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Abstract

Named Entity Recognition is a key Natural
Language Processing task whose performance
is sensitive to choice of genre and language.
A unified NER model across multiple gen-
res and languages is more practical and effi-
cient through leveraging commonalities across
genres or languages. In this paper, we pro-
pose a novel setup for NER which includes
multi-domain and multilingual training and
evaluation across 13 domains and 4 languages.
We explore a range of approaches to building
a unified model using domain and language
adaptation techniques. Our experiments high-
light multiple nuances to consider while build-
ing a unified model, including that naive data
pooling fails to obtain good performance, that
domain-specific adaptations are more impor-
tant than language-specific ones and that in-
cluding domain-specific adaptations in a uni-
fied model can reach performance close to train-
ing multiple dedicated monolingual models at
a fraction of their parameter count.

1 Introduction

Identifying named entities, such as organization
and people in text is a key NLP task situated up-
stream of other NLP tasks such as co-reference
resolution (Ratinov and Roth, 2012; Dutta and
Weikum, 2015; Miwa and Bansal, 2016; Luo and
Glass, 2018) or relation extraction (Nguyen and Gr-
ishman, 2015; Zhong and Chen, 2021) and can en-
hance applications including information retrieval
(Carpineto and Romano, 2012; Berger and Laf-
ferty, 2017) and summarization (Cheng and Lap-
ata, 2016; Liu and Lapata, 2019; Maddela et al.,
2022; Hofmann-Coyle et al., 2022). However, it
has been established that NER is very sensitive to
genre differences (Augenstein et al., 2017; Agar-
wal et al., 2021),! with models trained on one genre
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'"Throughout this paper, by genre we refer to a collection
of documents with variations in style or structure that might
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Figure 1: A graphic comparison of performance of lan-
guage, genre and joint adaptation by demo parameter
count.

performing poorly on a different one. As a result,
multiple data sets were created to allow domain-
specific models to be trained. Yet, domain adapta-
tion especially across multiple genres has shown
the promise that a single model could improve per-
formance on multiple domains (Wang et al., 2020;
Liu et al., 2021). Further, the advent of pretrained
multilingual models (Wu and Dredze, 2019; Con-
neau et al., 2020) enables transfer across languages
in an straightforward way by simply feeding het-
erogeneous language data in fine-tuning, making
cross-lingual training feasible and a new dimen-
sion of adaptation available for exploration. Thus,
performance on a specific genre and language pair
could be improved by leveraging commonalities in
training data across both genre and language dimen-
sions, which is enabled by the significant amount
of annotated data sets that are publicly available.
The main research question becomes what is
the best way to leverage data from different lan-
guages and genres for NER in this multilingual
multi-domain setup? In this paper, we attempt to
answer this question by using data sets available
across multiple genres and languages to improve

impact modeling (Santini et al., 2006); we use “domain" inter-
changeably with “genre" when referring to modeling concepts.
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performance across all data sets. To this end, we
compile a collection of 22 data sets across 4 dif-
ferent languages and spanning 13 domains. To the
best of our knowledge, this is the first attempt to
building a unified multi-domain multilingual NER
model.

We empirically explore our core research ques-
tion through several experiments. First, we aim to
identify whether sharing models or parts of the
model across languages, domains or both is more
beneficial in training. In general, simply pooling all
the available data is likely sub-optimal as domain-
specific differences in named entity mentions are
useful to model, although using more data is usu-
ally more beneficial and can lead to improved ro-
bustness of the model. We explore several sharing
techniques on top of state-of-the-art transformer-
based encoders such as data pooling and mixture
of experts methods, previously effective in cross-
lingual learning, and language or domain specific
adapter heads. Our results (Fig. 1) show that shar-
ing genre information across languages is much
more beneficial for performance than sharing lan-
guage information across genres for all types of
adaptation techniques.

Next, we compare monolingual encoders like
RoBERTa, which can provide a better represen-
tation for text in each language, and multilingual
encoders like XILM-R, which enables knowledge
sharing from multiple languages, as starting points
for fine-tuning NER models when genre and lan-
guage annotated data is available. We find that the
monolingual models pooling all the data from a
particular language perform best and outperform
their cross-lingual counterparts.

Throughout, we explore the trade-offs between
the total number of model parameters and perfor-
mance, which can bring practical benefits in terms
of reduced maintenance and increased efficiency.
We find that doing domain adaptation using adapter
heads achieves a good trade-off between perfor-
mance and parameter count and could represent the
optimal solution in deploying a unified model.

Our contributions are as follows:

* Introducing the multilingual multi-domain NER
setup;

* Extensive experiments on 13 domains and 4 lan-
guages using a variety of models and adaptation
methods which highlight the best unified model
architecture and show that modeling domains is
more effective than languages;

* Analysis of the performance / efficiency trade-
offs.

2 Data Sets

We create a collection of 22 data sets across 4
languages and 13 unique genres. For English, we
use CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003), Filings (Salinas Alvarado et al., 2015),
OntoNotes-En (Hovy et al., 2006) with 6 gen-
res (Pradhan et al., 2013; Wang et al., 2020)
and Twitter (Ritter et al., 2011); for Chinese, we
use MSRA (Levow, 2006), OntoNotes-Zh (Hovy
et al., 2006) with 6 genres and Weibo (Peng and
Dredze, 2015, 2016; He and Sun, 2017); for Ger-
man, we use CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003), Legal (Leitner et al., 2019) and
Wikipedia (Balasuriya et al., 2009); for Spanish
we use CoNLL-2002 (Tjong Kim Sang, 2002) and
Wikipedia (Balasuriya et al., 2009). Note that not
all languages contain the same genres and not all
genres are present in each language, although there
is overlap between genres and languages.

2.1 Statistics

We have a total of 502,720 training examples with
109,657 for validation and 105,255 for testing. We
consider the following entity types: Person (PER),
Organization (ORG), Location (LOC), and Miscella-
neous (MISC), either removing extra types or col-
lapsing them into the overarching parent entity
class. We maintain the train/dev/test splits for all of
these data sets and evaluate on test. Tab. 1 shows
the number of training, validation and testing data
points across each of the languages when domains
in the language are combined. Here we can see that
despite German and Spanish having few domains,
the number of data points are in fact more than
English and Chinese which have more domains.

Language  Train Dev Test

English 103,121 22,344 22,557
Chinese 67,129 15,672 11,314
German 234,297 50,471 50,611
Spanish 98,173 21,170 20,773
Total 502,720 109,657 105,255

Table 1: Data set statistics per language.

2.2 Entity-Type Mapping

The datasets do not have identical entity types.
Thus, we apply pre-processing to standardize the
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Language Domain ORG PER LOC Dropped
English Ritter company person, musicartist geo-loc N/A
OntoNotes N/A N/A N/A TIME, CARDINAL, NORP,
DATE, ORDINAL, QUANTITY,
MONEY, PRODUCT, EVENT,
PERCENT, WORK_OF_ART,
LAW, LANGUAGE
German Legal UN, INN, GRT, MRK RR, AN LD, ST, STR, LDS GS, RS, VO, LIT, VS, VT, EUN
Chinese Weibo ORG.NAM, ORG.NOM PER.NAM, PERNOM LOC.NAM, LOC.NOM N/A
OntoNotes N/A PERSON GPE EVENT, NORP, TIME, FAC,

QUANTITY, MONEY, CARDI-
NAL, ORDINAL, LOC, LAW,
WORK_OF_ART, PERCENT,
LANGUAGE, PRODUCT

Table 2: Entity-type Mapping across data sets.

labels. Tab. 2 illustrates the pre-processing to map
entities to the ORG, PER, LOC and MISC types.
We do not list the simple mapping when the ORG,
PER, LOC types exist themselves and blank spaces
signify no mapping was done for the type. We refer-
ence previous work to map types to our subsets and
also refer to the original data set paper to infer type
mappings. Additionally, if a type does not map to
any of the 4 types we train and evaluate on we drop
the type as seen in the last column of the table.

3 Methods

To answer our core research question, we explore
several methods inspired by approaches from both
multilingual NER (Al-Rfou et al., 2015; Rahimi
et al., 2019; Tedeschi et al., 2021) and multi-
domain NER (Liu et al., 2020; Wang et al., 2020).

3.1 Multilingual Encoders

Pretrained multilingual encoders learn strong mul-
tilingual representation. In particular, we use XLM-
R base (Conneau et al., 2020), a strong multilingual
encoder.

3.1.1 Individual Models

The models consist of XLM-R base as the encoder,
followed by the sequence tagging head in the form
of a linear layer.

* Data Pooling. We fine-tune 1 model by naively
pooling data from all languages and domains;

* Per Lang. We fine-tune 4 models using all data
from each of the 4 languages;

* Per Dom. We fine-tune 1 model per domain us-
ing all data across all languages for that domain,
resulting in 13 models (e.g., one CoNLL model
trained using English, German and Spanish);

e Per Lang. & Dom. We fine-tune one model for

each language and domain resulting in 22 mod-
els (e.g., CoNLL English, CONLL German).

3.1.2 Mixture of Expert Models

Past multilingual NER research showed promising
results using Mixture of Expert (MoE) (Shazeer
et al., 2017) based models. MoE models are built
on the premise that a set of experts can be paramet-
rically learnt based on the training data without any
explicit notion of matching an expert to a specific
language or domain. MoE based models could be
trained with a regular training setup (Jacobs et al.,
1991), with gradient reversal methods (Ganin and
Lempitsky, 2015) or with an adversarial loss (Chen
and Cardie, 2018; Chen et al., 2019). We train MoE
with regular training setup.

Given encoder output H for a sequence of length
M, we introduce N experts, E; = FFN;(H;)
with one hidden layer, where i € {1,...,N},t €
{1,..., M}, and alinear domain/language N-class
classifier Cp, = Softmax(Wey,,, Hows). We
take ), o;E; with o; from Cp/;, and feed it
to a shared NER classifier. Thus experts are as-
signed at the sequence-level.” These are jointly
trained in a multi-task learning setup with a cross-
entropy NER loss E%RaiEi associated with all ex-
perts E; and a Domain (Dom. MoE) or Language
(Lang. MoE) prediction cross-entropy loss Lpr,

yielding EI\%RaiEi + Lp, - The loss is backprop-

agated through all the experts, both NER and do-
main/language classifier and the shared encoder.

3.1.3 Adapter Models
Research in multi-domain NER has found that

adding private layers that are updated by data from

*We also experimented with token-level expert assignment,
but observe worse results on the dev set.
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each domain and shared layers updated by data

from all domains is an effective way to improve

multi-domain performance (Wang et al., 2020).

Similar to the private layers explored in multi-

domain NER, Adapters (Pfeiffer et al., 2020; Lin

et al., 2020; Winata et al., 2021) used in conjunc-
tion with Transformer-based models demonstrated
promise in further boosting the performance. We
thus introduce adapter heads on top of the encoder.
We leave variants of adapters that lie within each
layer of the encoder (Houlsby et al., 2019; He et al.,

2022) as future work.

The adapters A; use the same model architecture
(as MoE models), but are only updated by data
from a given domain or language. It is equivalent
to MoE with a predefined expert assignment. Fig. 2
shows the architecture of the adapter models used
in our experiments.

Thus, for a given data point D; the loss is com-
puted as LﬁéR and only backpropagated through
Aj;, the NER classifier and the shared encoder.

* Lang. Adp. We create 4 adapter heads, one for
each language and use the gold language label
to pick the adapter;

* Dom. Adp. We create 13 adapter heads, one for
each domain and use the gold domain label to
pick the adapter;

* Dom. Adp + DP. We create 13 adapter heads
and employ an auxiliary Domain Prediction ob-
jective Ly, during training;

* Dom. Adp + DP + SA. In addition, we add a
shared head which is updated for all examples,
similar to the shared/private setup in (Wang et al.,
2020) for multi-domain adaptation.

While adapters in each layer with frozen encoder
performs on par with fine-tuning all parameters
(Houlsby et al., 2019), it does not outperform it
eithers. Thus, we also update the transformer layers
as part of the training process. We also explored
combining language and domain adapters but this
resulted in worse performance and we omit it for
brevity.

3.2 Monolingual Encoders

Finally, we explore monolingual encoders, which
can provide a better representation of each
language but are not able to transfer knowl-
edge across languages. We identify monolingual
BERT/RoBERTa versions for each of the 4 lan-
guages: English (Liu et al., 2019), Chinese (Cui
et al., 2020), Spanish (de la Rosa et al., 2022), and

00O0O(B-LOC I-LOC| ...

Output Layer
Adapter Heads

conll | filings |

| ritter

en, (May 14 Practice at Lord 'sj

es, ( Salvatierra de los Barros j

en,ritter ( Bank will notify Borrower J

Figure 2: Our NER tagger with XLM-R encoder and
domain adapters. Texts and adapter heads are color-
coded to indicate the heads used for each domain.

German?®.

* Per Lang. We fine-tune each monolingual en-
coder with all the NER data from the correspond-
ing language, resulting in 4 models;

* Per Lang. & Dom. We fine-tune one model for
each domain based on monolingual encoder, re-
sulting in 22 models;

* Dom. Adp. We add domain adapters (Dom.
Adp., §3.1.3) to monolingual encoder. This re-
sults in 4 models, one for each language, with
the number of adapters equal to the number of
domains in each language.

3.3 Hyperparameters

We use the open-source Transformers library (Wolf
et al., 2020) to facilitate reproducibility. For all
experiments, we use a learning rate of 1e-5 on the
AdamW optimizer (Loshchilov and Hutter, 2017),
with no warm up, a batch size of 32 trained across
50 epochs on an NVIDIA V100 GPU. We use the
same hyperparameters across all experiments to
allow for comparability.

4 Results

We evaluate the models listed in §3 on all data
sets. Tab. 3 illustrates the results averaged across
languages obtained using F1 calculated with the
CoNLL evaluation script. Granular results for each
individual genre and language are in App. B. We
treat the data pooling method in multi-lingual en-
coders as our baseline in terms of performance and
number of parameters. Our findings are as follows:

3The model is taken from https://www.deepset.ai/
german-bert
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Models #param en zh de es Avg.
# Domains 9 8 3 2
Initiate with XLM-R (multilingual, base)
Data Pooling x1.00 82.12 7570 89.51 89.96 84.32
Per Lang. %x4.00 +0.54 +0.67 -0.27 -0.15 +0.2
Per Dom. x13.00 +3.99 +4.45 +047 +0.40 +2.33
Per Lang. & Dom. x22.00 +3.53 +4.27 +0.49 +0.38 +2.17
Lang. MoE x1.02 +0.12  +0.47 0 +0.07 +0.17
Dom. MoE x1.07 +0.51 +1.03 -036 -0.33 +0.21
Lang. Adp x1.02 -0.09 +0.33 -0.37 -0.35 -0.12
Dom. Adp x1.07 +1.95 +4.62 +0.26 -0.53 +1.58
+DP x1.07 +1.65 +349 -0.15 -0.83 +1.04
+DP + SA x1.08 +1.60 +3.66 -030 -0.01 +1.24
Initiate with Monolingual RoBERTa (base)
Per Lang. x1.65 +1.94 +3.16 -024 +0.16 +1.26
Per Lang. & Dom. x9.03 +4.23 +6.55 +1.28 +1.05 +3.28
Dom. Adp x1.73 +3.05 +6.61 +0.22 +0.30 +2.55

Table 3: Results in macro-F1 for each language aver-
aged across all domains within the language and overall
average across the four languages. Number of param-
eters are relative to Data Pooling. Bold and underline
indicate the best and second best performing models.

Domain vs. Language: In Fig. 1, we observe
that across all types of methods (individual models,
MOoE and adapters), training models that leverage
information about domain across languages is more
beneficial when compared to sharing information
across different genres in the same language, with
gains of up to 1.70 — 2.13 F1. We hypothesize this
result is due to the well documented sensitivity
of NER to nuances specific to genres (Augenstein
et al., 2017) such as entity distribution, document
structure or capitalization patterns, whereas multi-
lingual models manage to better preserve this in-
formation across languages. In addition, domain-
specific models even perform slightly better than
language- and domain-specific models (+0.16).

Adapters vs. MoE: When comparing methods,
we observe that MoE techniques provide limited
gains over data pooling (0.17-0.21) contrary to past
cross-lingual experiments. The adapter heads pro-
vide bigger improvement compared to MoE with
same number of parameters, while using shared
layers and domain predictors as in multi-domain
adaptation (Wang et al., 2020) fails to further boost
performance. However, both adaptation strategies
lag behind training domain specific models (+0.75),
which however come with a much larger number
of parameters (up to x20) and added maintenance
cost when deployed.

Monolingual vs. Multilingual Models: The
monolingual results demonstrate that, if available,
these models lead to better performance than their
multilingual counterparts (+1.06 and +1.09 when

comparing similar setups), which is natural as they
have a better representation of each language. We
find that the domain adapter method offers a good
trade-off between performance (-0.73) and model
size (x0.18), outperforming all models that per-
form adaptation across languages.

Impact of domain diversity: Finally we also
observe that English and Chinese have much more
diversity because of the number of domains, thus
adding more capacity through the domain adap-
tation results in improved performance. However,
since German and Spanish have fewer domains but
an equal if not more training data points, we find
that adding capacity is not necessarily helpful.

5 Conclusion and Future Work

This paper introduces the first extensive evaluation
of multilingual multi-domain NER using a collec-
tion of 22 data sets spanning 4 languages. Through
a series of experiments, we demonstrate that genre
information is more important to be shared, even
across languages, than sharing information from
other genres in the same language. However, these
cross-lingual methods are outperformed by domain
adaptation over genres in monolingual models, if
these models are available. We also explored trade-
offs between model size and performance, showing
that adapter heads strike a good balance, offering
relatively little reduction in performance for an or-
der of magnitude less parameters. For future work,
we will explore additional experimental setups that
include testing on domains or languages where lim-
ited or no data is available for training.

Limitations

Our research focuses on high-resource languages
where annotated NER data sets and pretrained lan-
guage models are available from only two language
families. We have yet to explore how these findings
translate to low resource languages or languages
where annotated data sets are not available. We note
that there are more domains available for English
and Chinese, and since we are computing macro-
F1 scores, the results over-emphasize performance
on these languages, although Spanish and German
show similar result patterns. Additionally, we only
use 4 entity types (i.e., PER, ORG, LOC, MISC)
across all datasets by dropping the other entities.
Finally, due to limited computing resources and
large number of experiments, we experiment with
XLM-R base and thus do not compare with state-
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of-the-art results for each of these individual lan-
guage/domain results which are usually obtained
using XLM-R large.
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Appendix
A Data Set Details

In this section, we provide details about the statis-
tics of the data sets, our hypothesis on what makes
them challenging tasks and also pre-processing we
perform to allow for reproducible results.

A.1 Statistics

A more in-depth look at the distributions of the
domains across languages can be seen in Tab. 4 for
German, Tab. 5 for Spanish, Tab. 8 for English, and
Tab. 9 for Chinese. The tables show that English
has the most diverse set of domain distribution,
followed by Chinese, with a bulk of the data com-
ing from MSRA, German, where Legal and Wiki
constitute a large amount and Spanish, which is
largely dominated by Wiki. The more diverse set
of domains makes the language more challenging
to achieve a consistently high average score, which
is also evident in our results.

conll2003 legal wiki
Train (%) 5.19 1993 74.88
Dev (%) 5.68 19.83 74.49
Test (%) 5.94 19.78 74.28

Table 4: Domain Distribution for German data sets.

conll wiki
Train (%) 8.48 91.52
Dev (%) 9.05 90.95
Test (%) 7.31 92.69

Table 5: Domain Distribution for Spanish data sets.

B Fine-grained Results

In Tab. 3, we see the averaged results across do-
mains for each language, however it is not easy to
infer the performance on each for any given lan-
guage. In an effort to provide more transparency,
we provide the performance for each domain within
a given language in Tab. 6, Tab. 7, Tab. 10, and
Tab. 11.

Models/Domain conll2003  legal  wiki
Initialized with XLM-R Multilingual
Data Pooling 81.24 96.05 91.23
Per Lang. 80.61 95.80 91.30
Per Dom. 82.08 96.41 91.45
Per Lang. and Dom. 82.26 96.41 91.33
Lang. MoE 81.28 96.10 91.14
Dom. MoE 80.42 95.94  91.09
Lang. Adp 80.33 95.92 91.17
Domain Adp 81.87 96.18 91.25
+ DP 81.41 95.81 90.87
+ DP + SA 81.18 95.68 90.77
Initialized with Monolingual RoBERTa
Per Lang. 81.00 95.55 91.25
Per Lang. & Dom. 84.69 96.05 91.61
Dom. Adp 82.08 95.77 91.36

Table 6: Fine-grained results for domains within Ger-
man.

Models/Domain conll2002  wiki
Initialized with XLM-R Multilingual
Data Pooling 86.72 93.20
Per Lang. 86.51 93.10
Per Dom. 87.46 93.26
Per Lang. and Dom. 87.59 93.09
Lang. MoE 87.02 93.04
Dom. MoE 86.42 92.84
Lang. Adp 86.27 92.96
Dom. Adp 85.93 92.93
+ DP 85.72 92.55
+ DP + SA 87.08 92.81
Initialized with Monolingual RoBERTa
Per Lang. 86.97 93.26
Per Lang. & Dom. 88.78 93.25
Dom. Adp 87.36 93.15

Table 7: Fine-grained results for domains within Span-
ish. DP is Domain Prediction and SA indicates shared
adapter.
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conll2003 filings onto_bc onto_bn onto_mz onto_nw onto_tc onto_wb ritter

Train (%) 13.62 1.00 11.00 9.05 5.66 29.32 10.79 14.65 492
Dev (%) 14.55 0.99 10.88 8.96 5.59 29.00 10.67 1449 4.86
Test (%) 15.31 0.98 10.79 8.88 5.55 28.73 10.58 1436  4.83

Table 8: Domain Distribution for English data sets.

msra onto_bc onto_bn onto_mz onto_nw onto_tc onto_wb weibo

Train (%) 53.63 10.51 8.92 4.54 3.86 9.01 7.56 1.97
Dev (%) 57.43 9.65 8.19 4.17 3.54 8.27 6.94 1.81
Test (%)  40.94 13.37 11.36 5.78 4.92 11.47 9.63 2.52

Table 9: Domain Distribution for Chinese data sets.

Models/Domain conll2003  filings be bn mz nw te wb ritter
Initialized with Multilingual XLM-R
Data Pooling 87.21 88.59 88.11 90.92 89.10 91.60 70.69 70.87 61.94
Per Lang. 87.84 86.10 89.14 91.51 89.13 9213 71.78 71.83 6445
Per Dom. 92.00 95.48 89.85 9248 90.81 93.14 7329 7644 7146
Per Lang. & Dom. 91.25 9548 89.35 9253 91.19 9279 7349 7585 68.96
Lang. MoE 87.20 88.37 88.44 9091 8851 91.74 7130 70.59 63.13
Dom. MoE 87.59 87.50 87.99 9135 8823 91.80 72.18 7242 64.62
Lang. Adp 87.02 88.33 87.72 9129 8826 91.77 70.37 7054 63.01
Dom. Adp 90.36 90.98 89.19 9238 89.66 9222 71.59 7523 65.02
+ DP 90.27 89.45 88.67 9234 8955 9193 7121 7644 64.07
+DP + SA 90.17 89.46 88.56 9224 89.18 9196 72.80 7550 63.60
Initialized with Monolingual RoBERTa
Per Lang. 88.81 90.66 89.80 9192 89.61 9248 7229 73776 6722
Per Lang. & Dom. 91.69 9444 89.81 9285 91.15 9342 7377 7578 74.25
Dom. Adp 91.85 89.71 89.64 93.07 90.79 9297 7229 7594 70.30

Table 10: Fine-grained results for domains within English. DP is Domain Prediction and SA indicates shared adapter.

Models/Domain msra bc bn mz nw te wb weibo

Initialized with XLM-R Multilingual

Data Pooling 81.09 7830 79.08 72.75 84.19 81.18 68.63 60.35
Per Lang. 80.85 76.58 7894 7430 84.68 83.33 6836 63.90
Per Dom. 91.81 77.62 8242 7625 90.23 8459 7351 64.74
Per Lang. & Dom. 91.82 77.82 8221 76.07 89.74 8381 73.59 64.74
Lang. MoE 81.04 77.05 7940 7247 8491 8459 6835 61.56
Dom. MoE 79.59 76776  79.32 7421 85.66 8529 70.21 62.81
Lang. Adp 80.57 79.07 78.51 7346 84.62 8299 68.10 60.89
Dom. Adp 89.45 7947 82.14 7621 89.99 8486 7434 66.10
+ DP 89.36 77.08 80.67 75.17 89.76 8522 7400 62.24
+ DP + SA 89.00 77.73 81.14 75.82 89.54 8555 72.16 63.97
Initialized with Monolingual RoBERTa
Per Lang. 8225 79.78 81.02 7543 86.39 86.10 71.85 68.04
Per Lang. & Dom. 9355 80.36 84.05 7852 9135 8584 74.73 69.6
Dom. Adp 93.17 80.34 83.88 78.79 9122 86.74 7634 67.96

Table 11: Fine-grained results for domains within Chinese. DP is Domain Prediction and SA indicates shared
adapter.
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