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Abstract

We introduce a novel and efficient method for
Event Coreference Resolution (ECR) applied to
a lower-resourced language domain. By fram-
ing ECR as a graph reconstruction task, we
are able to combine deep semantic embeddings
with structural coreference chain knowledge
to create a parameter-efficient family of Graph
Autoencoder models (GAE). Our method sig-
nificantly outperforms classical mention-pair
methods on a large Dutch event coreference
corpus in terms of overall score, efficiency and
training speed. Additionally, we show that our
models are consistently able to classify more
difficult coreference links and are far more ro-
bust in low-data settings when compared to
transformer-based mention-pair coreference al-
gorithms.

1 Introduction

Event coreference resolution (ECR) is a discourse-
centered NLP task in which the goal is to deter-
mine whether or not two textual events refer to the
same real-life or fictional event. While this is a
fairly easy task for human readers, it is far more
complicated for Al algorithms, which often do not
have access to the extra-linguistic knowledge or
discourse structure overview that is required to suc-
cessfully connect these events. Nonetheless ECR,
especially when considering cross-documents set-
tings, holds interesting potential for a large variety
of practical NLP applications such as summariza-
tion (Liu and Lapata, 2019), information extraction
(Humphreys et al., 1997) and content-based news
recommendation (Vermeulen, 2018).

However, despite the many potential avenues
for ECR, the task remains highly understudied for
comparatively lower-resourced languages. Further-
more, in spite of significant strides made since the
advent of transformer-based coreference systems, a
growing number of studies has questioned the effec-
tiveness of such models. It has been suggested that
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classification decisions are still primarily based on
the surface-level lexical similarity between the tex-
tual spans of event mentions (Ahmed et al., 2023;
De Langhe et al., 2023), while this is far from the
only aspect that should be considered in the clas-
sification decision. Concretely, in many models
coreferential links are assigned between similar
mentions even when they are not coreferent, lead-
ing to a significant number of false positive classi-
fications, such as between Examples 1 and 2.

1. The French president Macron met with the
American president for the first time today

2. French President Sarkozy met the American
president

We believe that the fundamental problem with
this method stems from the fact that in most cases
events are only compared in a pairwise manner
and not as part of a larger coreference chain. The
evidence that transformer-based coreference reso-
lution is primarily based on superficial similarity
leads us to believe that the current pairwise classifi-
cation paradigm for transformer-based event coref-
erence is highly inefficient, especially for studies
in lower-resourced languages where the state of
the art still often relies on the costly process of
fine-tuning large monolingual BERT-like models
(De Langhe et al., 2022b).

In this paper we aim to both address the lack
of studies in comparatively lower-resourced lan-
guages, as well as the more fundamental concerns
w.r.t. the task outlined above. We frame ECR as a
graph reconstruction task and introduce a family of
graph autoencoder models which consistently out-
performs the traditional transformer-based methods
on a large Dutch ECR corpus, both in terms of ac-
curacy and efficiency. Additionally, we introduce a
language-agnostic model variant which disregards
the use of semantic features entirely and even out-
performs transformer-based classification in some
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situations. Quantitative analysis reveals that the
lightweight autoencoder models can consistently
classify more difficult mentions (cfr. Examples 1
and 2) and are far more robust in low-data settings
compared to traditional mention-pair algorithms.

2 Related Work

2.1 Event Coreference Resolution

The primary paradigm for event coreference res-
olution takes the form of a binary mention-pair
approach. This method generates all possible event
pairs and reduces the classification to a binary
decision (coreferent or not) between each event
pair. A large variety of classical machine learn-
ing algorithms has been tested using the mention-
pair paradigm such as decision trees (Cybulska
and Vossen, 2015), support vector machines (Chen
et al., 2015) and standard deep neural networks
(Nguyen et al., 2016).

More recent work has focused on the use of
LLMs and transformer encoders (Cattan et al.,
2021a,b), with span-based architectures attaining
the best overall results (Joshi et al., 2020; Lu and
Ng, 2021). It has to be noted that mention-pair
approaches relying on LLMs suffer most from the
limitations discussed in Section 1. In an effort to
mitigate these issues some studies have sought to
move away from the pairwise computation of coref-
erence by modelling coreference chains as graphs
instead. These methods’ primary goal is to create
a structurally-informed representation of the coref-
erence chains by integrating the overall document
(Fan et al., 2022; Tran et al., 2021) or discourse
(Huang et al., 2022) structure. Other graph-based
methods have focused on commonsense reasoning
(Wu et al., 2022).

Research for comparatively lower-resourced lan-
guages has generally followed the paradigms and
methods described above and has focused on lan-
guages such as Chinese (Mitamura et al., 2015),
Arabic (NIST, 2005) and Dutch (Minard et al.,
2016).

2.2 Graph Autoencoders

Graph Autoencoder models were introduced by
Kipf and Welling (2016b) as an efficient method
for graph reconstruction tasks. The original pa-
per introduces both variational graph autoencoders
(VGAE) and non-probabilistic graph autoencoders
(GAE) networks. The models are parameterized
by a 2-layer graph-convolutional network (GCN)

(Kipf and Welling, 2016a) encoder and a generative
inner-product decoder between the latent variables.
While initially conceived as lightweight models for
citation network prediction tasks, both the VGAE
and GAE have been successfully applied to a wide
variety of applications such as molecule design
(Liu et al., 2018), social network relational learning
(Yang et al., 2020) and 3D scene generation (Chat-
topadhyay et al., 2023). Despite their apparent po-
tential for effectively processing large amounts of
graph-structured data, application within the field
of NLP has been limited to a number of studies in
unsupervised relational learning (Li et al., 2020).

3 Experiments

3.1 Data

Our data consists of the Dutch ENCORE corpus
(De Langhe et al., 2022a), which in its totality con-
sists of 12,875 annotated events spread over 1,015
documents that were sourced from a collection of
Dutch (Flemish) newspaper articles. Coreferen-
tial relations between events were annotated at the
within-document and cross-document level.

3.2 Experimental Setup

3.2.1 Baseline Coreference Model

Our baseline model consists of the Dutch mono-
lingual BERTje model (de Vries et al., 2019) fine-
tuned for cross-document ECR. First, each possible
event pair in the data is encoded by concatenating
the two events and by subsequently feeding these
to the BERTje encoder. We use the token repre-
sentation of the classification token [CLS] as the
aggregate embedding of each event pair, which is
subsequently passed to a softmax-activated clas-
sification function. Finally, the results of the text
pair classification are passed through a standard
agglomerative clustering algorithm (Kenyon-Dean
et al., 2018; Barhom et al., 2019) in order to obtain
output in the form of coreference chains.

We also train two parameter-efficient versions of
this baseline model using the distilled Dutch Lan-
guage model RobBERT]e (Delobelle et al., 2022)
and a standard BERTje model trained with bottle-
neck adapters (Pfeiffer et al., 2020).

3.2.2 Graph Autoencoder Model

We make the assumption that a coreference chain
can be represented by an undirected, unweighted
graph G = (V, E) with|V| nodes, where each node
represents an event and each edge e € E between



Model CONLL F1 Training Runtime (s) Inference Runtime (s) Trainable Parameters Disk Space (MB)
MP RobBERTje 0.767 7962 16.31 74M 297
MP BERTjesppr 0.780 12 206 20.61 0.9M 35
MP BERTje 0.799 9737 21.78 110M 426
GAE NoFeatures 0.832 +0.008 1006 0.134 825856 32
GAE BERTjergs 0.835 +0.010 975 0.263 51200 0.204
GAE BERTje372 0.852 + 0.006 1055 0.294 198656 0.780
GAE RobBERT74g 0.838 £ 0.004 1006 0.273 51200 0.204
GAE RobBERTj3p72 0.841 + 0.007 1204 0.292 198656 0.780
GAE SBERT 0.801 + 0.002 982 0.291 51200 0.204
VGAE NoFeatures 0.824 + 0.009 1053 0.139 827904 32
VGAE BERTje7ss 0.822 £ 0.011 1233 0.282 53248 0.212
VGAE BERTje3g72 0.842 + 0.009 1146 0.324 200704 0.788
VGAE RobBERT755  0.828 + 0.0021 1141 0.288 53248 0.212
VGAE RobBERT3072  0.831 + 0.004 1209 0.301 200704 0.788
VGAE SBERT 0.773 £0.012 1185 0.295 53248 0.212

Table 1: Results for the cross-document event coreference task. We report the average CONLL score and standard
deviation over 3 training runs with different random seed initialization for the GCN weight matrices (GAE/VAE)
and classification heads (Mention-Pair models). Inference runtime is reported for the entire test set.

two nodes denotes a coreferential link between
those events. We frame ECR as a graph recon-
struction task where a partially masked adjacency
matrix A and a node-feature matrix X are used to
predict all original edges in the graph. We employ
both the VGAE and GAE models discussed in Sec-
tion 2.2. In a non-probabilistic setting (GAE) the
coreference graph is obtained by passing the adja-
cency matrix A and node-feature matrix X through
a Graph Convolutional Neural Network (GCN) en-
coder and then computing the reconstructed matrix
A from the latent embeddings Z:

Z=GCN(X,A) (1
A=0o(227) )

For a detailed overview of the (probabilistic)
variational graph autoencoder we refer the reader
to the original paper by Kipf and Welling (2016b).

Our experiments are performed in a cross-
document setting, meaning that the input adja-
cency matrix A contains all events in the ENCORE
dataset. Following the original approach by Kipf
and Welling (2016b) we mask 15% of the edges,
5% to be used for validation and the remaining
10% for testing. An equal amount of non-edges is
randomly sampled from A to balance the validation
and test data.

We extract masked edges and non-edges and
use them to build the training, validation and test
sets for the mention-pair baseline models detailed
above, ensuring that both the mention-pair and
graph autoencoder models have access to exactly
the same data for training, validation and test-
ing. We define the encoder network with a 64-

dimension hidden layer and 32-dimension latent
variables. For all experiments we train for a total
duration of 200 epochs using an Adam optimizer
(Kingma and Ba, 2014) and a learning rate of 0.001.

We construct node features through Dutch mono-
lingual transformer models by average-pooling to-
ken representations for each token in the event
span in the models’ final hidden layer, resulting
in a 768-dimensional feature vector for each node
in the graph. For this we use the Dutch BERTje
model (de Vries et al., 2019), a Dutch sentence-
BERT model (Reimers and Gurevych, 2019) and
the Dutch RoBERTa-based RobBERT model (Delo-
belle et al., 2020). Additionally, we create a second
feature set for the BERTje and RobBERT models
where each event is represented by the concate-
nation of the last 4 layers’ average-pooled token
representations Devlin et al. (2018). This in turn
results in a 3072-dimensional feature vector.

Finally, we also evaluate a language-agnostic
featureless model where X is represented by the
identity matrix of A.

3.2.3 Hardware Specifications

The baseline coreference algorithms were trained
and evaluated on 2 Tesla V100-SXM2-16GB GPUs.
Due to GPU memory constraints, the Graph en-
coder models were all trained and evaluated on a
single 2.6 GHz 6-Core Intel Core i7 CPU.

4 Results and Discussion

Results from our experiments are disclosed in Ta-
ble 1. Results are reported through the CONLL F1
metric, an average of 3 commonly used metrics for
coreference evaluation: MUC (Vilain et al., 1995),



B3 (Bagga and Baldwin, 1998) and CEAF (Luo,
2005). We find that the graph autoencoder models
consistently outperform the traditional mention-
pair approach. Moreover, we find the autoencoder
approach significantly reduces model size, train-
ing time and inference speed even when compared
to parameter-efficient transformer-based methods.
We note that the VGAE models perform slightly
worse compared to their non-probabilistic counter-
parts, which is contrary to the findings in Kipf and
Welling (2016b). This can be explained by the use
of more complex acyclic graph data in the original
paper. In this more uncertain context, probabilistic
models would likely perform better.

As a means of quantitative error analysis, we
report the average Levenshtein distance between
two event spans for the True Positive (TP) pairs in
our test set in Figure 1. Logically, if graph-based
models are able to better classify harder (i.e non-
similar) edges, the average Levenstein distance for
predicted TP edges should be higher than for the
mention-pair models. For readability’s sake we
only include results for the best performing GAE-
class models. A more detailed table can be found in
the Appendix. We find that the average distance be-
tween TP pairs increases for our introduced graph
models, indicating that graph-based models can, to
some extent, mitigate the pitfalls of mention-pair
methodologies as discussed in Section 1.

GAE NoFeat.

GAE sBERT

GAE RobBERT3072

GAE RobBERT768

GAE BERT3072

GAE BERT768
MP RobBERTje ' E—

MP BERTje ADPT I E—

MP BERTje

65 66 67 68 69 70 71 72

Figure 1: Average Levenshtein distance for True Posi-
tive (TP) classifications across all models

5 Ablation Studies

We gauge the robustness of the graph-based mod-
els in low-data settings by re-running the original
experiment and continually reducing the available
training data by increments of 10%. Figure 2 shows
the CONLL F1 score for each of the models with re-
spect to the available training data size. Also here,
only the best-performing GAE-class models are
visualized and an overview of all models’ perfor-

mance can be found in the Appendix. Surprisingly,
we find that training the model on as little as 5% of
the total amount of edges in the dataset can already
lead to satisfactory results. Logically, feature-less
models suffer from a significant drop in perfor-
mance when available training data is reduced. We
also find that the overall drop in performance is
far greater for the traditional mention-pair model
than it is for the feature-based GAE-class models
in low-data settings. Overall, we conclude that the
introduced family of models can be a lightweight
and stable alternative to traditional mention-pair
coreference models, even in settings with little to
no available training data.

CONLLF1
o
N

5 15 25 35 45 55 65 75 85

Training Set Size

—e— MP-BERTje GAE-BERTje (768) GAE-BERTje (3072)

GAE-RODBERT (768) «==@==GAE-RObBERT (3072) ==@=GAE-SBERT

=@ GAE-NoFeat

Figure 2: CONLL F1 performance with respect to the
available training data.

6 Conclusion

We show that ECR through graph autoencoders
significantly outperforms traditional mention-pair
approaches in terms of performance, speed and
model size in settings where coreference chains are
at least partially known. Our method provides a
fast and lightweight approach for processing large
cross-document collections of event data. Addition-
ally, our analysis shows that combining BERT-like
embeddings and structural knowledge of corefer-
ence chains mitigates the issues in mention-pair
classification w.r.t the dependence on surface-form
lexical similarity. Our ablation experiments reveal
that only a very small number of training edges is
needed to obtain satisfactory performance.

Future work will explore the possibility of com-
bining mention-pair models with the proposed
graph autoencoder approach in a pipeline setting
in order to make it possible to employ graph re-
construction models in settings where initially all
edges in the graph are unknown. Additionally, we
aim to perform more fine-grained analyses, both
quantitative and qualitative, regarding the type of
errors made by graph-based coreference models.



7 Limitations

We identify two possible limitations with the work
presented above. First, by framing coreference
resolution as a graph reconstruction task we assume
that at least some coreference links in the cross-
document graph are available to train on. However,
we note that this issue can in part be mitigated
by a simple exact match heuristic for event spans
on unlabeled data. Moreover, in most application
settings it is not inconceivable that at least a partial
graph is available.

A second limitation stems from the fact that we
modelled coreference chains as undirected graphs.
It could be argued that some coreferential relation-
ships such as pronominal anaphora could be more
accurately modelled using directed graphs instead.
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A Appendix

Model Levenshtein Distance (TP)
MP RobBERTje 67.01
MP BERTje (ADPT) 67.23
MP BERTje 68.44
GAE NOFEAT 71.01
GAE BERTje (768) 70.8
GAE BERTje (3072) 70.68
GAE RobBERT (768) 70.57
GAE RobBERT (3072) 70.49
GAE SBERT 70.55
VGAE NOFEAT 69.95
VGAE BERTje (768) 68.71
VGAE BERTje (3072) 70.04
VGAE RobBERT (768) 70.21
VGAE RobBERT (3072) 70.15
VGAE SBERT 70.04

Table 2: Average Levenshtein distance for each True
Positive (TP) pair in the test set indicating how well each
model predicts comparatively more difficult coreference

links.
Model 5 15 25 35 45 55 65 75
MP RobBERTje 0.627 | 0.631 | 0.667 | 0.683 | 0.701 | 0.736 | 0.753 | 0.766
MP BERTje (ADPT) 0.638 | 0.640 | 0.662 | 0.685 | 0.692 | 0.724 | 0.729 | 0.754
MP BERTje 0.663 | 0.675 | 0.687 | 0.704 | 0.721 | 0.754 | 0.762 | 0.781
GAE NOFEAT 0.593 | 0.667 | 0.669 | 0.679 | 0.747 | 0.769 | 0.769 | 0.786

GAE BERTje (768) 0.736 | 0.759 | 0.771 | 0.789 | 0.789 | 0.791 | 0.815 | 0.826

GAE BERTje (3072) 0.730 | 0.756 | 0.786 | 0.784 | 0.805 | 0.803 | 0.815 | 0.849

GAE RobBERT (768) | 0.734 | 0.781 | 0.771 | 0.774 | 0.783 | 0.791 | 0.835 | 0.826

GAE RobBERT (3072) | 0.725 | 0.759 | 0.788 | 0.788 | 0.806 | 0.810 | 0.815 | 0.829

GAE SBERT 0.732 | 0.768 | 0.762 | 0.770 | 0.762 | 0.759 | 0.765 | 0.786

VGAE NOFEAT 0.632 | 0.653 | 0.742 | 0.752 | 0.747 | 0.766 | 0.781 | 0.786

VGAE BERTje (768) 0.672 | 0.747 | 0.753 | 0.758 | 0.758 | 0.773 | 0.795 | 0.809

VGAE BERTje (3072) | 0.712 | 0.769 | 0.781 | 0.780 | 0.776 | 0.818 | 0.802 | 0.818

VGAE RobBERT (768) | 0.672 | 0.745 | 0.757 | 0.758 | 0.759 | 0.770 | 0.791 | 0.799

VGAE RobBERT (3072) | 0.691 | 0.753 | 0.762 | 0.764 | 0.761 | 0.791 | 0.800 | 0.801

VGAE SBERT 0.651 | 0.681 | 0.735 | 0.738 | 0.726 | 0.711 | 0.745 | 0.735

Table 3: Results (CONLL F1) for the ablation experi-
ments for each individual model. Columns indicate the
percentagewise amount of available training data w.r.t
the overall size of the ENCORE dataset.



