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Abstract 1 

This paper presents a workflow framework 2 

of computational tools to be used in the 3 

process of forced alignment and analysis 4 

for endangered languages. We introduce a 5 

roadmap which uses established 6 

methodologies in the area of data 7 

processing and analysis, with a strong focus 8 

on socio-phonetic studies. The tools are 9 

organized into practical stages that can be 10 

followed systematically by researchers of 11 

under-resourced languages. We have 12 

implemented these tools in Acquaviva 13 

Collecroce, an endangered language from 14 

southern Italy and spoken by 15 

approximately 600 speakers. Alongside the 16 

tools, we also give suggestions based on 17 

our experience, which can contribute to the 18 

preservation and revitalization of 19 

endangered languages. 20 

1 Introduction 21 

The use of computational tools in endangered 22 

languages has proven critical for the revitalization 23 

and preservation of languages. There is an increase 24 

interest in using latest technologies to strengthen 25 

our understanding and processing of minority 26 

languages (Adams et al., 2018; Adams et al., 2020; 27 

Michaud et al., 2018; Levow, 2019; Levow et al., 28 

2021), including speech to text (Foley et al., 2019; 29 

Michaud et al., 2018; Mitra, 2016), speech 30 

recognition (Amith et al., 2021; Foley et al., 2018; 31 

Hjortnaes et al., 2020; Matsuura et al., 2020; Shi et 32 

al., 2021; Thai et al., 2020), phonemic transcription 33 

(Adams et al., 2017; Amith and Castillo García, 34 

2020), and forced alignment (Cavar et al., 2016; 35 

Coto-Solano, 2017; Gonzalez et al., 2018). The 36 

field of Automatic Speech Recognition (ASR) has 37 

strongly influenced this endeavor 38 

(Prud’hommeaux et al., 2021; Jimerson and 39 

Prud’hommeaux, 2018; Jimerson et al., 2018). One 40 

of the greatest contributions is that advanced 41 

technologies, which had traditionally been 42 

available only to major languages, can now be 43 

accessed by less resourced languages. 44 

The implementation of computational 45 

techniques in language documentation has 46 

established a toolkit of skills that need to be met to 47 

access these technologies, which shows that the 48 

tasks carried out in these processes are complex in 49 

nature.  These tasks are generally done by 50 

computational linguists with the required expertise, 51 

who can decide on what tools and techniques are 52 

used in any given project. In deciding what to 53 

choose, there are many options to select from, and 54 

the decision on the workflow depends on the 55 

resources available. Since there is no ultimate or 56 

perfect process, the decisions must be based on 57 

what works best, as long as the goal of language 58 

documentation is achieved. Also, given the 59 

increasing effectiveness of current algorithms 60 

developed, the documentation of endangered 61 

languages is in a crucial moment where the work 62 

done by computational linguistics can be 63 

maximized to its best potential. However, there is 64 

still more work needed to efficiently link long-65 

established linguistic analysis traditions and 66 

advances in data processing. 67 

Once the data is processed through 68 

computational techniques, the task is then to 69 

identify what are the best approaches for 70 

endangered languages to make the leap towards 71 

systematic analysis of the data available. One area 72 

that is a suitable test ground for this transition 73 

between computational outputs and linguistic 74 

analysis is the field of sociolinguistics. The 75 
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relevance of sociolinguistics for endangered 76 

languages is that languages are better analyzed in 77 

their social context and not just as isolated entities. 78 

Sociolinguistics then helps interpret language 79 

patterns related to factors such as gender, age, 80 

ethnicity, for example. Therefore, an important 81 

contribution from computational linguists to 82 

endangered languages is to develop technologies 83 

that take computational outputs and allow 84 

researchers to analyze linguistic patterns following 85 

robust methodologies standard in the respective 86 

fields, all this, in relatively short periods of time. In 87 

this paper, we focus on technologies that are 88 

pertinent to the analysis of speech data, with a 89 

focus on socio-phonetics. 90 

1.1 Speech Technologies and Data Size 91 

One of the main challenges faced by languages 92 

with small amounts of speech data, is that the 93 

technologies available tend to require a minimum 94 

threshold of speech. This threshold is generally 95 

way more than what the vast majority of world 96 

languages cann afford to have. The reasoning 97 

behind this is that the more data available, the more 98 

robust the acoustic models are to accurately 99 

identify speech boundaries based on the phonetic 100 

features extracted. It does not mean that under-101 

resourced languages cannot be processed, but 102 

rather that the results are not as reliable as those 103 

having more data available for training and testing 104 

their models. However, we argue that even smaller 105 

languages can be maximized by using all available 106 

material, and the results are still of great value for 107 

language researchers. 108 

In this sense, computational tools used in under-109 

resourced languages are not the means on their 110 

own, but rather they are the facilitators for 111 

quantifying speech data and identifying language 112 

patterns not available otherwise. It will then be the 113 

role of the linguist to use all the outputs and look at 114 

areas of interest, such as vowel spaces, allophonic 115 

variation, morpheme sequence occurrence, 116 

intonation, for example. In this sense, it is 117 

important to make the difference between what a 118 

computational linguist wants and what the field 119 

researcher needs. A clear example is about error 120 

accuracy. (Semi-) automatic computational models 121 

evaluate their performance based on their accuracy 122 

(or error rate). Higher accuracy is always desired, 123 

but even lower accuracy models can make a big 124 

difference in a researcher working with an under-125 

resourced language. 126 

1.2 Phonetic Analysis and Endangered 127 

Languages 128 

Among the areas of linguistic interest is the 129 

acoustic/phonetic study of under-resourced 130 

languages, and forced alignment has played a 131 

crucial role in the way (and amount of data) 132 

phoneticians analyze smaller languages. The 133 

forced alignment process (See more details in 134 

Section 4) takes audio files and their corresponding 135 

time-stamped transcriptions, generally at the 136 

sentence level, and segments the data into the 137 

corresponding individual phonological segment 138 

(e.g. vowels and consonants).  This tool has sped 139 

up processes that would otherwise take more time, 140 

by exponential differences. This is especially 141 

meaningful when language researchers are 142 

working against the clock in languages that 143 

unfortunately do not have much time to be 144 

analysed. Forced alignment has allowed smaller 145 

languages to be fully analyzed as it has been done 146 

in major languages. The way it works by current 147 

workflows is by taking the automatically aligned 148 

segments and extracting the relevant acoustic 149 

features, such as duration, formants, centre of 150 

gravity, to name a few. Sociophonetic research has 151 

exploited this by extracting acoustic features and 152 

finding correlations with social and geographic 153 

factors, especially in the area of vowel spaces. 154 

2 Aim of Paper 155 

In this paper, we combine these overlapping fields 156 

and develop an efficient roadmap that can be 157 

implemented in endangered languages with at least 158 

time-stamped orthographic transcriptions.  The 159 

nature of the paper is then a hybrid one. On the one 160 

hand, it proposes a methodological approach brings 161 

together different techniques, and on the other 162 

hand, it provides resource materials that can be 163 

freely used under open-source frameworks. This 164 

roadmap includes the testing and implementation 165 

of a socio-phonetic computational workflow, from 166 

data processing to data analysis. All this is 167 

developed following best practices in the field of 168 

sociolinguistics and creates a single toolkit that can 169 

be adapted to any language. 170 

The algorithms and instructions are placed on a 171 

GitHub repository for public use. The final output 172 

is an ordered set of code files and instructions. It is 173 

our intention to bring more systematicity and data 174 

normalization that combines the power of 175 

computational tools and linguistic analysis 176 
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traditions. We believe that the implications can be 177 

many-fold. First, tools like these can shed more 178 

light into language patterns never observed before. 179 

Second, it makes data from under-resourced 180 

languages comparable with other languages, 181 

including major ones. Finally, it equips a language 182 

community to have the starting tools for more 183 

advanced technologies, such as ASR and other 184 

(semi)-automated processes. All this will 185 

contribute to the ultimate goal of this type of work: 186 

language documentation, conservation, and 187 

revitalization. 188 

3 Methodology 189 

3.1 Forced Alignment and Endangered 190 

Languages 191 

Forced alignment is strongly used in endangered 192 

languages. In initial approaches, when aligning a 193 

new language, researchers ran pre-existing 194 

acoustic models from a similar language for the 195 

new language (Coto-Solano, 2017). Though 196 

effective to some extent, the main flaw of this 197 

approach is that there are always features in a 198 

language that are not accurately captured by 199 

another language acoustic model. One of the main 200 

motivations for this approach was that new 201 

languages did not have the same amount of data, 202 

thus having less accurate alignments. In this sense, 203 

data size was a limitation in the forced alignment 204 

task. Then, with the emergence of more powerful 205 

data processing techniques such as neural network 206 

and deep learning, newer approaches became more 207 

robust and more efficient at dealing with lower 208 

amount of data (McAuliffe et al., 2017), to a point, 209 

that a threshold was reached, in which the adding 210 

more data would not significantly improve the 211 

acoustic model (Fromont and Watson, 2016). This 212 

opened the door to training and aligning new 213 

languages without the need for huge amounts of 214 

data. As expected, minority and endangered 215 

languages greatly benefited from these advances 216 

(Gonzalez et al., 2018; Gupta and Boulianne, 2020; 217 

Hildebrandt, 2017). 218 

Across time, the processes became more 219 

streamlined to such a point that forced aligning a 220 

new language from scratch is more efficient and 221 

accurate than using a pre-trained language model. 222 

If compared to ten years ago, the process is simpler 223 

but without compromising accuracy. Despite these 224 

advances, there are still many stages to simplify the 225 

process of forced alignment and its practical 226 

applications. In this paper, we propose a more 227 

succinct yet efficient workflow of data alignment 228 

and analysis. Since the paper has a methodological 229 

approach, which can be followed step by step, we 230 

present the tools and solutions in sections.  231 

3.2 Data Selection 232 

The first task is to identify the language to be 233 

forced aligned. A good source available for use is 234 

Pangloss (Michailovsky et al., 2014), which is an 235 

open archive created to help in the preservation of 236 

world languages, with a strong focus on 237 

endangered and minority languages. Currently, it 238 

hosts over 170 languages with more than 700 hours 239 

of recordings. An approximate of half of the 240 

audiovisual material (video and audio) has 241 

annotated files. We then chose to work with Na-242 

Našu (Molise Slavic) (Breu, 2020), which is a 243 

micro-language with three dialects, including 244 

Acquaviva Collecroce. The material available for 245 

this dialect comes from a village called Kruč, 246 

within the province of Campobasso, in the Molise 247 

region of southern Italy (See Figure 1 for 248 

reference). The dialect has been documented by 249 

Adamou and Breu (2013) and Breu (2017). 250 

 251 

 252 

Figure 1: Location of Kruč, where the Acquaviva 253 

Collecroce is found. 254 

 255 

The language material available on the website was 256 

a compilation of 27 audio recordings with their 257 

corresponding transcription files. The data was 258 

recorded in 2010 by Walter Breu, and the 259 

transcriptions have three main layers of 260 

information. The first one is a time-stamped 261 

transcription at the utterance level (described in the 262 

original documentation as orthographic, 263 

representing a broad phonological transcription). 264 

This time-stamp information is the one that is 265 



4 
 
 

relevant for the current study, because it is used to 266 

create the TextGrids explained in section 4.2. 267 

The second layer was a phonetic transcription 268 

of all the words, which is not used in the current 269 

study. The motivation is to use the broad 270 

phonological transcription, which forms the basis 271 

for the forced-alignment process, as explained 272 

below. The third layer available includes 273 

morphemic breakdowns. Even though these are not 274 

used in the forced-alignment process, this 275 

information is relevant for the analysis of vowels, 276 

which can help identify whether there are morpho-277 

syntactic effects of vowel formants, for example, 278 

running a model that measures whether there are 279 

differences between vowels that appear in stems or 280 

vowels that appear in affixes. This is a good 281 

example on how forced-alignment tools can help 282 

contribute to understand phonetic/phonological 283 

features and their relationship with other features in 284 

the language. The final annotation layer included 285 

translation into Italian and German. For the 286 

purposes of this study, they were not included in 287 

any stage of the process. 288 

3.3 Speakers 289 

The Acquaviva Collecroce dialect is estimated to 290 

have just over 600 speakers as for 2019, according 291 

to the Italian National Institute of Statistics 292 

(ISTAT). There were over 2200 speakers at the 293 

beginning of 1950s, with sharp decreases since 294 

then due to migration. The speakers in the corpus 295 

were two females and four males, born between 296 

1932 and 1960 (See Table 1).  297 

 298 

Since this is a first analysis on this dataset, we have 299 

focused on Gender to identify socio-phonetic 300 

differences. Age is another relevant factor that can 301 

be analysed to understand phonetic differences. 302 

This can be done in further stages of the research. 303 

Speakers were recorded narrating stories, which is 304 

a good source of naturalistic data. This is a relevant 305 

characteristic in this study, since it is the type of 306 

data that is generally available for endangered 307 

languages and much suitable for socio-phonetic 308 

analyses, as compared to more controlled data such 309 

as wordlists and isolated tokens (e.g. Hay and 310 

Foulkes, 2016; Grama et al., 2020; Catherine E. 311 

Travis and Ghina, 2021). 312 

3.4 Data format 313 

The structure of the transcription files varies 314 

according to the format given by corpus 315 

developers. In the current case, the transcription 316 

format is available as XML files (See Figure 2 for 317 

reference). In the original recordings there were at 318 

least two speakers per file: one interviewer and a 319 

speaker, but the transcriptions provided included 320 

the transcription for the speakers only. 321 

 322 

 323 

Figure 2: XML file from the source file. 324 

 325 

The transcription files were processed in R, using a 326 

script developed by the main author. The script first 327 

identifies the sentence ID (<S id=“s1”>  in 328 

Figure 2), under which three dependent sections are 329 

extracted: the start time, end time (<AUDIO 330 

start="0.0000" end="4.5018"/>), and the 331 

transcribed sentence (<FORM>Je jena dita eš 332 

na kučak ka gledaju nu ranjatu utra 333 

nu…</FORM>). The audio files were available in 334 

MP3 format, sampled with 44.1 kHz. They had 335 

different durations, with the shortest file being 38 336 

seconds and the largest 7.5 minutes, and the mean 337 

duration being 2 minutes in length. 338 

4 Forced-Alignment Process 339 

The forced-alignment process involves four main 340 

stages, presented in Figure 3. Each stage is 341 

expanded in the section below. One important 342 

observation for these stages is that investing time 343 

in the pre-processing of the files would ensure 344 

better outputs and dealing with less bugs in future 345 

Speaker Gender 
Recordings 
Duration 

(Min) 

Speech 
Duration 

(Min) 
GN Male 16.3 15.6 
GR Male 10.2 9.5 
PG Female 0.7 0.5 
PG Male 3.5 2.9 
PL Male 9.9 9.6 
SN Female 13.2 11.7 

Table 1:  Speakers in the corpus with their 
corresponding durations. 
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stages. We present some recommendations in each 346 

section. 347 

 348 

 349 

Figure 3: Main stages in the forced alignment process. 350 

4.1 Pronunciation Dictionary from Input 351 

Files 352 

First, a pronunciation dictionary must be created. 353 

In some approaches, these dictionaries are created 354 

from a lexicon file available for the language. 355 

However, for languages without curated lexicon 356 

files, pronunciation dictionaries can be created 357 

from the orthographic transcriptions. In this study, 358 

we took the available raw transcription of the data 359 

and then tokenized the transcriptions to have 360 

unique individual words. 361 

These are then used to create the g2p (grapheme 362 

to phoneme) mapping. The amount of processing 363 

for creating this dictionary varies from language to 364 

language. For example, in Spanish there is a closer 365 

letter to phoneme mapping, where there is an 366 

almost full mapping between orthographic letters 367 

and phonemes, except for silent ‘h’ and digraphs 368 

(‘ll’, ‘ch’) (Gonzalez, 2022). This is different from 369 

English, where the mapping cannot always follow 370 

the orthographic spelling. As an example, the 371 

orthographic letter ‘a’ can have different phonemic 372 

representations, e.g. /eɪ/, /ə/, /aː/. The latter case 373 

would present a more challenging task for the 374 

mapping. For the case of Acquaviva Collecroce, 375 

the transcriptions done by the original creators was 376 

a broad phonological representation. This 377 

facilitated the g2p task and we decided to split 378 

words into individual letters, which are then 379 

considered the phonemes for each entry, as shown 380 

in Figure 4 below. 381 

 382 

 383 
Figure 4: Sample entries for the pronunciation 384 

dictionary. 385 

In this case, the g2p mapping had a one-to-one 386 

correspondence. However, this is not always that 387 

case. In cases where no such correspondence exists 388 

in the transcription file, as in the Spanish example, 389 

the recommendation is to assign a phonemic 390 

symbol that does not overlap with other symbols. 391 

This must be done a priori before creating the 392 

dictionary so in the final product each grapheme or 393 

grapheme sequence is accounted for. 394 

4.2 Transcriptions in TextGrid Format 395 

The first processing of the text involves text 396 

normalization, which includes identifying spelling 397 

mistakes, non-speech annotations (e.g. notes from 398 

the transcribers, alternative pronunciations, etc.). 399 

This ensures that all entries can be mapped to the 400 

same word and not having multiple forms for the 401 

same entry. Another step here is to identify whether 402 

there are special characters that should not be 403 

included in the text, such as parenthesis, brackets, 404 

and slashes. Once the text has been normalized, the 405 

next step is to convert the text into a time-stamped 406 

file, since available forced aligners read 407 

transcriptions with time-stamped formats. 408 

An R script was developed to create 409 

transcription files in TextGrid files, a format used 410 

in Praat (Boersma and Weenink, 2022). This format 411 

is widely used in linguistics, with strong emphasis 412 

for acoustic phonetic analysis. TextGrids are files 413 

containing time-stamped texts. The content is 414 

divided into tiers, where the text can be split into 415 

smaller sections with their respective boundaries. 416 

This is very useful when researchers need to break 417 

the content into different categories, such as 418 

identifying different speakers or annotating 419 

different linguistic layers, such as words, segments, 420 

features, for example. A sample TextGrid file from 421 

our data is shown in Figure 5, together with its 422 

corresponding audio file represented in the 423 

waveform above. 424 

 425 

 426 

Figure 5: Sample TextGrid and audio files, with the 427 

transcription tier. 428 

 429 

The figure shows the transcription for one speaker. 430 

The blue lines represent the time boundaries which 431 
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correlate with the time information from the audio 432 

file. Based on our experience, we have identified 433 

that the size of the intervals has an impact on the 434 

output of the forced aligned file. 435 

Since aligners analyze the acoustic signal as 436 

linear in time, if there are alignment errors at the 437 

beginning of an interval, they will likely roll the 438 

error over the following segment boundaries in the 439 

same interval. For example, if the aligner marks the 440 

beginning of a stop sound earlier than the actual 441 

start (e.g., due to a spike in the acoustic signal 442 

caused by a cough or a mouse click), then this will 443 

also influence where the boundaries of the 444 

following segments are placed. If the error is at the 445 

start of a long interval, then it will most likely 446 

render the full interval inaccurate. However, if the 447 

error takes place at the beginning of a shorter 448 

interval, less data will be compromised, because 449 

the acoustic mapping restarts at the beginning of 450 

each interval. Thus, we recommend the intervals 451 

are closely mapped with natural pauses and speech 452 

boundaries. This will also facilitate the mapping of 453 

words into natural speech units. 454 

4.3 Running the Forced Alignment 455 

Once we have prepared the pronunciation 456 

dictionary and transcription files with the 457 

corresponding audio files, the next step is to run the 458 

forced aligner. Previous studies have shown that 459 

the Montreal Forced Aligner (MFA) (McAuliffe et 460 

al., 2017), based on Kaldi (Povey et al., 2011), is 461 

one of the most accurate aligners currently 462 

available, especially used in sociophonetic studies 463 

(Gonzalez et al., 2020). We used the MFA 464 

following the instructions from the source website 465 

https://montreal-forced-466 

aligner.readthedocs.io/en/latest/. The main 467 

challenge here is to have the correct setup to ensure 468 

that the aligner runs though the data without any 469 

bugs. For this, it is recommended to have all audio 470 

files in the same format, including, bit rate, 471 

sampling rate, and following good labelling 472 

practice for the files (which is mainly relevant for 473 

feature extraction in future stages). 474 

4.4 Forced alignment outputs 475 

MFA provides the aligned outputs as TextGrid files 476 

with two tiers, one for the forced-aligned words 477 

and another for the forced-aligned phonemic 478 

segments. We have found it efficient to recombine 479 

this output with the original input in the same 480 

TextGrid to include the utterance-level 481 

transcription. This is especially important when 482 

examining features such as intonation and prosodic 483 

patterns, where whole utterances would be relevant 484 

for analysis and not just words and segments on 485 

their own. The output would then be as shown in 486 

Figure 6 below. 487 

 488 

 489 

Figure 6: TextGrid with combined tiers: original 490 

transcription (Tier 1), and aligned words (Tier 2) and 491 

phonemes (Tier 3). 492 

 493 

As with any automatic process, a sanity check is 494 

always important to assess the accuracy of the 495 

outputs. Previous studies have identified that the 496 

errors can be systematic, with some phonological 497 

contexts being more susceptible for more 498 

inaccuracies (Gonzalez et al., 2020). In this case, 499 

we propose an initial assessment where duration 500 

can be used to look at errors. This is based on 501 

durational differences, where outliers, too long or 502 

too short, can be considered errors in the alignment. 503 

It is also common practice in cases where there are 504 

enough resources to manually check a proportion 505 

of the outputs by trained phoneticians. 506 

5 Data Wrangling (Data Processing) 507 

In this stage, we gather all the data from the 508 

TextGrids, which also prepares them for the 509 

extraction of acoustic and phonetic features. This 510 

process is done in R (R Core Team, 2022), using a 511 

combination of libraries such as rPraat (Boril and 512 

Skarnitzl, 2016), dplyr (Wickham et al., 2022), 513 

tidyr (Wickham and Girlich, 2022), for example. 514 

The main frequency counts from the forced aligned 515 

outputs are shown in Table 2. 516 

Speaker Gender Consonants Vowels Words 

GN Male 4298 3573 2012 
GR Male 3175 2588 1487 
PG Female 204 159 103 
PG Male 491 389 252 
PL Male 3569 2920 1668 
SN Female 2866 2449 1483 

Total  14603 12078 7005 

Table 2:  Main frequency Counts from forced aligned 
outputs. 
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We extract all the information from the three tiers: 517 

utterance, word, and phoneme. This process takes 518 

phoneme labels, start and end time information, 519 

and phonological contexts (previous and following 520 

segments). Then, the same type of information is 521 

extracted for words and utterances. The final 522 

product is a full description of each phoneme with 523 

its environments, phonetic, phonemic, and lexical, 524 

as shown in Figure 7 below. 525 

 526 

 527 
Figure 7: Sample output after data wrangling. 528 

 529 

5.1 Acoustic Features 530 

Acoustic features are a crucial component in socio-531 

phonetic studies. There is a wide range of acoustic 532 

features that can be used, and here we focus on 533 

three, namely, Intensity (used in prosody), Pitch 534 

(prosody and tonality), and Formants (vowels and 535 

sonorant consonants). These features cover a wide 536 

range of areas of interest. We use Praat as the main 537 

program for extracting the acoustic values, taking 538 

as input the time-specified data wrangled in the 539 

previous stage.  540 

For the acoustic information to be extracted, the 541 

first step is to convert each audio file into a formant 542 

file in Praat. From this file, we can then extract 543 

information from the F1 and F2 for vowel analysis. 544 

Based on some experimentation, we have 545 

identified that combining R and Praat can 546 

streamline the process more efficiently, by using 547 

each program to their best capacity. For example, 548 

R is very efficient at data wrangling and analysis, 549 

but Praat cannot efficiently dealt with the level of 550 

wrangling and dataset processing as in R, 551 

especially when dealing with multiple file formats. 552 

On the other hand, Praat is much more efficient at 553 

acoustic processing and querying phonetic features 554 

as compared to R. This is why we do the data 555 

wrangling in R and the feature extraction in Praat. 556 

We then do the data analysis in R again once all the 557 

necessary information has been collected from the 558 

audio, formant, and TextGrid files. 559 

 560 

5.2 Populating Data from Praat 561 

Once this step is finished, we have a fully annotated 562 

dataset with individual features and their 563 

corresponding acoustic features. This functions as 564 

the main data hub from which various analyses can 565 

be carried out from the dataset. In the following 566 

stages, we present the steps for processing vowels 567 

and prepare them for acoustic analysis (See Figure 568 

8). 569 

 570 

 571 

Figure 8: Sample output after feature extraction. 572 

 573 

5.3 Vowel Analysis and Visualization 574 

Identifying Vowels in the Dataset: The analysis 575 

of vowels must account for important differences 576 

in each speaker’s vocal tract. To have interpretable 577 

and robust comparisons, there must be a process of 578 

normalization techniques that give more credibility 579 

to analysis. In this study, we apply vowel 580 

normalization based on the Lobanov (Lobanov, 581 

1971) technique. This allows the analysis of both 582 

static and dynamic measurements to be compared 583 

across speakers. Again, this gives researchers of 584 

endangered languages quick access to the vocalic 585 

spaces in the data. In this process, we use the vowel 586 

package (Kendall and Thomas, 2018) for vowel 587 

normalization and ggplot2 (Wickham, 2016) for 588 

data visualization. 589 

 590 

Visualization and Analysis: The visualization 591 

gives importance access to vowel behaviors in the 592 

data, and this can be split into the sociolinguistic 593 

factors available, in this case, Gender. Figure 9 594 

shows the vowel duration of a selection of five 595 

landmark vowels and their differences based on 596 

Gender. The data indicates that there is an 597 

increasing mean duration starting from /a/, then /e/, 598 

/i/ and /u/, ending in /o/, which is the longest vowel. 599 

The mean durations are similar for both Genders, 600 

but with more distinctions for /o/ and /u/. Further 601 

statistical differences can reveal whether ther are 602 

significant differences based on phonological 603 

contexts. 604 
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 605 

Figure 9: Vowel durations and Gender Differences. 606 

 607 

Different from duration analysis, vocalic space 608 

analysis reveals important differences for Genders 609 

in Figure 10. First, the selection of the five vowels 610 

shows a different picture from the location of /u/, 611 

as compared to other languages such as French, 612 

English and Spanish, where the /u/ is higher and 613 

more retracted. In terms of the spread, it shows that 614 

Males are producing more compressed vowels than 615 

Females, especially for the Front non-Low vowels 616 

/i/ and /e/. Mean durations, represented by point 617 

size, shows that the main durational differences are 618 

observed for /a/. This is an indication that if there 619 

is a first potential area to examine socio-phonetic 620 

differences would be the formant and duration 621 

differences between Males and Females. 622 

 623 

 624 
Figure 10: Vowel space for Males and Females from 625 

normalized formant values. Vowel size represents mean 626 

durations. 627 

 628 

5.4 Assessing Consonantal Analysis 629 

For the consonant analysis, we look at duration 630 

differences for the Coronal fricatives /s, z/ 631 

(alveolar) and /š, ž/ (Post-Alveolar), split by 632 

Gender. Two main observations can be drawn from 633 

Figure 11 below. First, durations are similar, but 634 

with Post-Alveolars having wider spread than 635 

Alveolars. Second, Females are producing mean 636 

larger durations than Males, except for /ž/. This 637 

indicates that the differences for these consonants 638 

are likely more based on Gender differences rather 639 

than phonological factors, a question than can be 640 

further studied with in-depth analysis. 641 

 642 

 643 

Figure 11: Coronal Fricative Duration Differences 644 

across Place of Articulation and Gender. 645 

5.5 Assessing Prosodic Features 646 

Finally, we look at pith as a suprasegmental feature. 647 

Figure 12 shows the pitch tracks for a section of the 648 

recording of speaker GN Male. There are six main 649 

utterances with their intonations shown in the blue 650 

lines. The arrows in each number represent the 651 

trajectory of the intonation, with all having a falling 652 

pattern, except from 5 having a slight rising pattern. 653 

These intonation patterns can further be examined 654 

with the output and prepared data. 655 

 656 

 657 
Figure 12: Pitch tracks used to identify intonation 658 

patterns in the language. 659 

6 Discussion 660 

This paper presents a roadmap of tools, from data 661 

processing to socio-phonetic analysis. We have 662 

taken Acquaviva Collecroce, an endangered 663 

language and whose data can be freely accessible.  664 
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This work has put together a range of 665 

computational tools and packages that can facilitate 666 

data processing and analysis in a simple, yet 667 

efficient way. Table 3 shows a summary of the 668 

tools. It is not our intention to present an ultimate 669 

workflow, but rather a practical toolkit that allows 670 

users to implement it in endangered language 671 

studies. The resource materials are open source and 672 

can be adapted an expanded to the required needs 673 

of the users. 674 

7 Conclusions 675 

The field of computational linguistics is making 676 

invaluable contributions to the perseveration and 677 

revitalization of endangered languages. In this 678 

paper, we have a presented a set of relevant 679 

computational tools developed to help researchers 680 

from forced alignment to acoustic phonetic studies, 681 

including segmental and suprasegmental analysis. 682 

We have developed the tools for an endangered 683 

language, Acquaviva Collecroce, which is a 684 

practical example of the power and applicability of 685 

the tools presented here.  686 

8 Future Work 687 

Our future work will include an online application 688 

where these steps are streamlined and automated 689 

from user inputs to visualizing results and carrying 690 

out linguistic analysis. This is work in progress and 691 

we hope this contributes to the technologies 692 

developed to help endangered languages globally. 693 
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