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Abstract

A promising approach for knowledge-based
Word Sense Disambiguation (WSD) is to select
the sense whose contextualized embeddings
computed for its definition sentence are closest
to those computed for a target word in a given
sentence. This approach relies on the similarity
of the sense and context embeddings computed
by a pre-trained language model. We propose a
semantic specialization for WSD where contex-
tualized embeddings are adapted to the WSD
task using solely lexical knowledge. The key
idea is, for a given sense, to bring semanti-
cally related senses and contexts closer and
send different/unrelated senses farther away.
We realize this idea as the joint optimization
of the Attract-Repel objective for sense pairs
and the self-training objective for context-sense
pairs while controlling deviations from the orig-
inal embeddings. The proposed method outper-
formed previous studies that adapt contextual-
ized embeddings. It achieved state-of-the-art
performance on knowledge-based WSD when
combined with the reranking heuristic that uses
the sense inventory. We found that the similar-
ity characteristics of specialized embeddings
conform to the key idea. We also found that the
(dis)similarity of embeddings between the re-
lated/different/unrelated senses correlates well
with the performance of WSD.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
choosing the appropriate sense of a word from a
given sense inventory using contextual informa-
tion. WSD has proven its usefulness for Informa-
tion Retrieval (Zhong and Ng, 2012) and Machine
Translation (Campolungo et al., 2022). A series
of extensive studies has led supervised WSD task
performance to surpass the milestone of 80% accu-
racy (Bevilacqua and Navigli, 2020), which is the
estimated human performance (Navigli, 2009).

In contrast, the goal of this study is knowledge-
based WSD: a variant of WSD that does not rely

on supervision data but only on lexical knowledge
(e.g., word ontology). This task setting is practi-
cally appealing because it does not use a corpus
with sense annotations (Bevilacqua et al., 2021),
which is costly and labor-intensive to prepare.

A promising approach is based on similarity:
to select the sense that is the nearest to a target
word in the embedding space (Wang and Wang,
2020). Specifically, a pre-trained language model,
typically BERT (Devlin et al., 2019), is used to
compute sense embeddings for definition sentences.
Similarly, a target word is encoded into a context
embedding for a given sentence. Then, the model
predicts the sense of the target word by finding the
most similar sense embedding to the context.

The inherent challenge of the similarity-based
approach is how we associate two different repre-
sentations of word meanings, either by definition
sentences or by words in context. Although the
BERT embeddings capture the coarse-grained word
meanings (Reif et al., 2019; Loureiro et al., 2021),
there should be room for improvement. Notably,
Wang and Wang (2020) proposed SREF, sense em-
bedding adaptation by bringing semantically re-
lated senses closer. Extending their work, Wang
et al. (2021b) proposed COE, context embedding
enhancement heuristics during inference using the
document-level global contexts of the given sen-
tence, and reported the best performance. Despite
being effective, COE cannot be applied to stand-
alone texts, e.g., short messages on social media or
search queries, limiting its applicability.

Our study aims to improve both accuracy and
applicability to stand-alone texts. Specifically, we
propose an adaptation method of the sense and con-
text embeddings for the WSD task solely using
lexical knowledge. Then, what are good embed-
dings for WSD? Our key idea is to 1) bring seman-
tically related sense and context embeddings that
convey the same meaning closer, and 2) send un-
related and/or different senses that share the same
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surface form farther away (Fig. 1-d). We formulate
the idea as the Attract-Repel objective and self-
training objective. The main novelty is the joint
optimization to utilize their complementary nature:
the former should improve the distinguishability
between senses whereas the latter offers pseudo
signals of context-sense associations, which has
not been explored in previous methods.

The Attract-Repel objective, inspired by Vulic
and Mrksic (2018), injects semantic relation knowl-
edge into the similarity of sense pairs. Specifically,
we make semantically related senses more similar
while making different and unrelated senses more
dissimilar (Fig. 1-a). While SREF performs Attract
only, our method utilizes both Attract and Repel.

The self-training objective, inspired by the idea
of retraining on the classifier’s own predictions in-
stead of annotated senses (Navigli, 2009), updates
the similarity of context-sense pairs in a pseudo la-
beling manner (§ 6.1). Specifically, for each train-
ing step and given context, we bring the nearest
neighbor sense among candidates closer (Fig. 1-
b). We also impose distance constraints during
adaptation to control the deviation from BERT em-
beddings (Fig. 1-c) because excessive deviation
may cause an inaccurate nearest neighbor sense
selection, which would cause a performance drop.

We call the overall proposed method SS-WSD, Se-
mantic Specialization for WSD, following Vulic
and Mrksic (2018). We evaluated SS-WSD using
the standard evaluation protocol (Raganato et al.,
2017) and confirmed that it outperforms the previ-
ous embeddings adaptation method. Furthermore,
it achieved state-of-the-art (SoTA) performance
when combined with the reranking heuristic that
uses a sense inventory (Wang and Wang, 2021),
and thus is applicable to stand-alone texts.

The contributions of our study are as follows:

• We proposed SS-WSD, an embedding adap-
tation method that achieves new SoTA in
knowledge-based WSD, regardless of the
availability of document-level global contexts.

• We found that the performance gain originates
from the joint optimization of Attract-Repel
and self-training objectives and the prevention
of deviation from the original embeddings.

• Empirically, we found that the similarity of re-
lated/different/unrelated senses relative to the
similarity of ground-truth context-sense pairs
correlates well with the WSD performance.

Figure 1: Schema of the proposed method. The
BERT embeddings representing senses and contexts
are adapted by transformation (top). Transformation
functions are optimized using Attract-Repel and self-
training objectives under distance constraints so that the
adapted embeddings are effective for WSD (bottom).

2 Related Work

2.1 Knowledge-based WSD
Knowledge-based WSD is a variant of WSD that
does not use a sense annotation corpora such as
the SemCor (Miller et al., 1993) but uses lexical
resources instead, typically WordNet. The majority
vote based on sense frequencies, also known as the
WordNet first sense heuristic (Jurafsky and Martin,
2009), is a simple but strong baseline method of
this category. Sense definitions and usage examples
are also used to measure the similarity of the target
word in a sentence. The simplest method is based
on word overlap (Lesk, 1986).

One recent direction is the use of BERT as a con-
textualized encoder. BERT embeddings showed
empirical success on the supervised WSD task
when used as features. Some analyses reported that
BERT embeddings capture the coarse-grained word
meanings (Reif et al., 2019; Loureiro et al., 2021).
Wang and Wang (2020) proposed a similarity-
based method in the embedding space. It chooses
the sense which has the most similar embedding,
formed from the concatenation of its lemma, def-
inition, and usage examples, to the embedding of
a target word. They also proposed the Seman-
tic Relation Enhancement Framework (SREFemb),
which adapts sense embeddings by weighted av-
erages over semantically related senses, e.g., hy-
ponyms and derivations. SREFemb is the most high-
performing adaptation method so far. We report
that our proposed method achieves better perfor-
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mance.

2.2 Heuristics for Knowledge-based WSD

Another recent direction is the heuristics for choos-
ing the most similar sense, which is further divided
into those that use the sense inventory information
and those that exploit the document-level global
contexts of a given sentence. Wang and Wang
(2020) proposed the former, the Try-again Mech-
anism (TaM). It reranks candidates by adding the
similarity between the target word and the lexi-
cographer class (supersense) that a candidate sense
belongs to. Subsequent studies (Wang et al., 2021b;
Wang and Wang, 2021) refined TaM using Coarse
Sense Inventory (Lacerra et al., 2020). We examine
the effectiveness of the proposed method combined
with TaM because it can be applied to stand-alone
texts.

Wang et al. (2021b) proposed contextual infor-
mation enhancement (CIE), which enhances con-
text embeddings by exploiting the document-level
global contexts of a given sentence on evaluation.
This idea originally stems from the one-sense-per-
discourse hypothesis (Gale et al., 1992): that the
sense of a word is highly consistent within a docu-
ment.

2.3 Attract-Repel Framework

The Attract-Repel Framework is used to inject lex-
ical knowledge into embeddings by encouraging
similar instances to have closer embeddings while
encouraging dissimilar instances to be farther away.
Vulic and Mrksic (2018) and Mrkšić et al. (2017)
reported that updating static word embeddings us-
ing lexical knowledge improves the performance
of the word-level semantic relation classification
task. Our study proposes its application to sense
and context embeddings for the WSD task. We also
reformulate the original loss function with the con-
trastive loss, inspired by its success in Computer
Vision (Chen et al., 2020) and NLP (Gao et al.,
2021; Wang et al., 2021a; Giorgi et al., 2021).

2.4 Supervised WSD

Supervised methods rely on corpora of sense-
annotated contexts, such as SemCor, for training
models. However, the coverage of words and
senses is limited and biased towards more frequent
senses (Pasini, 2020). Recent studies have ad-
dressed these limitations by incorporating lexical
resources into the methods. Barba et al. (2021a)

and its subsequent study (Barba et al., 2021b) re-
framed WSD as a span extraction task by append-
ing definition sentences of candidate senses to the
target context. They reached the SoTA perfor-
mance among supervised methods.

Similarity-based approaches are also used with
supervised methods. Supervised k-nearest neigh-
bors (Sup-kNN) (Loureiro and Jorge, 2019) defines
sense embeddings as the averaged context embed-
dings of annotated senses. The Bi-Encoder model
(BEM) (Blevins and Zettlemoyer, 2020) jointly fine-
tunes two BERT encoders for definition sentences
and contexts, ensuring that context embeddings
will be closer to the correct sense embeddings. The
proposed method is similar in architectural design
to BEM, but differs in that we do not fine-tune the
BERT encoders. We will compare our results with
Sup-kNN and BEM to assess the effect of using no
sense annotation and of freezing BERT encoders
on performance.

3 Semantic Specialization for WSD

3.1 Formalization of WSD

The proposed method adapts BERT embeddings by
trainable transformation functions Hs and Hw:

vw = Hw(v̂w), (1)

es = Hs(ês), (2)

where the inputs v̂w and ês are the context and
sense embeddings computed by a BERT encoder
and the outputs vw and es are the specialized em-
beddings.

We train the transformation functions by mini-
mizing the weighted sum of the Attract-Repel ob-
jective and the self-training objective on the special-
ized embeddings. Note that the BERT encoder is
frozen (not fine-tuned). We integrate the constraints
on the distance between the input and output into
the architecture of transformation functions (§ 3.4).

To predict a sense for a given target word w, we
look up the candidate senses Sw and compute their
specialized sense embeddings using the learned
function Hs. Similarly, we compute specialized
context embeddings using Hw. Then, we select the
nearest neighbor sense s∗ using cosine similarity:

s∗ = arg max
s′∈Sw

ρw,s′ , (3)

ρw,s = cos(vw, es) =
vw · es

∥vw∥∥es∥
. (4)
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Element Noun Verb Adj. Adv. All
# Lemmas 117,798 11,529 21,479 4,481 155,287
# Senses 146,320 25,047 30,002 5,580 206,949
Rel. senses 7.8 13.0 6.2 3.9 8.1
Diff. senses 0.8 4.1 1.2 0.7 1.3

Table 1: Summary statistics of lexical resources by part-
of-speech tag. Values in the related and different senses
rows indicate the average per sense.

3.2 Lexical Knowledge in WordNet

We use WordNet (Fellbaum, 1998) as a lexical re-
source and sense inventory. WordNet mainly con-
sists of synsets, lemmas, and senses. A synset is a
group of synonymous words that convey a specific
meaning. A lemma presents a canonicalized form
of a word and belongs to one or more synsets. A
sense is the lemma disambiguated by a sense key,
and belongs to a single synset. We use the sense
key as the identifier of a sense.

The proposed method makes use of relational
knowledge between senses for training the transfor-
mation functions. Specifically, for each sense s, we
collect three sets of senses: related SP

s , different
SN
s , and unrelated SU

s . The related set consists of
sense keys of synonyms and semantically related
senses (e.g., hyponyms) to the target sense. We fol-
lowed the definition of related senses used in Wang
and Wang (2020) (Appendix A). The different set
consists of sense keys sharing the same lemma to
the target sense excluding itself. In other words,
the different senses correspond to the polysemy of
the lemma of the target sense. The unrelated set
presents sense keys that are randomly chosen from
the sense inventory (see § 3.5.1 for details). Table 1
shows the statistics of lemmas and senses. See Ta-
ble 6 (in Appendix A) for examples of the concepts
explained in this subsection.

3.3 BERT Embeddings for Sense and Context

For obtaining BERT embeddings, we follow the
standard practice of the previous studies (Wang
et al., 2020; Bevilacqua and Navigli, 2020;
Wang and Wang, 2020). Specifically, we use
bert-large-cased1 with special tokens [CLS]
and [SEP]. For each subword, we compute a sum
over outputs at the last four layers of Transformer
blocks.

A context embedding is the average of BERT
embeddings over constituent subwords. For the
computation of sense embeddings, we follow the

1We use transformers package (Wolf et al., 2020).

method that Wang and Wang (2020) used. See
Appendix B for details.

3.4 Transformation Functions
The proposed method adapts embeddings by apply-
ing the trainable transformation, i.e., the special-
ization is learned by optimizing the transformation
functions. This approach enables the adaptation
of context embeddings on the fly during inference,
which was not possible in the original approach
that directly learns adapted embeddings (Vulic and
Mrksic, 2018).

Let v̂w and ês be context and sense BERT em-
beddings. We transform them independently using
residual mapping functions Fw and Fs, which are
both two-layer feedforward networks, FFNNw and
FFNNs. These networks are comprised of a linear
layer with a ReLU activation, followed by a linear
layer with a sigmoid activation.

vw = Hw(v̂w) = v̂w + ϵ∥v̂w∥Fw(v̂w), (5)

es = Hs(ês) = ês + ϵ∥ês∥Fs(ês), (6)

Fw(v̂w) = 2σ(FFNNw(v̂w))− 1, (7)

Fs(ês) = 2σ(FFNNs(ês))− 1, (8)

where vw and es are the specialized embeddings.
ϵ is the hyperparameter that controls how far away
the specialized embeddings can be. Specifically,
the L2 distance relative to the original embedding
∥vw − v̂w∥/∥v̂w∥ is bounded by ϵ

√
Nd, where

Nd is the dimension size of embeddings2. This is
because the residual functions map the inputs to
the space [−1,+1]Nd .

3.5 Objectives
We jointly optimize the Attract-Repel objective
for sense pairs and the self-training objective for
context-sense pairs by minimizing the weighted
sum of the loss functions,

L = LAR + αLST, (9)

where α is the hyperparameter that determines the
relative importance of the self-training objective.

The joint optimization is motivated by the com-
plementary nature of these two objectives. The
Attract-Repel objective should improve the sep-
arability of similar/different senses but does not
contribute to determining which context and sense
should be associated. In contrast, the self-training
objective provides pseudo-supervision signals for

2Nd = 1, 024 for bert-large-cased.
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context-sense associations, although the informa-
tiveness is, when used alone, limited because it es-
sentially reinforces the similarity to the initial near-
est neighbor sense of the target context (§ 3.5.2).

3.5.1 Attract-Repel Objective
We formulate Attract-Repel objective loss LAR us-
ing contrastive loss: we bring related senses closer
while different and unrelated senses farther away3

(§ 3.2). Specifically, for a given minibatch of senses
SB and a specific sense s ∈ SB , we define the sub-
set excluding itself SB \{s} as the unrelated senses
SU
s . Then, we randomly choose a sense sp from the

related senses SP
s . Similarly, we randomly choose

up to five senses without replacement S̃N
s from dif-

ferent senses SN
s . Finally, LAR for the minibatch

SB is defined as follows:

LAR = −
∑

s∈SB

ln
eβρs,sp∑

s′∈({sp}∪SU
s ∪S̃N

s )
eβρs,s′

, (10)

ρs,s′ = cos(es, es′). (11)

We set the scaling parameter β to 64, following the
suggestions in metric learning studies (Deng et al.,
2019; Wang et al., 2018).

3.5.2 Self-training Objective
We formulate the self-training objective loss LST

so that we bring the contexts and nearest neighbor
senses closer. In the self-training process, we label
a word in context with the sense whose embedding
is the closest to that of the word. Specifically, let
WB denote a minibatch of words. For a word
w ∈ WB , we obtain a set of candidate senses4 Sw.
Then, LST for the minibatch WB is defined as,

LST =
∑

w∈WB

(1−max
s∈Sw

ρw,s), (12)

ρw,s = cos(vw, es). (13)

Note that the nearest neighbor sense for the same
context changes during training as we update pa-
rameters of the transformation functions for em-
beddings. Our intention is to bootstrap the perfor-
mance, which was impossible in the “static coun-
terpart”, e.g., pseudo-labeling with the WordNet

3In the contrastive learning literature, related, unrelated,
and different senses correspond to the positives, weak nega-
tives, and hard negative examples, respectively.

4Querying WordNet for a tuple of lemma and part-of-
speech tag returns the candidate senses.

first sense heuristic. That is also a motivation of
introducing the distance constraint in Eq. 5 and
6: we were concerned about the performance drop
when a large deviation occurs in the semantic spe-
cialization. We report empirical evidence that the
constraint improves the performance (§ 6.3).

In principle, the training data can be any cor-
pus annotated with lemmas and part-of-speech tags.
Nevertheless, we used the SemCor (Miller et al.,
1993) corpus with the sense annotations removed.
This is because using these de-facto standard cor-
pora contributes to better reproducibility and fairer
comparisons.

3.6 Try-again Mechanism (TaM) Heuristic

We examine the effectiveness of the proposed
method when combined with TaM. Specifically,
we employ the variant (Wang and Wang, 2021)5

that utilizes Coarse Sense Inventory (CSI) (Lacerra
et al., 2020) because of its simplicity. In essence,
TaM reranks candidate senses by updating similari-
ties under the assumption that the context should
be also similar to the coarse semantic category that
the candidate sense belongs to. Let s1 and s2 be
the top two nearest neighbors for the target word
w and SCSI

s be the set of senses6 belonging to the
same CSI class as s belongs to. Then, we refine the
similarity ρ+w,s for each s ∈ {s1, s2},

ρ+w,s = ρw,s + max
s′∈SCSI

s

ρw,s′ . (14)

Finally, we choose the sense from s1 and s2 with
highest similarity using ρ+w,s, i.e., we use the re-
fined similarity ρ+w,s instead of ρw,s (Eq. 3).

4 Experiment Settings

4.1 Training

We used WordNet senses for optimizing the Attract-
Repel objective and the sense-annotated words in
the SemCor corpus for the self-training objective.
Note that we solely use lemmas and part-of-speech
tags and disregard the sense annotations. The num-
ber of senses in WordNet is 206,949, and the num-
ber of words in the corpus is 226,036. We inde-
pendently sampled minibatches NB for each ob-
jective. For the Attract-Repel objective, we iterate

5We followed author’s implementation: https://github.
com/lwmlyy/SACE

6SCSI
s will be the empty set if s doesn’t exist in the CSI

because it does not cover all synsets.
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over all sense keys in the WordNet with 15 epochs7.
For hyperparameter optimization, we disabled TaM
heuristics and used the evaluation set of SemEval-
2007 as the development set, following the stan-
dard practice (Pasini et al., 2021). See Appendix C
for details of the hyperparameter search. We set
NB = 256, α = 0.2, and ϵ = 0.015. We used the
Adam optimizer with learning rate 0.001.

4.2 Evaluation

For evaluation, we used the WSD unified eval-
uation framework (Raganato et al., 2017)8. We
used the nearest neighbor sense as the prediction
(Eq. 3). For the evaluation metric, we adopt the
micro-averaged F1 score9 that is commonly used
in the literature. Unless otherwise specified, we
run the training process five times with different
random seeds, and report the mean and standard
deviations.

4.3 Baselines

We compare the proposed method in two experi-
mental configurations: Intrinsic and With Heuris-
tics. For the Intrinsic configuration, we com-
pare it with the methods that do not use any
heuristic. Specifically, we choose PlainBERT and
SREFemb (Wang and Wang, 2020) as baselines.
PlainBERT uses BERT embeddings v̂w and ês
as is. SREFemb10 adapts sense embeddings so that
it brings semantically related senses closer. For
the With Heuristics configuration, we compare the
proposed method with the methods that combine
heuristics. Specifically, we choose SREFkb (Wang
and Wang, 2020) and COE (Wang et al., 2021b) as
baselines. SREFkb combines SREFemb with TaM.
COE also utilizes SREFemb, but it employs refined
TaM and CIE. COE is the current SoTA method on
knowledge-based WSD.

We also compare with supervised methods
which employ the similarity-based approach to
assess the effect of not using sense annotations
and of freezing BERT encoders. Specifically, we
compare with Sup-kNN (Loureiro and Jorge, 2019)
and BEM (Blevins and Zettlemoyer, 2020) (§ 2.4),

7In each epoch, we discarded the remaining examples in
the self-training objective trainset once all sense keys have
been traversed.

8Available at: http://lcl.uniroma1.it/wsdeval/
9Note that F1 score is equal to Precision and Recall (Pasini

et al., 2021) because proposed method predicts a single sense.
10We applied their method to PlainBERT, consistent with

the proposed method, to ensure a fair comparison of the effect
of adaptation.

which both use SemCor as the trainset. Sup-kNN
computes sense embeddings as the context embed-
dings averaged over the annotated senses. BEM fine-
tunes BERT encoders so that context embeddings
and correct sense embeddings are brought closer.
We consider BEM as the de-facto upper bound of
similarity-based approach, given its usage of a su-
pervision signal to fine-tune the BERT encoders.

5 Experimental Results

Table 2 shows the WSD task performance. In both
configuration, the proposed method SS-WSDemb out-
performed all knowledge-based baselines.

In the Intrinsic configuration, SS-WSDemb outper-
formed SREFemb by 3.9pt, which is as much as a
9.3pt improvement over PlainBERT. Looking at
the results for each part-of-speech, we observed
the largest improvement over SREFemb for verbs
(9.0pt). This result reflects the fact that verbs have
the richer supervision signal for the Attract-Repel
objective because of the largest number of related
and different senses (Table 1) for verbs. This sug-
gests that the richer semantic relation knowledge is,
the higher performance the proposed method may
achieve.

In the With Heuristics configuration, SS-WSDkb
outperformed COE by 0.8pt without using the CIE
heuristic, which shows an advantage over the base-
lines regardless of whether the evaluation sen-
tence is a stand-alone text or in a document. The
improvement brought by TaM was 2.2pt. Al-
though SS-WSDkb lagged behind COE on the SE07
(SemEval-2007) subset, we think this result is un-
derstandable because COE also used SE07 for hy-
perparameter optimization.

When compared to supervised methods,
SS-WSDemb outperformed Sup-kNN by 1.4pt,
while falling behind BEM by 4.1pt. The results
indicate that the proposed method associates
contexts with senses more precisely than the
example-based sense embeddings computation
using sense-annotated contexts. It also shows
the effectiveness of the supervised fine-tuning of
BERT encoders in BEM, as evidenced through their
ablation study (Blevins and Zettlemoyer, 2020).

6 Analysis

6.1 Vanilla BERT Embeddings

The proposed method adapts the BERT embed-
dings (PlainBERT) by transformation. Therefore,
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Method TaM CIE By subset By part-of-speech AllSE2 SE3 SE07 SE13 SE15 Noun Verb Adj. Adv.
Supervised
Sup-kNN
(Loureiro and Jorge, 2019) × × 76.3 73.2 66.2 71.7 74.1 — — — — 73.5

BEM
(Blevins and Zettlemoyer, 2020) × × 79.4 77.4 74.5 79.7 81.7 81.4 68.5 83.0 87.9 79.0

Knowledge-based, Intrinsic configuration
PlainBERT × × 67.8 62.7 54.5 64.5 72.3 67.8 52.3 74.0 77.7 65.6
SREFemb
(Wang and Wang, 2020) × × 70.3 68.0 60.4 74.2 77.4 76.3 53.5 75.2 76.3 71.0

SS-WSDemb (Ours) × × 74.6*
(0.5)

73.0*
(0.6)

65.0*
(1.3)

77.0*
(0.5)

79.9*
(1.0)

78.2*
(0.4)

62.5*
(0.7)

79.7*
(0.3)

80.5*
(1.5)

74.9*
(0.3)

Knowledge-based, With Heuristics configuration
SREFkb
(Wang and Wang, 2020) ✓ × 72.7 71.5 61.5 76.4 79.5 78.5 56.6 79.0 76.9 73.5

COE
(Wang et al., 2021b) ✓ ✓ 76.0 74.2 69.2 78.2 80.9 80.6 61.4 80.5 81.8 76.3

SS-WSDkb (Ours) ✓ × 77.7*
(0.5)

75.9*
(0.6)

66.5
(1.0)

78.0
(0.5)

81.6
(0.9)

79.3
(0.3)

65.7*
(0.8)

84.9*
(0.4)

84.2*
(0.8)

77.1*
(0.3)

Table 2: WSD performance by subset and part-of-speech tag. SS-WSDemb,kb are the proposed methods. Numbers
in parentheses represent the standard deviation. Asterisks (*) indicate that the difference to the best baseline is
statistically significant at p < 0.05 by the Student’s t-test (two-tailed test). Checkmarks (✓) in the TaM and CIE
columns represent the usage of those heuristics. We bolded the best result among knowledge-based methods in each
configuration and underlined the objective for hyperparameter tuning. The scores of BEM, Sup-kNN, SREFkb, and
COE are taken from the original papers.

Method WSD (All)
WN1stSense 65.2
PlainBERT 65.6

Table 3: F1 score of BERT embeddings (PlainBERT)
and WordNet the first sense heuristic (WN1stSense).

its performance is influenced by the ability of
PlainBERT to disambiguate senses.

Table 3 shows the WSD task performance us-
ing PlainBERT. We also reported the WordNet
first sense heuristic (WN1stSense) for reference.
We observe that PlainBERT is comparable to
WN1stSense, indicating that self-training is a more
effective strategy than WN1stSense for obtaining
pseudo sense labels.

Fig. 2 shows the distribution of the similarity
margin (difference) between the nearest neighbor
incorrect sense and ground-truth sense computed
by PlainBERT. We used the evaluation set for
this analysis. We found that the similarity mar-
gin is below 0.05 for approximately 90% of all in-
stances. This indicates that a large deviation from
PlainBERT is not necessary for replacing nearest
neighbor senses with the ground-truth ones.

6.2 Effect of Objectives

Table 4 shows the performance comparison when
we eliminate a specific component from the seman-

Figure 2: Cumulative distribution of the similarity
margin between the incorrect sense and correct sense:
δρw = maxs′∈Sw\Sgt

w
ρw,s′ −maxs′∈Sgt

w
ρw,s′ , where

Sgt
w is the set of ground-truth senses of the word w.

tic specialization objectives (§ 3.5). We keep all
hyperparameters unchanged.

When we exclude either the Attract-Repel ob-
jective or the self-training objective, we see the
performance drop by 3.3pt and 4.4pt, respectively.
This finding supports the claim that joint optimiza-
tion is crucial for its complementary nature.

When we remove either the unrelated senses or
different senses from the Attract-Repel objective,
we also see the performance drop by 5.0pt and
1.4pt, respectively. This result supports the idea
that bringing semantically unrelated and different
senses farther away contributes to performance. We
also find that unrelated senses are more effective
than different senses. A possible cause is the num-
ber of examples: while the number of unrelated
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Ablation WSD (All) ∆[pt]
SS-WSDemb 74.9 —
-Attract-Repel objective 71.6 -3.3
-Self-training objective 70.5 -4.4
-Unrelated senses SU repelling 69.9 -5.0
-Different senses SN repelling 73.5 -1.4
-Context adaptation 71.7 -3.2

Table 4: Ablation study of training objective. Objective
rows represent the corresponding objective is excluded.
Repelling rows represent the corresponding sense pairs
are removed from the Attract-Repel objective (Eq. 10).
Adaptation rows represent the usage of identity trans-
formation. All differences are statistically significant at
p < 0.05 by Welch’s t-test (two-tailed test).

Figure 3: Ablation study of hyperparameter ϵ (§ 3.4).
Dot and error bar represent the mean and standard devia-
tion, respectively. Horizontal line represents the default
setting (ϵ = 0.015) performance. Asterisks indicate
that the difference with respect to the default setting is
statistically significant at p < 0.05 (*) and p < 0.005
(**) by Welch’s t-test (two-tailed test).

senses is always11 255, the number of different
senses is, on average, just 1.3 (see Table 1)12.

Disabling the adaptation of context embeddings
(by using identity transformation) caused a perfor-
mance drop of 3.2pt, indicating that adapting both
sense and context embeddings is necessary.

6.3 Effect of Distance Constraint
Fig. 3 shows the performance comparison when
we change ϵ, the hyperparameter that bounds how
farther away the specialized embeddings can be, in
the interval [0.01,0.02] with a step size of 0.001.
We found that performance follows an inverted U-
shaped curve along ϵ, indicating that a sweet spot
exists. Briefly, it shows that a severe constraint
(small ϵ) results in an insufficient update for replac-
ing nearest neighbors with ground-truth senses. In
contrast, a looser constraint (large ϵ) results in a
substantial deviation, eventually making the self-
training less effective in the training process. The
latter fact supports the claim that controlling the de-
viation from the original embeddings is necessary.

11Minibatch size (=256) minus one yields 255.
12In fact, only 38% of all senses have different senses.

Figure 4: Impact of varying the self-training dataset
size from 10% (23k examples) to 100% (224k). The dot
and error bar indicates the mean and standard deviation,
respectively. The horizontal line represents the perfor-
mance when utilizing the 100% examples. Asterisks
denote that the deviation from the 100% is statistically
significant at p < 0.05 (*) and p < 0.005 (**) by
Welch’s t-test (two-tailed test).

7 Effect of Self-training Dataset Size

Fig. 4 illustrates the impact of varying the number
of examples used for the self-training objective on
the WSD task performance. It should be noted
that 100% in the figure corresponds to using all
examples in the SemCor corpus. We found that
performance improves as the number of examples
increases and reaches a saturation point at 60%,
corresponding to 136k examples. While the cover-
age of words and senses appearing in the contexts
also matters, it indicates that the benefits of self-
training do not necessarily increase with the scaling
to millions of examples.

7.1 Similarity Characteristics

We quantitatively investigate how well the pro-
posed method achieved the key idea (Fig. 1-d):
bringing related senses and contexts closer while
unrelated and different senses farther away. Specif-
ically, in Table 5, we reported averages of sim-
ilarity values between related senses ρSP , unre-
lated senses ρSU , and different senses ρSN , along
with averages of similarity values between ground-
truth context-sense pairs13 ρWgt . See Appendix D
for formal definitions. We found that the pro-
posed method SS-WSDemb brought context-sense
pairs closer than PlainBERT (ρWgt : 0.64 → 0.77).
In contrast, it pushed the unrelated and different
senses away: ρSU :0.77 → 0.64 and ρSN :0.87 →
0.78. These results demonstrate that joint optimiza-
tion of the Attract-Repel and self-training objec-
tives realized the key idea successfully.

Can we expect better performance if we realize
the key idea more precisely? We investigated the

13We used sense-annotated words in the evaluation dataset.
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Models ρSP ρSU ρSN ρWgt ∆ρSP ↑ ∆ρSU ↓ ∆ρSN ↓ ∆ρ ↑ WSD (All)
PlainBERT 0.91 0.77 0.87 0.64 0.27 0.12 0.23 -0.030 65.6
SS-WSDemb 0.88 0.64 0.78 0.77 0.11 -0.13 0.01 0.078 74.9
-Attract-Repel 0.92 0.79 0.90 0.81 0.11 -0.02 0.08 0.014 71.6
-Self-training 0.88 0.64 0.78 0.61 0.27 0.02 0.17 0.027 70.5
-Unrelated senses 0.90 0.73 0.79 0.73 0.17 0.00 0.06 0.033 69.9
-Different senses 0.87 0.61 0.79 0.77 0.09 -0.17 0.02 0.081 73.5
-Context adaptation 0.88 0.64 0.78 0.63 0.25 0.01 0.15 0.032 71.7

Table 5: Similarity characteristics of sense pairs and context-sense pairs. ρSP , ρSU , and ρSN are the similarity to
related, unrelated, and different senses (Eq. 15). ρWgt is the similarity of the context and its ground-truth senses
(Eq. 16). ∆ρ∗ is the difference to ρWgt (Eq. 17). ∆ρ = 1

3 (∆ρSP −∆ρSU −∆ρSN ). Uparrow↑ (downarrow↓)
represents the positive (negative) direction is favorable. WSD (All) are replicated from Tables 2 and 4 for reference.

Figure 5: The relationship between the similarity char-
acteristic metric ∆ρ and WSD performance in Table 5.

relationship between these similarity metrics and
WSD task performance. Specifically, we subtract
ρWgt from each metric in order to capture the close-
ness of senses relative to the correct context-sense
pairs, defining ∆ρ∗ as ρ∗ − ρWgt . For example,
∆ρSN = ρSN−ρWgt should be a negative value be-
cause the average similarity among different senses
ρSN should be smaller than that among correct
context-sense pairs ρWgt . Therefore, we compute
the value ∆ρ = 1

3(∆ρSP − ∆ρSU − ∆ρSN ) to
estimate the WSD performance.

Fig. 5 shows that ∆ρ correlates well with WSD
task performance (R2 = 0.85). It suggests that if
we achieve the key idea more precisely, we may
improve the WSD performance. For instance, using
a richer lexical relation knowledge, exploitation
of the monosemous words, and self-training with
confidence thresholding may be promising. We
leave it for future work.

8 Conclusion

In this paper, we proposed SS-WSD: Semantic Spe-
cialization for WSD14. The proposed method learns
how to adapt BERT embeddings by transforma-
tion and uses the semantic relation knowledge
as a supervision signal. The key idea is the de-

14The source code is available at: https://github.com/
s-mizuki-nlp/semantic_specialization_for_wsd

sired characteristics of similarities: bringing re-
lated senses and the contexts closer while unrelated
senses and different senses farther away. We re-
alized it as the joint optimization of the Attract-
Repel and self-training objectives while preventing
large deviations from original embeddings. Exper-
iments showed that the proposed method outper-
formed the previous embedding adaptation method.
When combined with the reranking heuristic that
can be applied to stand-alone texts, it established
a new SoTA performance on knowledge-based
WSD. The proposed method performs well re-
gardless of the availability of global contexts be-
yond the target sentence during inference, which
the previous study did not achieve. Several anal-
yses showed the effectiveness of the objectives
and constraints introduced for specialization. We
also found that the closeness of semantically re-
lated/different/unrelated senses relative to the close-
ness of correct context-sense pairs positively corre-
lates with the WSD task performance.

9 Future Work

Given that the proposed method only necessitates
lexical resources, it has the potential to effectively
address the knowledge acquisition bottleneck prob-
lem (Pasini, 2020). Thus, we are interested in ap-
plying the proposed method to multilingual WSD
using multilingual language models as contextu-
alized encoders. One approach is the zero-shot
cross-lingual transfer, which involves learning em-
beddings adaptation using only English lexical re-
sources. Another option is the joint training of
all target languages using multilingual lexical re-
sources such as BabelNet (Navigli et al., 2021).
We are also interested in integrating the proposed
method into supervised WSD and applying the
transfer learning of the specialized embeddings to
other NLP tasks.
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10 Limitations

One limitation of this work is that it is specific to
BERT. Although this is in line with the standard
practice in previous studies, experimenting with
other pre-trained language models is preferred to
assess the utility of the proposed method, or to im-
prove the performance further. Another limitation
is that it is evaluated on a single dataset and task.
While we also followed the de-facto standard pro-
tocol, evaluating on rare senses (Maru et al., 2022)
or Word-in-Context task (Pilehvar and Camacho-
Collados, 2019; Martelli et al., 2021) will bring us
more comprehensive insights on the effectiveness
and applicability.

11 Ethics Statement

This work does not involve the presentation of a
new dataset, nor the utilization of demographic or
identity characteristics in formation. In this work,
we propose a method for adapting contextualized
embeddings for WSD using lexical resources. The
proposed method is not limited to a specific re-
source, we used WordNet as the source of semantic
relation knowledge and sense inventory. Therefore,
adapted embeddings and sense disambiguation be-
havior may reflect the incomplete lexical diversity
of WordNet in culture, language (Liu et al., 2021),
and gender (Hicks et al., 2016).
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A Lexical Resources

Table 6 shows an example of lexical resources for
a sense key computer%1:06:00::. Note that unre-
lated senses are randomly chosen in practice.

For related senses lookup, we followed Wang
and Wang (2020)’s paper and implementation15.
Briefly, for a given sense key, we collect the synsets
that encompass either itself or the sense keys con-
nected by derivationally_related_forms rela-
tion. Then, for each collected synset, we extend
the synsets via semantic relations shown in Table 7.
Finally, we collect the sense keys that belong to
either one of the synsets in the extended set of
synsets, together with those connected to a given
sense key by semantic relations shown in Table 7.
We used the nltk.corpus.wordnet package for
implementation.

B BERT Embeddings for Sense

For the computation of sense embeddings, we fol-
lowed Wang and Wang (2020)’s method. Specif-
ically, for a given sense key, we generate a sen-
tence by filling in the following template using the
lemma, synset lemmas, definition, and examples:

[lemma] - [syn. lemma 1], ...,
[syn. lemma n] - [definition]
[example 1] ... [example m],

where n and m represent the number of synonym
lemmas and the number of examples. Then we
take the average over all subwords in a sentence.
For example, applying the template to the sense
computer%1:06:00:: will produce the following
sentence.
computer - computer, computing device, data pro-
cessor, ... - a machine for performing calculations
automatically

We solely use the examples available in Word-
Net Gloss Corpus and do not use the augmented
examples that Wang and Wang (2020) collected.

C Hyperparameter Search

For the hyperparameter search, we first jointly op-
timized on the number of minibatches NB , rel-
ative importance between objectives α (Eq. 9),
and constraint on the distance from BERT em-
beddings ϵ (Eq. 3.5). We used TPESampler in
the optuna package (Akiba et al., 2019) for op-
timization. We run hyperparameter search over
NB ∈ {64, 128, 256, 512, 1024}, α ∈ [0.1, 10],

15https://github.com/lwmlyy/SREF

and ϵ ∈ [0.001, 0.1]. The number of search trials
is 210. Then, we ran a grid search on ϵ over the
interval in [0.01,0.02] using a step size of 0.001.
During hyperparameter search, we observed that 1)
large minibatch size of 256 or above doesn’t pro-
duce any statistically significant difference and 2)
α is much less sensitive compared to ϵ.

D Analysis of Similarity Characteristics

We quantify the similarity characteristic as the
macro average of similarity between senses and
the similarity of ground-truth context-sense pairs.
Specifically, for a given sense s, we calculate the
average similarity to its related senses SP

s , unre-
lated senses SU

s , and different senses SN
s . Follow-

ing Attract-Repel objective (§ 3.5.1), we define the
minibatch excluding itself as the unrelated senses:
SU
s = SB \ {s}. Then, we take the average over

all senses S, yielding the similarity among related
senses ρSP , unrelated senses ρSU , and different
senses ρSN as follows:

ρSP =
1

|S|
∑

s∈S

1

|SP
s |

∑

s′∈SP
s

ρs,s′ ,

ρSU =
1

|S|
∑

s∈S

1

|SU
s |

∑

s′∈SU
s

ρs,s′ ,

ρSN =
1

|SN |
∑

s∈SN

1

|SN
s |

∑

s′∈SN
s

ρs,s′ ,

(15)

where SN = {s; |SN
s | > 0}.

For the similarity of ground-truth context-sense
pairs ρWgt , we use the pairs of the word and anno-
tated senses in the evaluation dataset (§ 4.2). For a
given word w, we calculate the average similarity
to its ground-truth senses Sgt

w . Then, we take the
average over all words W as follows:

ρWgt =
1

|W|
∑

w∈W

1

|Sgt
w |

∑

s∈Sgt
w

ρw,s. (16)

Finally, we define ∆ρ∗ as the difference to ρWgt

for each relation types. We also define ∆ρ as the
arithmetic average over them while taking favor-
able positive/negative directions into account.

∆ρSP = ρSP − ρWgt

∆ρSU = ρSU − ρWgt

∆ρSN = ρSN − ρWgt

∆ρ =
1

3
(∆ρSP −∆ρSU −∆ρSN )

(17)
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Element Example
Sense (sense key) computer%1:06:00::
Lemma computer
Synset computer.n.01
Definition sentence a machine for performing calculations automatically
Example Not Available
Synonym lemmas computer, computing device, data processor, ...

Related senses
computing_device%1:06:00:: (synonym),
analog_computer%1:06:00:: (hyponym),
compute%2:31:00:: (derivative), ...

Different senses computer%1:18:00::
unrelated senses
(randomly chosen)

goldfish%1:05:00::, chef%1:18:01::, ...

Table 6: Example of WordNet lexical resources used in the proposed method.

Category Relation names
Sense key pertainyms, antonyms

Synset
hyponyms, hypernyms, part_holonyms, part_meronyms, member_holonyms,
member_meronyms, entailments, attributes, similar_tos, causes,
substance_holonyms, substance_meronyms, usage_domains, also_sees

Table 7: WordNet semantic relation names used for collecting related senses.

E Implementation Details

We implemented the transformation functions us-
ing PyTorch library16. We trained them using sin-
gle NVIDIA 2080Ti GPU. It took approximately
two hours for a single run. We precomputed BERT
embeddings for training and evaluation dataset and
saved them to temporary files for computation effi-
ciency.

16https://pytorch.org/
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