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Abstract

Modern NLP systems exhibit a range of biases,
which a growing literature on model debiasing
attempts to correct. However current progress
is hampered by a plurality of definitions of
bias, means of quantification, and oftentimes
vague relation between debiasing algorithms
and theoretical measures of bias. This paper
seeks to clarify the current situation and plot
a course for meaningful progress in fair learn-
ing, with two key contributions: (1) making
clear inter-relations among the current gamut
of methods, and their relation to fairness the-
ory; and (2) addressing the practical problem
of model selection, which involves a trade-off
between fairness and accuracy and has led to
systemic issues in fairness research. Putting
them together, we make several recommenda-
tions to help shape future work.'

1 Introduction

In NLP and machine learning, there has been a
surge of interest in fairness due to the fact that
models often learn and amplify biases in the train-
ing dataset, leading to a range of harms (Badjatiya
et al., 2019; Diaz et al., 2018). A central notion is
group-wise fairness (Dwork et al., 2012; Choulde-
chova, 2017; Berk et al., 2021), which is typically
measured as the model performance disparities
across groups of data that are created by the com-
binations of protected attributes, such as race and
gender. A broad range of bias evaluation metrics
have been introduced in previous studies to capture
different types of biases — such as demographic
parity (Feldman et al., 2015) and equal opportunity
(EO) (Hardt et al., 2016) — and different approaches
have been adopted to both measure group dispar-
ities within each class, and aggregate over those
disparities. Each of these choices implicitly en-
codes assumptions about the nature of fairness, but

!Code available at ht tps: //github.com/HanXudo
ng/Fair_Enough
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Figure 1: True positive rate (TPR) evaluation results
over a biography classification dataset broken down
by author demographic and selected profession classes.
$ and $ denote the economic status (wealthy vs. not,
respectively). The pattern of results exhibits various
biases, however it is difficult to distil this into a single
figure of merit, and thus determine which is the better
or fairer of the two models.

little work has been done to spell out what those
assumptions are, or guide the selection of evalua-
tion metric from first principles of what constitutes
fairness.

As an illustration of this issue, Figure 1 depicts
the true positive rate (TPR) values for two models.?
Given that the EO fairness is satisfied if different
groups achieve identical TPR, which model is fairer
or “better” out of the two? The answer is far from
clear, and in terms of evaluation practice, dictated
by a series of choices which implicitly encode dif-
ferent assumptions about what fairness is.

In terms of research practice, these choices have
led to a lack of consistency and direct empirical
comparability between methods. Equally concern-
ingly, given that fairness research involves an inher-
ent trade-off between raw model performance and
fairness, it has more subtly led to a lack of rigour
in terms of how model selection has been carried
out, meaning that methods are often deployed in

%For further details see Appendix A.
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suboptimal ways relative to a particular evaluation
methodology.

In this paper, we seek to address these problems.
We start by surveying current practices for fair-
ness evaluation aggregation within an integrated
framework, and discuss considerations and moti-
vations for using different aggregation approaches.
To ensure fairness metrics are fully comparable, we
present a checklist for reporting fairness evaluation
metrics, and also recommendations for aggregation
method selections. We next survey model compari-
son methods, and demonstrate the issues stemming
from using inconsistent model selection criteria.
To ensure fair comparisons, we further introduce
a metric for comparison without model selection,
which measures the area under the trade-off curve
of each method.

Overall this paper makes two key contributions:
(1) we characterise current practices for fairness
evaluation and their grounding in theory, proposing
a best-practice checklist; and (2) we propose a new
method which resolves several issues relating to
model selection and comparison.

2 Related Work

In terms of bias metrics, there are mainly two lines
of work in the literature on NLP fairness: bias in
the geometry of text representations (intrinsic bias),
and performance disparities across groups in down-
stream tasks (extrinsic bias), respectively. Based
on the hypothesis that measuring and mitigating in-
trinsic bias will also reduce extrinsic bias, previous
work has mainly focused on measuring and mitigat-
ing intrinsic bias, such as the Word Embedding As-
sociation Test (WEAT) (Caliskan et al., 2017), Sen-
tence Encoder Association Test (SEAT) (May et al.,
2019), and Embedding Coherence Test (ECT) (Dev
and Phillips, 2019). However, Goldfarb-Tarrant
et al. (2021) recently showed that there is no re-
liable correlation between intrinsic and extrinsic
biases, and suggest future work focusing on extrin-
sic bias measurement (which is the focus of this
work).

As for bias mitigation, debiasing methods for
intrinsic and extrinsic bias generally suffer from
performance—fairness trade-offs controlled by par-
ticular hyperparameters such as the number of prin-
cipal components used to define the intrinsic bias
subspace (Bolukbasi et al., 2016), and the strength
of addition objectives for performance parity across
groups (Shen et al., 2022b). In measuring perfor-

mance (perplexity and LM score for sentence em-
beddings, for example) and fairness simultaneously,
the model comparison framework presented in this
paper is generalizable for both intrinsic and extrin-
sic fairness.

3 Fairness Metrics

In this section, we discuss the considerations in-
volved in fairness evaluation. We start with a sur-
vey of different methods for aggregating scores,
and propose a two-step aggregation framework for
fairness evaluation.

3.1 Formal Notation Preliminaries

We consider fairness evaluation in a classification
scenario. Evaluation is based on a test dataset con-
sisting of n instances D = {(x;,y;, z;) }I",, where
x; is an input vector, y; € {c}<_; represents tar-
get class label, and z; € {g}gzl is the group label,
such as gender.?

Given a model that has been trained to make
predictions w.r.t. the target label y = f(x), fair-
ness evaluation metrics generally measure group-
wise performance disparities for a particular metric
m(y,y). For example, positive predictive rate and
true positive rate have been employed as the metric
for demographic parity (Feldman et al., 2015) and
equal opportunity (Hardt et al., 2016), respectively.

For each group, the results of a metric m are C-
dimensional vectors, one dimension for each class.
Given G protected groups, the full results are or-
ganized as a C x G matrix, denoted as M. For
the subset of instances Dc o = {(x4,Y;,2i)|y; =
c,z; = g} 4, we denote the corresponding evalua-
tion results as M ;. Taking Figure 1 as an example,
M refers to the heatmap plot, and M, ¢ is the cell
in the c-th row and g-th column.

Given M, the question is how exactly to ag-
gregate the result matrix as a single number that
measures the degree of fairness. We split the aggre-
gation into two steps: (1) group-wise aggregation,
which aggregates evaluation results of all groups
within a class ([Mc 1, . .., M g]) into a single num-
ber (8.); and (2) class-wise aggregation, which ag-
gregates [1,. .., c| scores of all classes into a
single number §.*

3When considering multiple protected attributes, z can be
intersectional identities as shown in Figure 1.

*Mathematically, it would be possible to do the class-wise
aggregation first, and then the group-wise aggregation. How-
ever, aggregating class-wise performances within a particu-
lar group essentially measures the long-tail learning problem
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Aggregation Method Description Unit Reference
mean gap Be = é Zg | M, — MC\ G (Shen et al., 2022b)
variance Be = g1 g [ Meyg — Mcf G  (Lumetal, 2022)
max gap Be = maxg| M., — M| G  (Yangetal., 2020)
. min score Be = mingMc ¢ S (Lahoti et al., 2020)
Group-wise K . K "
min ratio B = ming ﬁ:’ R (Zafar et al., 2017)
max difference Be = maxg M. ¢ — ming M. ¢ S (Bird et al., 2020)
max ratio Be = :1:1)::1]5:” R (Feldman et al., 2015)
difference threshold () . = & 2. I[Oﬁ] (| Mg — Mc|) G (Kearns et al., 2019)
ratio threshold (v) Be = é Zg Li0,41(] %Lg —1)) R (Barocas et al., 2019)
binary d=>.8143(c) Jé] (Roh et al., 2021)
Class-wise quadratic mean 0 =4/ % > B2 B (Romanov et al., 2019)
mean §=53. B 8 (Li et al., 2018)

Table 1: Summary of different aggregation approaches. Based on the basic unit, group-wise aggregations are
additionally categorized into three types: Score (M, ), Gap (|M., — M.|), and Ratio (% .

3.2 Ecxisting Aggregation Approaches

Table 1 summarizes several aggregation approaches
from previous work, which are categorized based
on the level of aggregation.

3.2.1 Basic Unit

The basic unit refers to the inputs to an aggregation
function.

Group-wise Broadly, there are three types of ba-
sic units for group-wise aggregation:

1. the original score (M. ¢), which maintains the
actual performance level under aggregation
and larger is better;

the gap, i.e., absolute difference, between the
evaluation results of a group and the average
performance (| M, — M|), where smaller is
better and the minimum is 0; and

3. ratio of the evaluation results of a group to

the average ( %’g ), where closer to 1 is better.

Score describes the actual performance of each
group, and is generally used to measure extrema of
actual performances. For example, the Rawlsian
Max Min criterion (Rawls, 2001) is satisfied if the
utility of the worst-performing group is maximized.
Related fairness notions are also known as per-
group fairness (Hashimoto et al., 2018; Lahoti et al.,
2020).

The other two units, gap and ratio, support the
notion of group fairness, and evaluate whether or
not ¥ is fair w.r.t. z. Taking EO (Hardt et al., 2016)

rather than fairness.

as an example, it requires the true positive rate to
be independent of z. Formally, for a particular class
¢, the EO criterion is satisfied iff

TPR., = TPR.,Vg € {g}g ;.

As such, it is straightforward to directly measure
the absolute difference between TPR. ; and TPR,

TPR.; = TPR. < |TPR., — TPR.| =0,

which is essentially the gap unit.
Alternatively, the ratio unit can be used to mea-
sure inequality as a percentage:

Rc’g _

_ TP
TPR.; = TPR. &
TPR,

Ratio-based scores can also be interpreted via
a “q%-rule” (Zafar et al., 2017; Barocas et al.,
2019), for example, the 80%-rule for disparate
impact (Feldman et al., 2015), which requires that
the ratio is no less than 0.8.

The q%-rule can be captured more explicitly by a
threshold (Kearns et al., 2018; Barocas et al., 2019),
which is a relaxation of the equality based on a
slack threshold € € R, |1 — %\ < e. Similarly,
the threshold can be applied to Lgap, resulting in
ITPRc, g — TPR.| < .

Class-wise The next step is class-wise aggrega-
tion, taking the group-wise aggregation for each
class from above as inputs, (1, ..., Sc].

3.3 Generalized Mean Aggregation

Before discussing each of these aggregation meth-
ods, we first introduce the basic concept of the
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Power (p) Formulation
—00 Minimum: min{v1,...,v,}
-1 Harmonic Mean: R g
i=1 Vi
. . CA'sn )
Arithmetic Mean: = > " | v;
: SR U
2 Quadratic Mean: / = >"" | v;
+00 Maximum: max{vi,...,vn}

Table 2: Commonly-used cases of generalized mean
aggregation.

generalized mean as a framework for describing
aggregation functions, and then make the link be-
tween the generalized mean and existing aggrega-
tion methods.

Formally, the generalized mean is defined as:

1< ’
_ P
Mp(ve,...,05) = HE v ,
i=1

where v; € R™ are positive real numbers to be
aggregated, and p is the exponent parameter. A
desired property of the generalized mean is its in-
equality, which states that,

Mp(vl, o e

L Up) > My (v1, ..., 0,),Yp > p'.

Essentially, a larger value of p encourage the aggre-
gation to focus more on the larger-valued elements,
which can be illustrated with the specific cases
shown in Table 2.

By setting p = 400, generalized mean returns
extremum values, including (in Table 1): (1) the
maximum value of gap (Yang et al., 2020), differ-
ence (Bird et al., 2020), and ratio (Feldman et al.,
2015); and (2) the minimum value of score (Lahoti
et al., 2020) and ratio (Zafar et al., 2017).

For other p values, the generalized mean reflects
the relative dispersion of its inputs. For exam-
ple, group-wise mean gap aggregation (Shen et al.,
2022b) and class-wise mean aggregation (Li et al.,
2018) are both equivalent to p = 1. Class-wise
quadratic mean aggregation (Romanov et al., 2019)
is essentially p = 2, which focuses more on those
classes with higher bias. Similarly, group-wise vari-
ance aggregation (Lum et al., 2022) is proportional
to the p = 2 setting, implying that groups with
larger gaps will influence results more.

The additional advantage of using generalized
mean aggregation is that comparison across arbi-
trary p values can be easily stated. For example,
group-wise aggregation is the p = —5 generalized

mean with respect to the score units in a toxicity
classification competition,’ meaning that evalua-
tion focuses more on groups with lower perfor-
mance.

Other Aggregation Methods: Although gener-
alized mean aggregation is a powerful tool for
describing and interpreting the aggregation pro-
cess, there are other ways that need further dis-
cussion. Previous work has also considered as-
signing different weights under aggregation, for in-
stance, Kearns et al. (2018) assign larger weights to
groups with larger populations. Such aggregations
can be implemented as the weighted generalized

mean: M,, ,,(v) = (% Sy wivf) ¥, where w is
the weight vector, and > " | w; = 1.

An example of the weighted generalized mean
for class-wise aggregation is binary aggregation
that only considers the positive class in a binary
classification setting (Hardt et al., 2016; Zafar et al.,
2017; Kearns et al., 2018; Zhao et al., 2019; Lahoti
et al., 2020; Han et al., 2021; Lum et al., 2022).
The positive class is often treated as the “advan-
taged” outcome, so the analysis focuses solely on
the positive class. Moreover, the one-versus-all
trick is not necessary for the binary setting, and
natural derivations of the confusion matrix can be
used to refer to a particular class, e.g., TPR for the
positive class and TNR for the negative class.

3.4 Recommendations

We are now in a position to be able to provide
recommendations for fairness evaluation.

Following the work of Dodge et al. (2019), we
provide a checklist for fairness evaluation metric
aggregation:

[] Statistics of the dataset D, e.g., the probability
table of the joint distribution of y and z, and
the size of each partition.

U The evaluation metric m (e.g., TPR for EO
fairness).

O The basic unit of group-wise aggregation, in-
cluding score, gap, and ratio, or other possi-
ble measures.

L] The aggregation function for group-wise ag-
gregation, and the corresponding motivation.

SJigsaw Unintended Bias in Toxicity Classification: ht tp
s://www.kaggle.com/competitions/Jjigsaw—-u
nintended-bias-in-toxicity-classificatio
n/
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Figure 2: Decision path for exponent parameter selection for generalized mean aggregation.

O The aggregation function for class-wise ag-
gregation, and the corresponding motivation.

Although the particular choice of evaluation
dataset D and evaluation metric m are critical to
the overall evaluation, they are not the main focus
of this paper. Rather, we provide guidance based on
the selection of basic unit, and methods for group-
and class-wise aggregation, as detailed in Figure 2.

Basic Unit Selection: The circles in Figure 2 an-
notated as Score, Ratio, and Gap are the decision
points for basic unit selection.

If per-group fairness is the primary criterion (e.g.,
Rawlsian Max-Min fairness (Rawls, 2001)), using
score is the best practice, which maintains the orig-
inal values under aggregation. On the other hand,
if inter-group fairness is critical, gap and ratio are
more appropriate choices. Gap reflects disparities
in the same scale as the per-group scores, and is
easy to visualize (e.g. as differences in height be-
tween clustered bars). However, if one wished to
measure disparities in relative terms, e.g., the ¢%-
rule (Feldman et al., 2015), ratio is a better choice
than gap.

Group-wise Aggregation Function Selection:
The selection of group-wise aggregation functions
is shown as the exponent parameters of the gener-
alized mean aggregation.

Measuring extrema is similar to the notion of
per-group fairness, and encourages improvements

in the worst-performing groups. For basic units
where smaller is fairer, e.g., gap, aggregation gen-
erally focuses on the maximum (Yang et al., 2020),
i.e., p = +o0o. For units like score (p = —o0),
on the other hand, the minimum value should be
measured, as a lower bound.

Besides extrema, it is also reasonable to mea-
sure fairness variability across groups. A typical
choice is taking the arithmetic mean (i.e., p = 1)
across all groups, which implicitly assigns equal
importance to each individual group. Similar to the
signs in extremum aggregations, the value of p in
variability aggregations should be selected based
on the type of basic unit, to focus more on worse-
performing groups. Taking the gap unit as an exam-
ple, the quadratic mean (p = 2) is influenced more
by larger gaps than the arithmetic mean. Moreover,
quadratic mean aggregation based on gap is es-
sentially the standard deviation of scores, and can
be used to reconstruct variance aggregation (Lum
et al., 2022).

Class-wise Aggregation Function Selection:
Although our focus is on the fairness evaluation
metric, class-wise aggregation is almost identical
to aggregation methods for general utility metrics.
Binary aggregation for fairness is the same as util-
ity metrics, while mean aggregation (Li et al., 2018;
Wang et al., 2019) for fairness evaluation is equiva-
lent to “macro”-averaging in general evaluation.
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Figure 3: Figure 3a shows an example of performance
and fairness with respect to different iterations of the
nullspace projection in INLP. Figure 3b presents the
Pareto frontiers in the performance—fairness trade-offs
of four debiasing methods in recent work. Figure 3b
also provides an illustration of DTO. The green dashed
vertical and horizontal lines denote the best performance
and fairness, respectively, and their intersection point
is the Utopia point. The length of a line, e.g., the red
line from A to the Utopia point, is the DTO for the
corresponding candidate model.

4 Model Comparison

This section focuses on comparison of debiasing
methods when considering utility and fairness si-
multaneously. We first introduce the performance—
fairness trade-off curve (PFC) for debiasing meth-
ods, and then discuss the limitations of existing
comparison frameworks. Finally, we propose a
new metric, namely the area under the curve (AUC)
w.r.t. PFC, which integrates existing approaches
and reflects the overall goodness of a method.

4.1 Performance and Fairness Metrics

As discussed in Section 3, there are many options
to measure performance and fairness. This paper is
generalizable to all different metrics, but for illus-
tration purposes, we follow Ravfogel et al. (2020);
Subramanian et al. (2021) and Han et al. (2022c)
in measuring the overall accuracy and equal oppor-
tunity fairness.

Specifically, equal opportunity fairness measures

TPR disparities across groups, such as the situa-
tion depicted in Figure 1. We use the TPR gap
across subgroups to capture absolute disparities.
For group-wise aggregation, we treat all groups
equally in computing the unweighted sum of gap
scores (x p = 1). In the last step, class-wise aggre-
gation, we focus more on less fair classes by using
root mean square aggregation (p = 2).

4.2 Performance-Fairness Trade-off

It has been observed in previous work that a
performance—fairness trade-off exists in bias miti-
gation (Li et al., 2018; Wang et al., 2019; Ravfogel
et al., 2020; Han et al., 2022b; Shen et al., 2022b).

Typically, debiasing methods involve a trade-off
hyperparameter to control the extent to which the
model sacrifices performance for fairness. Exam-
ples of such trade-off hyperparameters include: (1)
interpolation between the target and vanilla data
distribution for pre-processing approaches (Wang
et al., 2019; Han et al., 2022a); (2) the strength of
additional loss terms for loss manipulation meth-
ods (Zhao et al., 2019; Lahoti et al., 2020; Han
et al., 2021; Shen et al., 2022a); (3) the target level
of fairness in constrained optimization (Kearns
et al., 2018; Subramanian et al., 2021); and (4) the
number of debiasing iterations for post-hoc bias
mitigation methods (Ravfogel et al., 2020).

Taking INLP (Ravfogel et al., 2020) as an ex-
ample, which debiases by iteratively projecting the
text embeddings to the nullspace of the protected at-
tributes, Figure 3a shows performance and fairness
with respect to the number of nullspace projection
iterations.® It is clear that more iterations lead to
better fairness at the cost of performance.

Instead of looking at performance/fairness for
different trade-off hyperparameter values, it is more
meaningful to focus on the Pareto frontiers in trade-
off plots (Figure 3b), where each point corresponds
to a particular value of the trade-off hyperparameter
in Figure 3a. The frontiers represent the best fair-
ness that can be achieved at different performance
levels, and vice versa.

One limitation of a trade-off plot is that it is hard
to make quantitative conclusions based on the plot
itself, and we cannot conclude that one method is
better than another if there exists any intersection
of their trade-off curves. As shown in Figure 3b,
in addition to INLP, we also include the trade-

®Without loss of generality, we assume that for both fair-
ness and performance, larger is better.
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off curves for three recent adversarial debiasing
variants: ADV (Liet al., 2018), DADV (Han et al.,
2021), and A-ADV (Han et al., 2022b). Although
A-ADV is better than the other methods under most
conditions, there exist intersections between their
trade-off curves. As such, we can only state that A-
ADV is better than other methods within particular
ranges, which is insufficient for making a precise
comparison, especially when comparing multiple
debiasing methods (as demonstrated in Figure 3b).

4.3 Model Selection

In order to conduct quantitative comparisons across
different debiasing methods, current practice is to
select a particular point on the frontier for each
method, and then compare both the performance
and fairness of the selected points.

One problem associated with model selection
is that typically, no single method simultaneously
achieves the best performance and fairness. For
example, as shown in Figure 3b, if points A and B
were the selected models for A-ADV and DADV,
respectively, A would represent better performance
and B better fairness. As such, although we have
actual numbers for quantitative comparison, it is
still hard to conclude which method is best.

Distance to the Optimal: To address this prob-
lem, we propose to measure the Distance To
the Optimal point (“DTO”) to quantify the
performance—fairness trade-off (Salukvadze, 1971;
Marler and Arora, 2004; Han et al., 2022a). A
model is said to outperform others if it achieves
a smaller DTO, i.e. the distance to the optimal
(Utopia) point (the point at which performance and
fairness are the maximum possible values) is mini-
mized. Figure 3b illustrates the calculation of DTO
for A and B, where the optimal point is the top-right
corner’ and DTO is measured by the normalized
Euclidean distance (the length of the green and red
lines) to the optimal point.

A notable advantage of DTO is that a Pareto im-
provement implies a smaller value of DTO. There-
fore, DTO can be seen as relaxation of Pareto
improvements, and the smallest DTO must be
achieved by a point on the Pareto frontier. A key
limitation of DTO is that it quantifies the trade-off
of a single model rather than the full frontier, pre-
supposing some means of model selection. This

"The location of the utopia point and the scale of metrics
are discussed in Appendix C.
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Figure 4: AUC of the performance—fairness trade-off
curve. Taking the trade-off curve of INLP as an exam-
ple, the yellow shaded area refers to the AUC-PFC, and
the green shaded area refers to the integration of DTO
in polar coordinates.

has been somewhat arbitrary in prior work, which
is the problem we now seek to address.

Selection Criteria: Similar to the aggregation of
fairness metrics, model selection should be done in
a domain-specific manner. Previous work has used
different criteria for model selection, including: (1)
minimum loss (Hashimoto et al., 2018; Li et al.,
2018); (2) maximum utility (Lahoti et al., 2020),
e.g., based on accuracy or F-measure; (3) manual
selection based on visual inspection of the trade-
off curve (Elazar and Goldberg, 2018; Ravfogel
et al., 2020); (4) constrained selection (Han et al.,
2021; Subramanian et al., 2021), by selecting the
best fairness constrained to a particular level of
performance, and vice versa; and (5) minimising
DTO (Han et al., 2022b; Shen et al., 2022b).

Selection based on minimum loss and maximum
utility is identical to classic model selection, and
does not consider fairness explicitly. The other
three types of criteria are based on trade-offs, dif-
ferentiated by the method for aggregating fairness
and performance.

Such inconsistency in model selection makes
it very hard to rigorously compare methods. The
question we want to address is: how can we quanti-
tatively compare methods without model selection?

44 AUC-PFC

Recall that DTO is a metric for measuring the good-
ness of the trade-off of a particular model, and
model selection is a process for selecting a par-
ticular frontier model from the Pareto curve. To
address the problem associated with model selec-
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tion, we propose to integrate DTO over the whole
performance—fairness curve (PFC). Specifically,
we integrate DTO in a polar coordinate system,
where the reference point (pole) is the optimal
point. Given that the DTO of a point on the trade-
off curve is also the distance from the pole in the
polar coordinate system, the trade-off curve can
be treated as a function that maps angular coordi-
nates to DTO. For example, as shown in Figure 4,
the green area denotes the region enclosed by the
performance—fairness trade-off curve of INLP and
the utopia point with fairness = 1.00 and perfor-
mance = 0.82.%

Alternatively, we can interpret the proposed met-
ric from the performance—fairness perspective, in
calculating the area under the Pareto curve, and
subtracting this from the area under the optimal
Pareto curve defined by the optimal point.

The magnitude of AUC-PFC differs from a sin-
gle metric; for example, a 0.0001 improvement in
the AUC-PFC score is equivalent to a 1 percentage
point (pp) boost in both performance and fairness
(0.01 x 0.01).

Partial AUC-PFC In practice, worse perfor-
mance or fairness can be unacceptable, for example,
one may want to prioritize fairness in particular ap-
plications. To address this problem, we present the
Partial AUC-PFC score to focus on a specific re-

81n the interests of consistent comparison, the Utopia point
is typically (1, 1), as in Table 3. In practice, this does not affect
the calculation of AUC-PFC, as we discuss in Appendix C.

gion of the PFC Curve, where the AUC-PFC score
is computed w.r.t. specific acceptable levels of per-
formance and fairness.

Figure 5a shows an example of partial AUC-PFC,
where the region can be considered if correspond-
ing accuracy is better than 0.49. Similarly, Fig-
ures 5b and Sc show partial AUC-PFC scores with
respect to particular fairness and DTO constraints.

With the partial AUC-PFC metric, one can ex-
plicitly compare different methods with a single
number, and w.r.t. particular values of performance
and fairness.

4.5 Case Studies

Experimental Details: We conduct experiments
over the B10S dataset (De-Arteaga et al., 2019)
which was augmented with economic status by Sub-
ramanian et al. (2021), resulting in 28 profes-
sions as the target label and 4 intersectional de-
mographic groups.” We use public implementa-
tions for all models in our experiments, primarily
in fairlib (Han et al., 2022c¢).

Results: In Table 3, we investigate 7 different
selection criteria and report the DTO score over
the test set. Specifically, we conduct model selec-
tion over the development set based on: (1) min-
imum DTO; (2) maximum performance (P); (3)
maximum performance within a fairness threshold
of 5% improvement (P@F+5%); (4) maximum

Performance and fairness metrics have been introduced
in Section 4.1.
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Selection Criteria

Method DTO P P@F+5% PQ@F+10% F F@P-5% F@P-10% AUCT
INLP (Ravfogel et al., 2020) 419  41.9 52.6 52.6 70.2 41.9 41.9 39.8
ADV (Lietal., 2018) 39.0 446 43.3 41.8 49.4 41.2 41.2 43.6
DADV (Han et al., 2021) 379 447 41.0 40.5 39.9 404 41.9 44.5
A-ADV (Han et al., 2022b) 369 454 39.5 39.0 62.1 43.8 42.8 44.0

Table 3: DTO scores of selected models over the B10S dataset (smaller is better), based on the distances from mean
performance and fairness to (1,1) over the test set. Models are selected based on the criterion listed for each column
over the development set. The final column is the AUC, which does not involve model selection. Bold = the best

score per column. See Appendix B for the full results.

performance within a fairness threshold of 10% im-
provement (P@F+10%); (5) maximum fairness
(F); (6) maximum fairness within a performance
trade-off threshold of 5% (F@P—5%); and (7)
maximum fairness within a performance trade-off
threshold of 10% (F@P—10%). Criteria (3), (4),
(6), and (7) are constrained selections as discussed
in Section 4.3, where we select the model with the
highest fairness/performance within 5/10% of per-
formance trade-off/fairness improvement relative
to the STANDARD model. Taking F@P—-10% as
an example, the model with the highest fairness
is selected within 10% performance trade-off over
the vanilla model performance (i.e., with perfor-
mance greater than 72% (82% — 10%)). Similarly,
P@F+-5% selects the model with highest perfor-
mance subject to at least 5% fairness improvement
over the vanilla model (63% = 58% + 5%).

It can be seen that each of the four methods is
the best for at least one selection criteria, as a stark
illustration of our claim about model selection cri-
teria biasing any possible conclusions about which
method is best. For example, INLP and ADV are
the best methods with respect to selection criteria
P and F@P—-10%, respectively.

On the contrary, our proposed AUC-PFC score
(in the final column of Table 3) is unaffected by
model selection, and reflects the overall trade-off
of a method. Consistent with the trend in Fig-
ure 3b, AUC scores in Table 3 are smaller for
worse-performing methods, e.g., INLP, and larger
for better-performing methods such as A-ADV and
DADV. Moreover, as the trade-off curves for A-
ADV and DADV overlap one another (see Fig-
ure 3b), it is hard to pick a winner visually, let
alone make quantitative comparisons. By using
the AUC-PFC metric, we can conclude that over-
all, DADV is slightly better than A-ADV over this
dataset.

Discussion The current DTO calculation as-
sumes that users have no preference for perfor-
mance over fairness or vice versa, where in prac-
tice it is possible that the choice of the fairness
metric could be influenced by task-specific goals or
the relative importance of fairness. Such problems
have been widely studied in the literature on multi-
objective learning, and a typical line of work is
weighted generalized mean, which incorporates ad-
ditional weight parameters in the generalized mean
framework to reflect the importance or preference
of each objective.

5 Conclusion

We have discussed the current practice in evalu-
ation, model selection, and method comparison
in the fairness literature, and shown how current
practice in experimental fairness lacks rigour and
consistency. We made recommendations for select-
ing a fairness evaluation metric, and introduced a
new metric for measuring the overall performance—
fairness trade-off of a method.
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Limitations

This paper focuses on the notion of group fairness,
under the assumption that each individual belongs
to a particular demographic group. One limitation
of methods in this space is that the demographic
attributes must be observed (for the development
and test data, at least) in order to evaluate fairness.
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We only investigate the proposed evaluation
aggregation framework in a classification setting.
However, our framework is naturally generalizable
to other tasks with discrete outcomes, such as gen-
eration and sequential tagging. Moreover, in terms
of continuous labels, such as regression, one can
skip the class-wise aggregation.

Ethical Considerations

This work focuses on current practice in fairness
evaluation and method comparison. Our proposed
“checklist” recommendations are specific to the
fairness literature and complement existing frame-
works, to encourage future research to think care-
fully about harms and what type of fairness is ap-
propriate.

Demographics are assumed to be available only
for evaluation purposes and are not used for model
training or inference. We only use attributes that
the user has self-identified in our experiments. All
data and models in this study are publicly available
and used under strict ethical guidelines.
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Figure 6: True positive rate (TPR) evaluation results
over a biography classification dataset broken down by
author demographics and profession classes. $ and $
denote the economic status (high vs. low, respectively).

A Full Disaggregated Results

Figure 6 depicts the full TPR scores for two
real-world models over a profession classifica-
tion dataset, stratified across 4 protected attributes
(male vs. female and high vs. low economic sta-
tus) from Figure 1. Specifically, the two models are
both trained naively without debiasing. They share
the same hyperparameter settings and random seed,
except that Model 1 and Model 2 are the 9th and 5th
epochs, respectively. For professions such as Pro-
fessor, there is little discernible difference either
between the two models or across different com-
binations of protected attributes. For DJ, on the
other hand, Model 1 appears to be reasonably fair
w.r.t. economic status but biased for binary gender,
whereas Model 2 is biased across both protected at-
tributes but appears to have the higher overall TPR.
Finally, with Paralegal, Model 2 appears to be
fairer w.r.t. both economic status and binary gender
but perform substantially worse than the more bi-

Profession Total Male Female
$ $ $ 8
professor 21715 46 9 37 7
physician 7581 42 8 41 8
attorney 6011 51 10 33 6
photographer 4398 53 11 30 6
journalist 3676 41 9 41 9
nurse 3510 8 1 76 15
psychologist 3280 31 6 52 11
teacher 2946 35 6 49 10
dentist 2682 52 11 30 6
surgeon 2465 73 12 13 2
architect 1891 64 12 21 3
painter 1408 47 9 36 8
model 1362 15 2 70 13
poet 1295 46 7 39 8
software engineer 1280 70 14 14 2
filmmaker 1225 56 10 29 6
composer 1045 70 14 14 2
accountant 1012 55 9 29 6
dietitian 730 5 1 82 12
comedian 499 69 9 19 3
chiropractor 474 62 14 21 3
pastor 453 59 15 23 4
paralegal 330 12 3 70 15
yoga teacher 305 13 3 71 12
interior designer 267 16 4 67 12
personal trainer 264 41 10 42 7
DJ 244 71 16 11 2
rapper 221 75 15 9 1
Total 72578 9 45 7 39

Table 4: Training set distribution of the B10S dataset.
For each profession, the table shows the number of
individuals and the breakdown across demographics as
a percentage. $ and $ denote the economic status (high
vs. low, respectively).

ased Model 1 in terms of the individual TPR scores
for every combination of protected attributes. So it
is hard to tell which model is fairer or “better” out
of the two, without aggregation.

A.1 Dataset: BIOS

All experiments are based on a biography classifi-
cation dataset (De-Arteaga et al., 2019; Ravfogel
et al., 2020), where biographies were scraped from
the web, and annotated for the protected attribute
of binary gender and target label of 28 profession
classes.

Besides the binary gender attribute, we addi-
tionally consider economic status as a second pro-
tected attribute. Subramanian et al. (2021) semi-
automatically labeled economic status based on
the individual’s home country (wealthy vs. rest of
world), as geotagged from the first sentence of the
biography. For bias evaluation and mitigation, we
consider the intersectional groups, i.e., the Carte-
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sian product of the two protected attributes, leading
to 4 intersectional classes: female—wealthy, female—
rest, male—wealthy, and male—rest.

Since the data is not directly available, in or-
der to construct the dataset, we use the scraping
scripts of Ravfogel et al. (2020), leading to a dataset
with 396k biographies.'® Following Ravfogel et al.
(2020), we randomly split the dataset into train
(65%), dev (10%), and test (25%).

The augmentation for economic attributes fol-
lows previous work (Subramanian et al., 2021),
which results in approximately 30% of instances
that are labelled with both protected attributes.

Table 4 shows the target label distribution and
protected attribute distribution.

A.2 Experimental Details

This work focuses on evaluation and model com-
parison in the fairness literature. Instead of training
models from scratch, we use existing checkpoints
from previous work (Han et al., 2022c¢), which are
publicly available online.!! Please refer to the orig-
inal work (Han et al., 2022c) for experimental de-
tails.

A.3 Subset Confusion Matrices

Figure 7 presents the confusion matrices of all 4
subgroups. For each confusion matrix, the -th row
and j-th column entry indicates the number of sam-
ples which have the true label of the ¢-th class and
predicted label of the j-th class. Since the distri-
butions of classes within each group can be highly
imbalanced, without further normalization and ag-
gregation, it is difficult to draw any conclusion by
just observing the number of samples in each cell.

A.4 Fairness Reproducibility

So far, we have listed critical factors underlying
the choice of fairness metric, and provided rec-
ommendations for metric selection. However, we
acknowledge that, in actual applications, the selec-
tion should be made in a domain-specific manner
in close consultation with stakeholders or policy-
makers. In practice, countless types of fairness
evaluation metrics could be derived from different
combinations of aggregation methods.

!0There are slight discrepancies in the dataset composition
due to data attrition: the original dataset (De-Arteaga et al.,
2019) had 399k instances, while 393k were collected by Rav-
fogel et al. (2020).

""Bjos_both at https://github.com/HanXudong
/fairlib/tree/main/analysis/results

Instead of reporting all possible fairness met-
rics, we suggest providing a set of confusion ma-
trices for classification tasks, as it can form the
basis of calculating a large number of metrics, in-
cluding PPR, TPR, TNR, accuracy, and F-measure.
The other key advantage of reporting confusion
matrices is that the number of reported values is
generally much smaller than the model or dataset
size. Given a C-class classification dataset with
G distinct protected groups, the combined size of
the confusion matrices is G x C? (one confusion
matrix per group). Taking the B10S dataset as an
example, the sizes of the confusion matrices, test
dataset, and model parameters (for a BERT-base
classifier (Devlin et al., 2019)) are approximately
3x 103, 4 x 10%, and 1 x 108, respectively.

B Full Results of Case Studies

Table 5 shows the experimental results for both the
test and development sets.

C AUC-PFC Extension

C.1 Weighted DTO

On the one hand, as suggested by Marler and Arora
(2004), if fairness and performance have differ-
ent scales, the Euclidean distance is not a suitable
mathematical representation of closeness, resulting
in worse approximation of Pareto optimality and
efficiency. Therefore, the scales of performance
and fairness should be normalized.

C.2 Selection of Utopia Point

Typically, most debiasing methods will share the
same maximum performance, which is the perfor-
mance of the vanilla model (corresponding to a hy-
perparameter setting where the debiasing method
does nothing.) Accordingly this is a sensible choice
for the performance of the Utopia point, as we have
proposed for model selection. In terms of the cal-
culation of areas of integration, moving the Utopia
point to (1, 1) has little effect, simply adding a
constant triangular region which is identical for all
methods, and thus irrelevant for model comparison.
As such, it makes no difference whether we use
1 or the maximum-achieved model performance
when comparing models based on AUC-PFC.

Distance to Arbitrary Ideal Point: Compared
to the default value of DTO, moving the utopia
point to the right (e.g., the (1, 1) point) prioritizes
methods with higher performance.
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ideal point, which is (1, 1) in this example.

the fairness distance from () to the maximum
fairness (which is 1), and a is the performance
distance from @) to the maximum performance

As shown in Figure 9, without loss of generality,

let

and

>

(which is 0.82 is Figure 9)

’

* @ = (0,0) denote the candidate point

* O = (¢,a + b) denote the arbitrary model,
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ia point, where ci

* U = (¢, a) denote the Utop
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Test Set

Development Set

Selection Method Performance Fairness DTO Performance Fairness DTO
INLP 81.4+ 0.0 6244+ 0.0 41.9 80.3+ 0.0 54.44+ 0.0 49.7

DTO ADV 64.6+ 4.5 83.74+ 1.1 39.0 63.9+ 4.4 7994+ 3.0 41.3
DADV 68.1+ 5.5 79.5+ 6.8 379 67.6+ 5.5 755+ 6.7 40.7

A-ADV 69.7+ 4.9 7884+ 7.7 36.9 69.3+ 4.7 7524+ 54 39.5

INLP 81.4+ 0.0 62.4+ 0.0 419 80.3+ 0.0 54.44+ 0.0 49.7

P ADV 81.5+ 0.2 59.5+ 1.7 44.6 80.7+ 0.2 55.24+ 1.3 4838
DADV 81.4+ 0.3 59.3+ 1.7 44.7 80.6+ 0.3 549+ 1.7 49.1

A-ADV 81.3+ 0.3 58.6+ 2.0 454 80.6+ 0.3 5444+ 1.6 49.6

INLP 53.8+ 0.0 75.0+ 0.0 52.6 53.84+ 0.0 7444+ 0.0 52.8

P@F 5% ADV 71.5+ 5.7 67.3+ 54 433 71.3+ 5.8 66.2+ 4.2 444
° DADV 73.4+ 3.8 68.8+ 4.9 41.0 73.0+ 3.7 66.0+ 3.7 43.5

A-ADV 704+ 5.7 739+ 89 395 70.0+ 5.8 67.4+ 6.6 44.3

INLP 53.8+ 0.0 75.0+ 0.0 52.6 53.84+ 0.0 7444+ 0.0 52.8

P@FL10% ADV 68.8+ 4.8 72.1+ 5.6 41.8 68.24+ 4.8 70.3+ 6.5 43.6
DADV 69.7+ 2.9 732+ 6.8 40.5 69.2+ 2.7 70.6+ 4.0 42.6

A-ADV 70.0+ 3.3 75.0£ 3.9 39.0 69.44+ 3.4 70.8+ 2.1 42.2

INLP 29.84+ 0.0 100.0+ 0.0 70.2 29.9+ 0.0 86.6+ 0.0 714

F ADV 51.6 +16.5 90.2+ 9.3 494 51.2416.2 81.0+ 6.0 524
DADV 61.8+ 3.7 88.6+ 3.7 39.9 61.24+ 3.5 82.24+ 2.5 427

A-ADV 379+ 9.1 99.0+ 1.2 62.1 376+ 838 86.5+ 0.2 63.8

INLP 81.4+ 0.0 6244+ 0.0 41.9 80.34+ 0.0 54.44+ 0.0 49.7

F@P—5% ADV 79.1+ 1.1 64.5+ 1.3 41.2 785+ 0.9 58.7+ 2.4 46.5
DADV 80.4+ 0.5 64.7+ 1.4 404 799+ 0.5 5744+ 1.1 47.1

A-ADV 799+ 2.2 61.14+ 2.8 43.8 79.1+ 2.2 58.1+ 2.8 46.8

INLP 81.4+ 0.0 62.4+ 0.0 419 80.3+ 0.0 54.44+ 0.0 49.7

F@P—10% ADV 79.1+ 1.1 64.5+ 1.3 41.2 78.5+ 0.9 58.7+ 2.4 46.5
°  DADV 742+ 3.2 67.0+ 24 419 73.7+t 3.3 64.24+ 1.1 444

A-ADV 749+ 5.1 65.44+ 6.9 428 74.3+ 5.3 64.2+ 54 44.1

Table 5: Evaluation results & standard deviation (%) of selected models over the B10S dataset. DTO scores are the
distance from mean performance and fairness to (1,1) over the test set.

where b > 0, e.g., b = (1 — 0.82) for the
running example.

Before discussing the influence of the optimum
point selection, recall that the magnitude of vector
sum, |U| = |01 + Uo] is:

) = /|01]2 + [T2)2 + 2|01 ]|Ta] cos

where « is the angle between v, and v5.

Let QU denote the vector from candidate model
@ to the Utopia point U, the DTO based on the
Utopia point is the r = v/a? + c2.

When calculating DTO based on the arbitrary
optimum point O, ' = |QU + UO|, which can be
shown as:

' = /12 4+ b2 + 2rbcos o/,

where o/ is the angle between QU and UO, and is
equivalent to ZPU(Q. Furthermore, as discussed
in Section 4.4, given a trade-off curve, the DTO is
a function of ZPUQ), i.e., the green shaded area is

T2 DTO(L PUQ)dL PUQ.

Lemma C.1. Let Q1 and Q5 be two models with
the same DTO score (ry = 13), v} and 1% be the
DTO to the new Utopia point O. If the performance
of Q1 is worse than ()2, then 1 > 1%,

Proof. Assuming that 7 > 74,

|Q1U + UO| > |Q2U + UO|

QiU + UO*> > |Q2U + UOJ? )]
2ribcos ZPUQ1 > 2rabcos ZPUQ2

Since ZPUQ < m/2,YQ, and 11 = 73,
a1 = 11008 ZPUQ1 > as = r9 cos LZPUQ9,

where a; and ay are the performance distances
from )1 and Q)2 to the maximum performance,
respectively.

]
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