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Abstract

We propose a novel RoBERTa-based model,
RoPPT, which introduces a target-oriented
parse tree structure in metaphor detection.
Compared to existing models, RoPPT fo-
cuses on semantically relevant information and
achieves the state-of-the-art on several main
metaphor datasets. We also compare our ap-
proach against several popular denoising and
pruning methods, demonstrating the effective-
ness of our approach in context denoising.
Our code and dataset can be found at https:
//github.com/MajiBear000/RoPPT.

1 Introduction

Metaphor is a pervasive linguistic device, which
attracts attention from both the fields of psycholin-
guistics and computational linguistics due to the
key role it plays in the cognitive and communica-
tive functions of language (Wilks, 1978; Lakoff
and Johnson, 1980; Lakoff, 1993). Linguistically,
metaphor is defined as a figurative expression that
uses one or several words to represent another con-
cept given the context, rather than taking the lit-
eral meaning of the expression (Fass, 1991). For
instance, in the sentence “This project is such a
headache!”, the contextual meaning of headache
is “a thing or person that causes worry or trouble”,
different from its literal meaning, “a continuous
pain in the head”.1

Metaphor detection is challenging, as it requires
understanding the nuanced relationships between
abstract concepts embodied by the metaphoric ex-
pression and its surrounding context. Recent stud-
ies on this direction show its potential in benefit-
ing a wide range of NLP applications, including
sentiment analysis (Li et al., 2022a), metaphor gen-
eration (Li et al., 2022b,c) and mental healthcare
(Abd Yusof et al., 2017; Gutiérrez et al., 2017).

∗ The two authors contributed equally to this work.
† Corresponding author

1https://www.oxfordlearnersdictionaries.com

When modelling relevant context for metaphor
detection, various strategies have been proposed.
These range from using highly restricted forms of
linguistic context such as subject-verb and verb-
direct object word pairs (Gutiérrez et al., 2016), to
a wider context accounting for a fixed window sur-
rounding the target word (Do Dinh and Gurevych,
2016; Mao et al., 2018), and modelling the full sen-
tential context (Gao et al., 2018; Choi et al., 2021).
While it has been argued that modelling a wider
context is beneficial (Cheng et al., 2021), it has also
been noted that a wider context is likely to intro-
duce noise into the representations, and hence hin-
der model’s performance in metaphor detection (Le
et al., 2020).

Some recent efforts (Le et al., 2020; Song et al.,
2021a) attempt to improve context modelling by
explicitly leveraging the syntactic structure (e.g.,
dependency parse tree) of a sentence in order to cap-
ture important context words, where the parse trees
are typically encoded with graph convolutional neu-
ral networks. MelBERT (Choi et al., 2021) em-
ploys a simple chunking method which separates
sub-sentences by commas. The sub-sentence that
contains a target word is then marked with a special
token type, signalling its contextual importance to
the target. However, these strategies are either dif-
ficult to apply to batch optimisation due to their
tree-dependent encoding process, or have limited
effectiveness for context denosing. For instance,
the simple chunking mechanism misses the syn-
tactic structure, and thus can neither determine the
degree of importance of context words, nor connect
information across different subsentences.

In this paper, we propose a novel metaphor de-
tection model RoPPT: RoBERTa with Pruning on
target-oriented Parse Tree. RoPPT introduces a
flat, target-oriented tree structure by reshaping and
pruning the ordinary parse trees to extract seman-
tically relevant neighbours of a target word. The
resulting tree representation allows the model to
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focus on syntactically relevant information of a tar-
get word, and ignore irrelevant parts despite their
position. It thus retains more relevant context for
metaphor detection.

Extensive experiments conducted on three pub-
lic benchmark datasets (i.e., VUA, MOH-X,
TroFi) show that RoPPT can significantly improve
metaphor detection on all datasets against sev-
eral popular denoising and pruning methods. Our
model also yields better or comparable perfor-
mance to the state-of-the-art models (Choi et al.,
2021; Song et al., 2021a) in Micro F1 measure.
To further validate our approach, we conducted
an additional investigation to assess the effect of
sentence length on the performance of our model.
Experimental results demonstrate a positive corre-
lation between the increase in the performance of
RoPPT and the length of the input sentence.

In summary, our paper makes three contribu-
tions: (1) we propose a flat, target word-oriented
tree structure by reshaping and pruning the ordi-
nary parse trees to retain the most relevant con-
text for a target word; (2) we propose RoPPT, a
RoBERTa-based model which can effectively en-
code the target-oriented parse tree for metaphor de-
tection, achieving state-of-the-art results on three
bench mark datasets; (3) we compare and evaluate
a range of context denoising methods for metaphor
detection, demonstrating the effectiveness of our
proposed tree structure in context denoising.

2 Method

The overall architecture of RoPPT is shown in Fig-
ure 1, which can be divided into two parts: a target-
oriented parse tree pruning module and a RoBERTa
(Liu et al., 2019) contextual encoder.

2.1 Target-oriented Dependency Parse Tree

Connecting target words with their most relevant
context words is crucial for metaphor detection and
comprehension. While there have been attempts
to employ dependency parse trees in graph convo-
lutional neural networks to improve context mod-
elling (Wang et al., 2020), it raises challenges of
how to effectively encode and leverage such syn-
tactic structure information for transformer-based
mask language models for metaphor detection.

We tackle this challenge by introducing a target-
oriented parse tree generated by three steps: 1)
reshape the original parse tree from existing parsers
such as spaCy (Honnibal and Montani, 2017) and

Biaffine (Dozat and Manning, 2016); 2) root the
tree at the target word; 3) prune the tree according
to the distance between leaves and root, coined as
neighbor range. The rationale behind is that the
target word is the focus of the task rather than the
original root. So the re-rooting allows us to focus
on the connections between target words and their
relevant context. The resulting flat, target-oriented
tree structure also enables simple encoding process
into the model. Figure 1 shows an example of our
reshaped tree, which retrains words with neighbor
range con = 1 to the root ‘bogged’.

2.2 RoBERTa-based Context Encoder

We employ two metaphor identification theories in
our model, i.e., Metaphor Identification Procedure
(Steen, 2010, MIP) and Selectional Preference Vio-
lation (Wilks, 1978, SPV). In MIP, a metaphor is
detected when there is a contrast between target
word’s contextual and literal meanings, whereas
in SPV a metaphorical word is identified by the
semantic difference from its surrounding words.
Therefore, we model three types of semantic rep-
resentations for implementing MIP and SPV, i.e.,
the literal meaning and the contextual meaning of
a target word, and the context meaning.

Formally, given a sentence S = (w0, ..., wn),
we first employ the RoBERTa network to produce
representations for each word.

H = RoBERTa_Enc(embcls, ..., embn) (1)

Here CLS is a special token indicating the start of
an input, H = (hcls, h0, ..., hn) the output hidden
states, and embi the input embedding for word
wi. Specifically, embi = embw + embpos, where
embw is the word embedding, and embpos the po-
sition encoding.
Context denoising with the target-oriented parse
tree. When modelling sentence representation, ex-
isting works directly employed the CLS embedding
as a common practice (Choi et al., 2021; Song
et al., 2021b). In contrast, RoPPT employs the
target-oriented parse tree to retain the most rele-
vant context for a target word when computing the
sentence embedding. Specifically, our sentence
embedding is computed as follows.

vS =
1

n

∑
hi, i ∈ Cn (2)

Here vS is the sentence representation; Cn repre-
sents the n neighbour words within the neighbour
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Figure 1: The overall framework of RoPPT. The parse tree of a sentence is reshaped to a target-oriented tree, and
the context is pruned with a pre-set threshold. The sentence embedding is the average pooling result of hidden states
for pruned context from RoBERTa.

⊕
denotes concatenation.

range of the target-oriented parse tree, and hi is the
hidden state of wi. In other words, we do average
pooling on the most relevant context words as the
sentence representation and ignore other words in
the sentence. We also design an alternative strategy
by directly masking the original input sentence to
the encoder according to the pruned parse tree. We
denote this intuitive solution as RoPPT with Input
Mask (RoPPT_IM) and discuss the performance
difference between these two variants in §4.

Similar to Choi et al. (2021), we use the hid-
den state of target word wt as the contextual target
word embedding (i.e. vS,t = ht), and the literal
target word embedding vt is obtained by feeding
the single target word wt to the RoBERTa network.

vt = RoBERTa_Enc(embt) (3)

We then model SPV (hSPV) by concatenating
the sentence embedding vS and contextual target
embedding vS,t, and MIP (hMIP) by concatenat-
ing the contextual and literal target embeddings vt,
followed by a MLP layer (i.e. f1(·) and f2(·)).

hSPV = f1([vS , vS,t]) (4)

hMIP = f2([vS,t, vt]) (5)

Finally, we combine two hidden vectors hMIP
and hSPV to compute a prediction score ŷ, and use

binary cross entropy loss to train the overall frame-
work for metaphor prediction.

ŷ = σ(W⊤[hMIP;hSPV] + b) (6)

L = −
N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (7)

3 Experimental Setup

Dataset. We conduct experiments on four public
benchmark datasets. VUA-18 (Leong et al., 2018)
and VUA-20 (Leong et al., 2020) are the largest
available datasets, released in the metaphor detec-
tion shared tasks in 2018 and 2020. VUA-20 ex-
tends VUA-18 with about 12K sentences for train-
ing set and 3.6K sentences for test and validation
sets. The MOH-X dataset is constructed by sam-
pling sentences from WordNet (Miller, 1998). Only
a single target verb in each sentence is annotated.
The average sentence length is 8 tokens, the short-
est of our three datasets. TroFi (Birke and Sarkar,
2006) consists of sentences from the 1987-89 Wall
Street Journal Corpus (Charniak et al., 2000), with
an average length of 28.3 tokens per sentence.
Baselines. RoBERTa_SEQ (Leong et al., 2020) is
a fine-tuned RoBERTa sequence labeling model for
metaphor detection. MelBERT (Choi et al., 2021)
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Model VUA18 VUA20
Prec Rec F1 Prec Rec F1

RNN_ELMo 71.6 73.6 72.6 - - -
RoBERTa_SEQ 80.1 74.4 77.1 75.1 67.1 70.9
MrBERT 82.7 72.5 77.2 - - -
MelBERT* 79.6 76.4 77.9 76.3 68.6 72.2
MelBERT 80.1 76.9 78.5 75.9 69.0 72.3
RoBERTa_tree 78.9 76.1 77.4 74.8 68.6 71.6
RoChunk 76.6 80.0 78.2 73.9 70.0 71.9
RoWindow 78.0 78.1 78.0 75.0 68.8 71.8
RoPPT_IM 73.4 74.3 73.9 67.7 66.8 67.2
RoPPT 80.0 78.2 79.1 75.9 70.0 72.8

Table 1: Performance comparison on VUA dataset (best
is in bold). NB: * indicates the reproduced results of
MelBERT using the original source code and setting of
(Choi et al., 2021). RNN_ELMo and MrBERT have no
results on VUA20 in their original paper. Popular de-
noising methods are also compared. RoChunk means
chunk sentence by comma on RoBERTa input, RoWin-
dow means denoising by a context window (size=4).
RoPPT_IM represent masking sentence before input to
transformer encoder.

Models TroFi MOH-X
Prec Rec F1 Prec Rec F1

RoBERTa_SEQ 53.6 70.1 60.7 80.6 77.7 78.7
DeepMet 53.7 72.9 61.7 79.9 76.5 77.9
MrBERT 53.8 75.0 62.7 75.9 84.1 79.8
MelBERT* 53.1 73.2 61.6 78.0 79.5 78.8
MelBERT 53.4 74.1 62.0 79.3 79.7 79.2
RoBERTa_tree 50.3 77.8 61.1 76.9 83.5 79.3
RoPPT 54.2 76.2 63.3 77.0 83.5 80.1

Table 2: Performance comparison on TroFi and MOH-X
datasets (NB: bold denotes the best result).

realises MIP and SPV theories via a RoBERTa
based model. MrBERT (Song et al., 2021b) is the
recent SOTA on verb metaphor detection based on
BERT with verb relations encoded.
Hyperparameter. We set the hyperparameter
neighbour range con = 4 based on the validation
set results. All the parser results are based on spaCy
as it performs better than Biaffine empirically (see
§4 for more discussion).

4 Experimental Results

Overall results. Table 1 shows a comparison of
the performance of our models against the baseline
models on VUA18 and VUA20, respectively. It
is clear that our RoPPT outperforms all baselines
on VUA18 and VUA20, including the state-of-the-
art model MelBERT. A two-tailed t-test was con-
ducted based on 10 paired results from RoPPT and
the strongest baseline MelBERT* on both VUA-18
(p = 0.014) and VUA-20 (p = 0.019).

We also compared our method against sev-
eral common denoising strategies. The results

show that our tree-based denoising method is
more effective than other popular denoising ap-
proaches such as RoChunk and RoWindow, which
are sequence-based methods. We also apply our
target-oriented tree to RoBERTa_SEQ, denoted as
the RoBERTa_tree model. The improvement of
RoBERTa_tree over RoBERTa_SEQ on two VUA
datasets (i.e. 0.3% and 0.7%) further demonstrates
the utility of our tree-based denoising method.

Following the setup of Choi et al. (2021), we
also conducted a zero-shot transfer learning experi-
ment shown in Table 2. Specifically, our model is
trained on the training set of VUA20 and directly
tested on the entire Trofi and MOH-X datasets.
This is intended to test the generalisation power
of trained models. RoPPT shows the best perfor-
mance on both datasets (significant test on RoPPT
against MelBERT*: TroFi p = 0.0001; MOH-X
p = 0.021; we cannot compare with MrBERT as
the code is unavailable). It can be observed that
our model gives a larger margin of improvement
over the baselines on TroFi (i.e., 1.3% gain over
MelBERT and 0.6% over MrBERT) than MoH-
X (i.e., 0.9% gain over MelBRTT and 0.3% over
MrBERT).

Model performance vs. Sentence length. As the
averaged sentences length of TroFi (28.3 tokens)
is significantly longer than that of MoH-X (8 to-
kens), it is worth investigating whether our model
gives more performance boost on data with longer
context as it is likely to be noisier. To verify this
hypothesis, we evaluated the performance boost of
our RoPPT against the SOTA baseline MelBERT.
Table 3 shows the results of VUA18 with the testset
splitted into 3 different groups based on sentence
length. The results demonstrate a clear positive cor-
relation between performance boost and sentence
length.

Impact of Parsers. We also investigated how the
choice of parsers impacts the metaphor detection
performance of our model. Specifically, we tested
two parsers for constructing the target-oriented
dependency parse trees, namely, the CNN-based
parser Biaffine and the RoBERTa-based parser
spaCy. When tested on the validation set, our
model achieves 78.0% with spaCy and 77.7% with
Biaffine in F1 for metaphor detection, respectively.
This shows that the impact of the parse choice is
relatively small for our model.

Case Studies. RoPPT shows its strength in the fol-
lowing example with the target word far away from

1407



Sent. RoPPT MelBERT* F1 Pruning # of
len. Prec Rec F1 Prec Rec F1 diff. comp. Sent.
<20 76.4 74.8 75.6 75.0 75.2 75.1 0.5 10.7 / 12.3 18,515
20-40 81.8 79.9 80.8 79.2 79.1 79.2 1.6 16.4 / 29.4 17,729
>40 82.3 80.0 81.1 78.5 76.8 77.6 3.5 19.5 / 53.6 7,703

Table 3: RoPPT and MelBERT* performance comparison on sentences with different length range from VUA18.
‘Pruning comp.’ is the comparison of the average length of (pruned) / (original) sentences.

its subject, which is correctly labeled by RoPPT but
incorrectly by baseline models. For the instance
with metaphorical target word bogged, "a routine
exercise in extending the government’s borrowing
power to $3.1 thousand billion became bogged
down.", the target word bogged is separated from
its subject by a long phrase, which causes baselines
(including MelBERT) to fail to detect the metaphor.
Thanks to the parse tree, RoPPT links exercise di-
rectly to the target and produces the right label.

5 Conclusion

In this paper, we proposed, RoPPT, an effective ap-
proach to extract contextual information for target
words for metaphor detection based on a target-
oriented parse tree structure. Extensive experi-
ments show that our model can yield better perfor-
mance compared to the state-of-the-art. In addition,
our method is particularly effective in denoising
long sentences, despite its simplicity.

6 Limitations

Empirical experiments show that our method is
more effective in denoising long sentences with
the proposed target-oriented parse tree. While this
is somewhat expected as shorter sentences tend to
have cleaner context, it raises a question or limita-
tion of how can we improve the proposed method
to better deal with short sentences and improve its
performance in these cases. One possibility is to
exploit external knowledge (e.g. ConceptNet) to
support the detection of the most important contex-
tual words.
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