subspace
by computing Wx. The transformation can be
computed by solving the problem

min |[WX - Y]|. )

Here X, Y are matrices with embeddings of source
and target words, respectively, where the tuples
(xi,y;) € XX Y come from parallel word pairs.
XMovERSCcORE constrains W to be an orthogonal
matrix such that WTW = I, since this can lead to
further improvements (Xing et al., 2015). Zhao et al.
(2020) call this remapping Linear Cross-Lingual
Projection remapping (CLP).

De-biasing The second remapping method of
XMOovVERSCORE is rooted in the removal of biases
from word embeddings. Dev and Phillips (2019)
explore a bias attenuation technique called Uni-
versal Language Mismatch-Direction (UMD). It
involves a bias vector v g, which is supposed to cap-
ture the bias direction. For each word embedding
e, an updated word embedding e’ is computing by
subtracting their projections onto vp, as in

e’ =e—(e-vp)va, (®)
where - is the dot product. To obtain the bias
vector vg, Dev and Phillips (2019) use a set & of
word pairs that should be de-biased (e.,g. man and
woman). The subtractions of the embeddings of the
words in each pair are then stacked to form a matrix
Q, and the bias vector vp is its top-left singular
vector. Zhao et al. (2020) use the same approach for
XMOVERSCORE, but & instead consists of parallel
word pairs.

Zhao et al. (2020) show that these remapping
methods lead to substantial improvements of their
XMovERSCORE metric (on average, up to 10 points
in correlation). The required parallel word pairs
were extracted from sentences of the EuroParl cor-
pus (Koehn, 2005) using the FAsT-ALIGN (Dyer et al.,
2013) word alignment tool. The best results were
obtained when remapping on 2k parallel sentences.

371

[e]
(=)

sample size

70 H
10k
<00 mmm 20k
g 50 30k
g B 200k
& 40
30
o il ill |||
¥ > & & & & &
F & & & ¥ g ¥
— 10k 20k 30k 200k
Avg 40.60 4295 4442 4517 46.57

Figure 5: Pearson’s r correlations on MLQE-PE for
USCORE, |, ¢ snr When fine-tuning on limited amounts
of parallel data. We explore sample sizes of 10k, 20k,
30k, and 200k.

B Filtering

Since large corpora tend to include low-quality data
points, we follow Artetxe and Schwenk (2019) and
Keung et al. (2021) and apply three simple filtering
techniques. We first remove all sentences from
each monolingual corpus for which the FaAsTTEXT
language identification tool (Joulin et al., 2017)
predicts a different language. We then filter all
sentences which are shorter than 3 tokens or longer
than 30 tokens. As the last step, we discard sentence
pairs sharing substantial lexical overlap, which
prevents degenerate alignments of, e.g., proper
names. We remove all sentence pairs for which
the Levenshtein distance detects an overlap of over
50%.

C Fine-Tuning on Parallel Data

To examine whether and by how much we can fur-
ther improve our metrics using forms of supervision,
we experiment with a fine-tuning step on parallel
sentences and treat self-learning on pseudo-parallel
data as pre-training (He et al., 2020). We use the
parallel data to fine-tune the contrastive sentence
embeddings of UScorg,, and the MT system of
USCORE,,,,,, Which is responsible for generating
pseudo references. Further, we also compute new
remapping matrices for USCORE,,,. Since CLP is
superior to UMD when parallel data is used (see
Section 4.2), we compute these remapping matrices
using CLP instead of UMD. To assess how different



amounts of parallel sentences affect performance,
we fine-tune our metrics on 10k, 20k, 30k, and 200k
parallel sentences. We use WikiMatrix (Schwenk
et al., 2021) and the Nepali Translation Parallel
Corpus (Duwal et al., 2019) to obtain parallel sen-
tences.

Pearson’s r correlations with human judgments
for individual and averaged language pairs are
shown in Figure 5; we focus on MLPQE-PE, where
our metrics performed worst. Overall, introducing
parallel data into the training process consistently
improves performance for the majority of language
directions; more parallel data leads to better results.
The relatively biggest improvements are achieved
for the si-en language direction, which is in accor-
dance with our discussion above. When fine-tuning
with 30k parallel sentences, the performance of our
metrics is roughly on par with the SENTSIM vari-
ants (see Table 2). With 200k parallel sentences,
our metrics clearly outperform SENTSIM, which
uses millions of parallel sentences and NLI data as
supervision signals.

D Hyperparameters

For efficient WMD pseudo-parallel mining, we
set k = 20 for remapping, and k = 1 for training
MBART. For ratio-margin-based pseudo-parallel
mining, we use k = 5. With regard to training
UScorg,,, we follow Gao et al. (2021), and iter-
atively train XLM-R for one training epoch with
a learning rate of 5e-5, a batch size of 256, and
a temperature coefficient of 7 = 0.05 utilizing the
AdamW optimizer (Loshchilov and Hutter, 2019).
Fine-tuning of MBART was performed for three
epochs with a batch size of four and using the same
learning rate of 5e-5 as well as AdamW optimizer.

We decided to continue using MBERT in
USCoRE,,,,,, for two reasons. Firstly, we want
USCORE,,,,, to remain directly comparable to
XMoverScore which is based on MBERT. Secondly,
in our own experience, vanilla MBERT is very ro-
bust in terms of layer choice, especially compared to
vanilla XLM-R. Intuitive choices like the first or last
layer work very well for a lot of problems. This is an
important property for unsupervised metrics, since
we can’t easily justify a (supervised) hyperparame-
ter search in an unsupervised setting to determine
the best layer or even a linear combination of those.

E Supplementary Data and Results

Table 3 shows examples of pseudo-parallel data
obtained with UScorg,,,, and UScorg,,,. Ta-
bles 4, 5, 6, and 7 show segment-level Pearson’s r
correlations with human judgments on WMT-16,
WMT-17, MLQE-PE, as well as WMT-MQM and
Eval4NLP, respectively. Table 8 provides additional
statistics for each dataset.

A surprising finding is the poor performance
of UScorg,, and DisTILScoRE on the German-
English language pair in Table 7. It is well known
that high-resource language directions, such as
English-German, can be affected by a lack of low-
quality translations (Fomicheva et al., 2022), and
with only high-quality translations available, there
is little variation in the scores, which makes a mean-
ingful assessment of correlation difficult (Specia
et al., 2020). Further, since both UScorgg,, and
DisTiLScorE are based on sentence embeddings of
XLM-R, and sentence embedding-based metrics
are known to be a bit worse on average than their
word embedding-based counterparts, we believe
that both aspects combined could be the root cause
for this.
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Case

Source

Target

Top-WRD  Uruguay belegt mit vier Punkten nur Platz Sieben. Russia was second with four gold and 13 medals.

Top-WRD  Soweit lautet zumindest die Theorie. That, at least, is the theory.

Rnd-WRD  Die USA stellen etwa 17.000 der insgesamt 47.000  Currently, there are about 170,000 U.S. troops in Iraq
auslidndischen Soldaten in Afghanistan. and 26,000 in Afghanistan.

Rnd-WRD  “Das ist eine schwierige Situation”, sagte Kaczynski.  “It seemed like a ridiculous situation,” Vanderjagt

said.

Top-SNT Die Wahlen fiir ein neues Parlament sollen dann An- Parliamentary elections are to be held by January.
fang Januar stattfinden.

Top-SNT Anzeichen fiir die Blauzungenkrankheit sind Fieber, ~Contact with the creatures can cause itching, rashes,
Entziindungen und Blutungen an der Zunge der Tiere.  conjunctivitis and, in some cases, breathing problems.

Rnd-SNT  Riesen-Wirbel an der Universitit Zagreb: An Those attending the Soil Forensics International Con-
der wirtschaftlichen Fakultit und am Institut fiir ference work in the fields of science, policing, forensic
Verkehrsstudien durchsuchen Polizisten die Biiros von  services as well as private industries.
Dozenten.

Rnd-SNT  Frankfurt soll WM-Finale der Frauen ausrichten The women’s tournament gets underway on Sunday.

Table 3: Pseudo-parallel data obtained via USCORE,,,, and USCORE,,; top and random sentence pairs. The mined

sentences are semantically similar, but contain factuality errors (e.g., have wrong places or numbers in hypotheses).

Metric de-en en-ru ru-en ro-en cs-en fi-en tr-en

S MoNOTRANSQUEST 61.65 66.69 63.32 6236 67.67 6833 62.71
ql Y Ph-]/fj COMET-QE 6573 7191 69.71 6640 6798 6483 53.73

Supervise

b BLEU 4539 55.08 4633 47.09 53.80 39.92 47.15
XMoverScore (UMD) 4346 62.16 60.52 47.88 58.83 43.52 33.34
TYPE-3 XMovEerScore (CLP) 4529 6358 56.12 5424 5889 5140 42.14
Supervised SENTSIM (BERTScore) 4849 5037 57.89 55.06 59.08 46.66 4547
p SENTSIM (WMD) 4778 4849 56.19 54.48 56.87 46.00 44.84
DisSTILSCORE 40.62 4121 43.16 51.22 49.51 39.65 41.14
USCOREy 5 4894 60.97 59.09 56.06 57.15 5376 41.15
USCOREg,, 3048 39.73 3531 44.18 40.80 31.30 30.62

USCORE,, 1 ¢ snr 50.37 6292 6049 60.07 59.25 5293 4441
Unsupervised  UScorel, 4897 60.57 58.35 5623 5644 5378 41.30
USCORE, | & nr 50.29 6237 5943 60.71 58.47 5148 44.19
UScoredh, 4450 6145 53,50 56.03 5295 54.08 40.65
USCOREL, o o 4727 6414 5640 6036 5629 55.62 44.85

Table 4: Segment-level Pearson’s r correlations with human judgments on the WMT-16 dataset.

Metric cs-en  de-en  fi-en Iv-en  ru-en tren zh-en

MoNOTRANSQUEST 60.93 63.54 6533 7201 5956 7591 68.03

TYPE-12  COMET-QE 68.99 6934 72.83 6475 69.06 68.43 68.01
Supervised

BLEU 4122 4129 5648 39.28 4599 53.06 51.75

XMoverScore (UMD)  41.72  51.19 56.61 56.11 4724 46.52 57.73

TYPE-3 XMovERScorE (CLP) 4776  50.04 6222 6395 4879 5297 59.88

Supervised SentSiM (BERTScore) 4990 5226 5785 5742 5510 56.84 59.59

P SENTSIM (WMD) 47.62 5042 5659 5691 5342 5624 58.86

DISTILSCORE 46.42 4564 54.03 5551 5413 54.04 50.89

USCOREy 46.70 52771 6191 5922 49.10 50.06 54.95

USCOREy, 38.890 4192 39.77 4895 37.27 4883 43.10

USCORE 1 ¢ snr 50.67 56.50 61.86 6454 53.17 5731 58.80

Unsupervised  USCOREY,,, 4455 5296 60.96 59.02 48.82 49.70 54.75

USCOREY . & onr 48.62 5631 6044 63.62 54.19 57.54 60.28

UScoredt 4541 48.00 61.33 60.64 49.65 47.06 50.00

USCORE{ T | o o 49.27 5220 63.10 66.64 53770 5493 55.62

Table 5: Segment-level Pearson’s r correlations with human judgments on the WMT-17 dataset.
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Metric en-de en-zh ru-en ro-en et-en ne-en si-en

TYPE-1 MoNOTRANSQUEST 41.85 4576 76.776 88.81 73.19 75770 61.90
Supervised COMET-QE 36.03 30.70 4933 6495 6345 57.46 47.85

XMoverScore (UMD) 16.56 1648 28.07 65.83 5395 3823 18.81
XMovERScore (CLP) 25.59 2025 2031 5734 5846 25.15 16.74

SEZI;VEISi 4 SeNtSiv(BERTScore) 615 2223 4730 7855 5509 57.09 SL14
p SENTSIM (WMD) 386 2262 4746 7772 5460 57.00 4979
DISTILSCORE 1206 28.68 4534 7657 5116 4673 4176

USCOREy gy 2453 2158 1666 6030 5483 2862 1138

USCORE, or 1362 1327 3909 6650 4175 4683 41.49

USCORE, 1 6 oxr 2467 2163 2783 7148 57.62 4570 3525

Unsupervised  USCORE?; 2378 2140 1518 6039 5627 2734 12.22
USCOREY 1 & cxn 200 2141 2771 7365 5794 4727 3991

UScorett 2617 2716 075 3292 5224 1279 1430

USCoRES 2637 2726 929 5770 5681 3124 3038

'WRD @ SNT

Table 6: Segment-level Pearson’s r correlations with human judgments on the MLQE-PE dataset.

WMT-MQM EvaldNLP

Metric en-de zh-en de-zh  ru-de
. ) MONOTRANSQUEST 31.38 53.07 34.66 49.76
I'YPE-12 COMET-QE 4094 50.84 33.51  46.49
Supervised
BLEU 1794 2158 — —
XMoverScore (UMD)  12.72  27.41 10.85 4835
TYPE-3 XMovEerScore (CLP) 12.89 2829 21.61 52.25
Supervised SENTSIM (BERTScore) 1.03 26.39 -7.71 60.91
P SentSiM (WMD) -0.23 2470 -11.54 60.42
DISTILSCORE -2.66  7.06 6.57 51.22
USCOREy 5 18.13 2843 2929 44.63
USCOREgy; -5.93 4.99 0.86 39.91
USCORE ) @ snr 13.94 25.17 24.66  55.08
Unsupervised  UScore}, ., 19.83 2646 29.99  42.59
USCOREY, .1 & snr 13.72 217 22.64 538
UScoredt 20.19 17.80 36.51 14.32
USCOREYF o 17.18 1697 34.00  30.09

Table 7: Segment-level Pearson’s r correlations with human judgments on the WMT-MQM and Eval4NLP datasets.

Dataset Pairs Tokens  Type
WMT-16 560 9886 CA
WMT-17 560 11189 CA

MLQE-PE 1000 15263 CLDA
Eval4NLP 1295 25975 CLDA
WMT-MQM 17090 549835 MQM

Table 8: Statistics of our used datasets averaged over language pairs. For each dataset we report the number of
sentences we evaluated on, the amount of tokens in these, and the type of human annotation. The number of tokens
refers to source sentences.
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