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Massively multilingual models such as mBERT and XLM-R are increasingly valued in Nat-
ural Language Processing research and applications, due to their ability to tackle the uneven
distribution of resources available for different languages. The models” ability to process multiple
languages relying on a shared set of parameters raises the question of whether the grammatical
knowledge they extracted during pre-training can be considered as a data-driven cross-lingual
grammar. The present work studies the inner workings of mBERT and XLM-R in order to test
the cross-lingual consistency of the individual neural units that respond to a precise syntactic
phenomenon, that is, number agreement, in five languages (English, German, French, Hebrew,
Russian). We found that there is a significant overlap in the latent dimensions that encode
agreement across the languages we considered. This overlap is larger (a) for long- vis-a-vis short-
distance agreement and (b) when considering XLM-R as compared to mBERT, and peaks in the
intermediate layers of the network. We further show that a small set of syntax-sensitive neurons
can capture agreement violations across languages; however, their contribution is not decisive in
agreement processing.

1. Introduction

Massively multilingual models (MMMs) such as multilingual BERT (mBERT, Devlin
et al. 2019) and XLM-RoBERTa (XLM-R, Conneau et al. 2020a) are transformer-based
language representation models trained simultaneously on multilingual text in several
languages (104 and 100, respectively). They do not involve any architectural changes
with respect to their monolingual counterparts (BERT and RoBERTa), nor any reliance
on any explicit cross-lingual signal. MMMs reach impressive performance scores in
tasks involving zero-shot cross-lingual transfer, a procedure that entails the fine-tuning
of the model on supervised data in a language L; and its application to a different
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language L,, with no additional training.! This procedure has been shown to be success-
ful across a variety of languages and downstream tasks (Pires, Schlinger, and Garrette
2019; Wu and Dredze 2019; Dufter and Schiitze 2020; Liu et al. 2020; Lauscher et al. 2020;
see Doddapaneni et al. 2021 for a review). Although performance levels tend to be pos-
itively correlated with the typological similarity between the two languages (Lauscher
et al. 2020), zero-shot cross-lingual transfer yields surprising results in languages
written in different scripts (Pires, Schlinger, and Garrette 2019) and with little or no
(Karthikeyan et al. 2020); (Conneau et al. 2020b) vocabulary overlap. With only a
subset of the world’s languages being properly represented in the evolving language
technologies, the distribution of resources available for NLP researchers is extremely
asymmetrical (Joshi et al. 2020). Massively multilingual models represent an attempt
to temper the effects of this imbalance by exploiting the knowledge that can be shared
across languages.

The performance of MMM s in the transfer tasks hints at the possibility that their
internal representations might be inherently cross-lingual (Pires, Schlinger, and Garrette
2019; Dufter and Schiitze 2020; Guarasci et al. 2022). Dufter and Schiitze (2020) argue
that mBERT multilingualism might be due to its finite number of dimensions, which
forces it to exploit common structures to compress representations across languages.
The question of whether a multilingual model induces a shared representational space
where abstract cross-linguistic regularities are encoded through a common set of pa-
rameters is remindful of the debate on the neural underpinning of linguistic knowledge
in multilingual individuals (see Dhar and Bisazza [2021] for similar considerations). In
particular, the problem is reminiscent of the question of whether the neural resources
allocated to different languages in a multilingual brain overlap (at least partially, see
Perani et al. 1998; Abutalebi, Cappa, and Perani 2001; Perani and Abutalebi 2005; Green
2008) or involve functionally independent neural populations (Kim et al. 1997; Tham
et al. 2005; Tan et al. 2011; Xu et al. 2017). If we consider the possibility of looking
at artificial neural networks as a different “species” (Cummins and Schwarz 1988;
McCloskey 1991), in a fashion that reminds us of the study of animal models, the study
of the representations produced by these networks might offer novel insights into the
space of possible solutions to the cognitive question mentioned above.

A modest but increasing number of findings is contributing to the question of
whether MMMs develop a data-driven universal grammar through an analysis of their
internal states. A study targeting mBERT vector representations has shown that syntac-
tic trees can be retrieved from its intermediate representational subspaces, with these
subspaces being approximately shared across languages (Chi, Hewitt, and Manning
2020). These intermediate subspaces can be used in machine translation, by identifying
the nearest neighbor in different representation spaces given a sentence in a source
language and a set of candidates in a target language (Pires, Schlinger, and Garrette
2019). Other studies have performed representational similarity analysis comparing
encoded sentences in different languages; while most results suggested that MMMs
develop a cross-lingual space in the intermediate layers (Conneau et al. 2020b; Del and
Fishel 2021; Muller et al. 2021), as shown by converging similarity between sentence
representations in deeper layers of the networks, contrasting results have documented
an opposed pattern when sentence representations are obtained through CLS pooling
instead of mean-pooling (Singh et al. 2019, although see Del and Fishel 2021 for a case
against the CLS pooling strategy).

1 Where L; and L; are typically a resource-rich and resource-poor language, respectively.
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The work we reviewed insofar targeted vector representations as a whole, neglect-
ing the role of the individual parameters in the embeddings. However, while research
in NLP used to largely overlook the single dimensions in the neural representations,
a recent research line is starting to investigate the linguistic properties encoded in
individual neurons and attention weights (see for instance Karpathy, Johnson, and
Fei-Fei 2015; Li et al. 2015; Radford, Jozefowicz, and Sutskever 2017; Tang et al. 2017;
Kementchedjhieva and Lopez 2018; Bau et al. 2018; Dalvi et al. 2019a; Lakretz et al.
2019; Pinter, Marone, and Eisenstein 2019; Serrano and Smith 2019). Aiming to ex-
tend this line of analysis to a multilingual setting, we isolated the contribution of the
individual neurons in mBERT and XLM-R, defined as dimensions in the deep latent
representations. While most studies assessing the models’ cross-lingualism considered
phrasal representations as a whole, without discerning between semantic and syntactic
properties (Pires, Schlinger, and Garrette 2019; Liu et al. 2020; Del and Fishel 2021),
we restricted our study to number agreement, a structure-dependent phenomenon. It
has been shown that BERT captures syntactic features in the intermediate [6,9] layers
(Jawahar, Sagot, and Seddah 2019), which are the same that show the highest repre-
sentational similarity across languages in the multilingual model (Del and Fishel 2021).
This layer-wise convergence of syntactic and cross-lingual knowledge in (m)BERT in-
spired our choice to constrain our study to a structural linguistic feature. The general
question of whether MMMs represent patterns that generalize across languages is
hereby framed as an inquiry into the cross-lingual stability of the neural units that
encode number agreement.

2. Related Work

A productive research line in computational linguistics has focused on the analysis of
the linguistic features learned by neural language models. This line of analysis aimed
at testing whether sequence processing networks were able to construct hierarchical
representations of the linguistic input, or either relied on local heuristics without ac-
quiring core knowledge of different grammatical phenomena. A popular trend within
this framework relied on the large-scale unsupervised training of a language model,
and the fine-grained evaluation of the probabilities it assigned to different linguistic
units in a controlled setting as a “behavioral” correlate of its ability to capture the
regularities of a given language. Along this line of work, numerous studies have used
long-distance number agreement as a way of probing the networks’ ability to encode
structure-dependent relationships (Linzen, Dupoux, and Goldberg 2016; Bernardy and
Lappin 2017; Gulordava et al. 2018; Kuncoro et al. 2018; Marvin and Linzen 2018;
Goldberg 2019; van Schijndel, Mueller, and Linzen 2019; Lasri, Lenci, and Poibeau 2022).
While all the previous studies evaluated the models on their native tasks, Lakretz et al.
(2019) presented an ablation-based study of the inner mechanisms that underlie number
agreement processing in LSTMs at the single neuron level, showing that a very sparse
set of specialized units carried number features from the subject to the verb across the
intervening material. In a similar vein, Finlayson et al. (2021) have used causal analysis
to implicate specific neurons in transformer models.

With the debut of multilingual models, the previous studies were replicated in
different languages, showing that mBERT successfully captures syntax-sensitive agree-
ment patterns (Bacon and Regier 2019; Mueller et al. 2020). However, these experiments
limited their focus on the analysis of mBERT’s predictive behavior, overlooking the
functioning of its internal processes. A complementary line of analysis has investigated
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how multilingual models encode other linguistic attributes in their internal represen-
tations. For instance, Gonen, Ravfogel, and Goldberg (2022) have shown that gender
information is encoded in both language-specific and language-neutral subspaces in the
embeddings of mBERT. Furthermore, Antverg and Belinkov (2021) have investigated
the cross-lingual consistency in the units of mBERT and XLM-R that responded to
different morphological features, showing that there is a significant overlap in the
latent dimensions that encode attributes such as gender, tense, and number. Similarly,
Stanczak et al. (2022) have probed the same models in 43 languages, and on a variety
of morphosyntactic categories. However, while these two studies have investigated the
encoding of number in MMM, they have not investigated number agreement, that is,
the structural relationship that is instantiated between a subject and a verb in a well-
formed sentence. To fill this research gap, we tested whether the processes that underpin
number agreement computation across languages could be ascribed to an overlapping
set of latent dimensions in the structural embeddings of the models.

3. Materials and Methods
3.1 Language Models

Our experiments were performed utilizing the native masked language modeling com-
ponent of mBERT and XLM-R. The configurations of the models were left unaltered
with respect to their original releases (Devlin et al. 2019; Conneau et al. 2020a). In par-
ticular, we relied on the multilingual version of BERTgasE (cased) and on XLM-Rpasg.
The two networks share an analogous structural configuration: They are composed of
12 layers, 12 self-attention heads, and a hidden size of 768. However, while mBERT is
jointly trained with a masked language modeling and a next sentence prediction (NSP)
objective, XLM-R drops the latter component, and increases the amount of training
data. The networks did not undergo any fine-tuning nor adaptation process, as they
were used as out-of-the-box masked language models. We did not mask any word
throughout this work.

3.2 Materials

The agreement data was obtained from the CLAMS dataset? (Mueller et al. 2020), a
cross-linguistic resource for the syntactic evaluation of word prediction models. CLAMS
comprises subject-verb agreement challenge sets for English, German, French, Russian,
and Hebrew, constructed by means of artificial grammars. Note that in abstract terms
these languages encode agreement patterns in a similar way, that is, through a form of
morphological inflection that links subject and verb on account of their grammatical
number. For the sake of simplicity, out of the seven syntactic constructions covered
in the original dataset we only included simple agreement and long-distance VP-
coordination (henceforth short- and long-distance agreement; see Figure 1). We selected
these two conditions as they represent the settings with the shortest and the longest
dependency length between the subject and the verb, respectively. While in short-
distance agreement the two constituents are immediately adjacent, in long-distance

2 Publicly available at https://github.com/aaronmueller/clams.
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(1) (a) The author smiles
(b) *The author smile

(2) (a) The author knows many different foreign languages and likes to watch
(b) *The author knows many different foreign languages and like to watch
television shows
television shows

Figure 1
English examples of grammatical (a) and ungrammatical (b) sentences in the simple agreement
(1) and long-distance VP-coordination (2) conditions.

agreement they are separated by a large amount of intervening verbal material (namely,
the VP projection of the main phrase and the coordinating conjunction).

3.3 Procedure

In order to identify the most relevant units with respect to the agreement task, we
adopted the Linguistic Correlation Analysis (LCA) procedure (Dalvi et al. 2019a,b),
a supervised method based on linear classification. The first step of LCA consists of
extracting the neuron activations from the model in response to the input words. Then,
a logistic classifier is trained to predict a label (in our case, the grammaticality of
the sentence obtained by including the word in the phrasal context) from the overall
internal state of the model, with cross-entropy loss and elastic net regularization as
additional loss term (Zou and Hastie 2005), with Ay = Ay = 0.001. The trained weights
of the classifier are used as a measure of the relevance of the corresponding units with
respect to the linguistic property being investigated (i.e., the binary label of grammat-
ical acceptability); this allows sorting the neurons according to the absolute value of
their respective weights. In our study, we restricted our analyses to the activations in
response to the verb that should instantiate an agreement relationship with the subject
(e.g., smiles/*smile, likes/*like in Figure 1). As a result of this choice, we trained the logistic
classifiers with the verb representations as input. In the case of multi-token verbs,
the activations corresponding to the two tokens were averaged, following Dalvi et al.
(2019a).

Probing classifiers have the undeniable advantage of being a flexible analysis tech-
nique that can help researchers understand the roles and dynamics of the hidden
components of a network and diagnose potential problems (Alain and Bengio 2016).
However, several shortcomings of probing classifiers have been highlighted in the liter-
ature. For instance, it has been emphasized that the probing framework might highlight
correlations between the representations generated by a language model and a given
linguistic property, but it does inform us on the role of this property in the predictions
of the model (Belinkov and Glass 2019; Belinkov 2022). Antverg and Belinkov (2021)
have proposed a methodology to rank individual neurons in language models without
the need for an external probe. This procedure involves the computation of the average
network activation q(z) for every categorical label z € Z; then, a simple element-wise
subtraction between the centroids of each category is calculated to assess the differential
role of each neuron across classes. The ranking is then obtained by sorting the neurons
according to their absolute value in the vector difference. It has been shown that probe-
free rankings better identify neural units that are actually used by the language mod-
els, as demonstrated through selective interventions (Antverg and Belinkov 2021). In
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order to complement the results we obtained with the linear probing, and to offset the
limitations that are inherent in the probing framework, we also experiment with such a
probeless method .

The ranking processes were performed independently for (a) each ranking method
(linear and probeless), (b) each model (BERT and XLM-R), (c) each agreement condition
(long- and short-distance), and (d) each individual language considered, ina 2 x 2 x
2 x 5 design which allowed us to derive 40 distinct rankings. In all cases, the classifier
was trained and tested on two subsets of the original data (80% train, 20% test). In
order to license meaningful comparisons on the performances of the classifiers across
languages, we downsampled all the short-distance challenge sets to 280 items (224 in the
training and 56 in the test set), and the long-distance datasets to 800 items (640 training,
160 test). All the procedures described above were implemented with the NeuroX toolkit
(Dalvi et al. 2019b), a Python package to perform interpretation and analysis of deep
neural networks.

Once the neuron ranking was obtained, we evaluated the cross-lingual consistency
in the set of neural units computing agreement across languages. In order to do so,
we assessed the intersection between the top 100 neurons independently selected in
each language. In practice, we did not test the statistical significance of the cross-
lingual overlap at the level of the whole architecture, since the estimate of our test
would have been biased by the sequential flow of information within the network. The
cross-lingual congruence of the neural units processing syntactic agreement could be
overestimated if one does not take into account the fact that similar processes with
a comparable degree of structural abstraction are likely to be processed in the same
layers. Intuitively, a dimension in the first layer of XLM-R or mBERT embeddings is less
likely to occupy a high position in the neuron ranking, since it is already known that
syntactic features are processed in the intermediate layers of the architecture (Jawahar,
Sagot, and Seddah 2019); because the probability associated with a given size of a set
intersection is critically dependent on the size of the population from which the sets are
sampled, a conservative approach to avoid a type-1 error is to consider a single layer
as the reference population. Thus, we previously searched for the layers that were more
relevant in the computation of cross-lingual agreement, and then evaluated the cross-
lingual overlap in the within-layer neural population. The statistical significance of the
resulting intersection size was computed through the super exact test (Wang, Zhao,
and Zhang 2015), a procedure for computing the distributions of multi-set intersections
based upon combinatorial theory.

4. Results
4.1 Layer-wise Analyses
In order to restrict our intersection analysis to a pre-specified layer, we first analyzed

the performance of a classifier trained to predict the grammaticality label in response to
each layer’s activation. The results are summarized in Figure 2. In the case of mBERT,

3 We thank an anonymous reviewer for the suggestion.

4 We considered 100 units as Antverg and Belinkov (2021); however, following an anonymous reviewer’s
suggestion, we analyzed post hoc the ratio of weight mass that could be ascribed to these neurons. The
top 100 units contribute to a substantial proportion of the weight mass of the layer (on average 45.46%),
while constituting only the 13.02% of the layer units (N = 768). We report a detailed analysis in
Appendix 1.
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Figure 2

Layer-wise performance of the logistic classifier. The layer 0 includes the embedding layer
representations. The vertical dashed line indicates the peak of the average accuracy obtained by
the classifiers in the five languages considered.

the highest average accuracy scores in the short- (2a) and the long-distance (2b) con-
ditions were obtained from the activations of the eighth (0.8707) and ninth (0.9505)
layer, respectively. XLM-R showed a higher degree of congruence across conditions,
since the highest scores were obtained in the seventh layer both in the short- (0.8089,
2¢) and in the long-distance datasets (0.98775, 2d). A clear pattern that emerges from
the graphs is that the accuracy curve is highly dependent on the language considered.
In the case of short-distance agreement, mBERT’s performance in Russian falls 0.1474
points below the average; in the long-distance condition, the performance levels in
Hebrew is 0.0880 points lower than the mean. The classifiers built upon the XLM-R
representations perform consistently worse in Hebrew, where their performance levels
are 0.1661 and 0.0420 points below average in the short- and in the long-distance con-
ditions, respectively. These results corroborate the finding that mBERT does not learn
equally high-quality representations for its 104 languages (Wu and Dredze 2020), and
extends this observation to XLM-R. The relatively poor performance scores obtained in
Hebrew and Russian are also consistent with the results of the standard predictive tests
obtained by Mueller et al. (2020), where mBERT’s accuracy in the agreement tasks was
noticeably lower in the two languages written in non-Latin scripts. Nonetheless, the
pattern of performance across layers seems to be stable across languages and models:
predictably, the activations extracted from the most shallow layers are not a solid basis

267



Computational Linguistics Volume 49, Number 2

for the detection of grammatical violations; the classification accuracy increases in the
intermediate layers of the network, and declines in the deepest layers.

4.2 Intersections

4.2.1 Linguistic Correlation Analysis Rankings. Building upon these results, we confined
our multi-set intersection analyses to the layers that achieved the best results in the
classification task, namely, the seventh layer for XLM-R, and the eighth and the ninth
layer for mBERT (short- and long-distance agreement, respectively). The results of
the super exact test on the cross-lingual neural overlap are depicted in Figure 3, and

-Logy,(P) —Logy,(P)
| — . .
0 ] 13 0 7 14

i L e
9 1:German  4: French [ _ 1-German  4: French
2-English  5: Russian L6 2:English 5. Russian
3: Hebrew 3: Hebrew
(a) Short-distance, layer 8, mBERT (b) Long-distance, layer 9, mBERT
—Logi(P) —Logs(P)
0 8 16 0 30 60

1:German  4:French ™% ~ 1:German  4:French

2:English  5:Russian 2:English  5:Russian
3:Hebrew 3: Hebrew
(c) Short-distance, layer 7, XLM-R (d) Long-distance, layer 7, XLM-R
Figure 3

Set intersections of the top 100 neural units responsible for subject-verb agreement in the two
conditions. The five concentric rings in the middle represent the five sets of top neurons relative
to each language, and the individual sections indicate the presence (green) or the absence (grey)
of the sets in each intersection. Each circular sector corresponds to a particular configuration of
set intersections. For instance, a sector with the first and the last segment highlighted in green
corresponds to the German N Russian intersection. The height of the bars in the outer layer is
proportional to the intersection sizes, which are made explicit by the numbers on the top. The
color intensity of the bars represents the log-transformed p-value significance of the
intersections, as computed with the super exact test. The white bars on the right of the diagrams
are not associated with FE and statistical significance, and they simply report the number of
considered units for each language (N = 100). The segments are ordered counterclockwise by
intersection size.
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reported in detail in Appendix 2 (Tables 2, 3 for mBERT; Tables 4, 5 for XLM-R). All
two-, three-, four-, and five-way combinations show an overrepresentation of the set
intersection relative to the random expectation. This overrepresentation is statistically
significant in all but four intersections (out of 104); in the case of mBERT, the statistical
significance of the fold enrichment (FE; i.e., the ratio between observed and expected
overlap®) exceeds the conventional threshold of « = .05 in the En® N He and De N He
cases in the short-distance condition, and He N Fr in the long-distance condition. The
only combination with p > .05 in the intersections based on XLM-R is En N He; notably,
Hebrew is present in all the non-significant intersections.

In the case of the mBERT short-distance agreement results, the two-, three-, and
four-way intersections associated with the highest fold enrichment are En N Fr, En N Fr
N Ge, and En N Fr N De N Ru, respectively (see Figure 3a). These three combinations
have in common the absence of the Hebrew set, and the presence of the English and
the French sets. On average, the pairwise set intersections in the case of short-distance
agreement comprise 24.9 units; a striking number of 39 units is found in the En N Fr
intersection (FE = 2.9952, p = 5.84 - 10713). Remarkably, three neurons survived all the
five-way set intersections, occupying a high position in all the five language-specific
rankings (FE = 104.3677, p = 3.39 - 107). In the case of long-distance agreement, the
highest fold enrichment for each N | 4-way intersection is found in Fr N Ru, Fr N En
N Ge, and Fr N En N De N Ru, with Hebrew being again the absent language in the
three combinations and French appearing in all of them (see Figure 3b). The average
pairwise intersection size is 28.4; the five-way intersection in the long-distance condition
includes four neurons, with FE = 139.1569 and p = 1.01-107'%. Overall, agreement-
related information displays a greater degree of convergence in the long- vis-a-vis the
short-distance condition. Indeed, in the former case intersection sizes are consistently
bigger, and associated with higher FE (on average, the FE for the pairwise intersections
is 1.8893 in the short-distance condition, and 2.1811 in the long-distance condition).

The results obtained by XLM-R mirror the ones derived from mBERT: Long-
distance agreement is characterized by larger intersections in the top-100 neuron rank-
ings, showing signs of a stronger cross-lingual alignment. Indeed, the average pairwise
FE is 2.1965 in the short-distance condition, and 3.3333 in the long-distance condition.
The Nj . 4-way intersections with highest FE in the short-distance condition are En N
Fr, He N Fr N Ru, and De N En N Fr N Ru (see Figure 3c); in the long-distance condition,
the combinations that share the highest number of neurons are De N Fr, De N Fr N Ru,
and De N En N Fr N Ru (see Figure 3d). While Hebrew appears in one top combination
in the short-distance condition, most of the best scoring intersections do not include it.
The number of neurons that are present in the top-100 sets across all five languages is
remarkably high: In the short-distance condition, we found six cross-lingual neurons
(FE =208.7354, p = 3.87 - 107'3), whereas in the long-distance condition the number rises
to ten (FE = 347.8924, p = 1.29 - 102, by far the highest FE score we obtained in our
study). The overall congruence in the neural units responding to agreement violations
is stronger in XLM-R with respect to mBERT; this disparity is particularly evident in the
long-distance condition, where the neurons surviving through the five-way intersection
are more than double.

5 With the observed overlap being equal, higher-degree set intersections—which have lower expected
overlap—will have higher FE.

6 For readability purposes, the set of the top 100 units selected for a given language is reported with the
ISO 639-1 code of that language (English: En; German: De; Russian: Ru; French: Fr; Hebrew: He).
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4.2.2 Probeless Rankings. As with the LCA method, we restricted our multi-set analyses to
the individual units populating the seventh layer in the case of XLM-R, and the eighth
and ninth layers for mBERT (long- and short-distance agreement). The results of the
super exact test based on the probeless rankings are graphically depicted in Figure 4,
and reported in detail in Appendix 2 (Tables 6, 7 for mBERT; Tables 8, 9 for XLM-R).
From a qualitative standpoint, the results obtained with the probeless ranking method
are analogous to those described in the previous section. Intersection sizes show a
general overrepresentation of units with respect to what would be expected by chance;
indeed, when considering short-distance agreement, in all the set intersections the size
of the observed overlap exceeds the size of the expected overlap by a significant margin
with the exception of very few combinations, most of which include the Hebrew set
(mBERT: En N He; XLM-R: Fr N Ru, He N Fr, En N He, De N He, De N He N Ru, De N
He N Fr). In the long-distance condition there are no exceptions to this trend, with the

1:German  4:French - 1:German  4:French
2:English  5:Russian 2:English  5:Russian
3:Hebrew 3:Hebrew

(a) Short-distance, layer 8, mBERT (b) Long-distance, layer 9, mBERT

— Logw(P) —Logye(P)
"

“qi :German  4:French
2:English  5:Russian
3:Hebrew

s g v 1:German  4:French
2:English  5:Russian
3:Hebrew

(c) Short-distance, layer 7, XLM-R (d) Long-distance, layer 7, XLM-R
Figure 4

N ... 5-way intersection statistics derived from the rankings obtained with the probeless
method.
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FE associated with all intersections being statistically significant, regardless of model
type. Once again, intersection sizes tend to be bigger in the long-distance condition,
showing signs of a stronger representational alignment across languages. Restricting
our focus to pairwise overlap, the average FE is higher in the long-distance intersection
data (mBERT, short: 2.7421; mBERT, long: 3.2947; XLM-R, short: 1.8586; XLM-R, long:
4.416). Furthermore, the cross-lingual overlap is more pronounced when considering
the embeddings of the RoBERTa-based encoder (see above), in line with the LCA-based
results.

In the case of mBERT, the intersections with the highest overrepresentation of the
fold for each degree are En N Fr, En N Fr N De, En N Fr N De N He (short-distance), and
Fr N Ru, Fr N Ru N De, Fr N Ru N De N En (long-distance). In the case of XLM-R, the
intersections with the highest FE are En N Fr, En N Fr N De, En N Fr N De N Ru (both
long- and short-distance). While Hebrew appears in one top combination in the short-
distance condition (mBERT), all the other best scoring intersections do not include it; on
the other hand, they all include the French set, in line with the results obtained with the
linear classifier.

5. Discussion

Number agreement is a syntactic phenomenon that crucially relies on a proper parse
of the structure of a sentence. In all five languages we considered, number agreement
is made explicit through a form of morphological inflection that links subject and verb
by virtue of their syntactic relationship and their shared grammatical number. Given
the similarity of the underlying grammatical process, a truly multilingual neural model
should display some degree of cross-lingual consistency in the neural units computing
agreement. Our analyses showed that indeed there is a correspondence in the encoding
of agreement patterns across languages, not only in terms of the layer-wise convergence
of information, but also in terms of the organization of the neural units within a single
layer. In the layer-wise analyses, a linear classifier built upon both mBERT and XLM-R
embeddings was able to detect syntactic anomalies from the intermediate layers of the
network. The classification accuracy decreased in the deepest layers of the networks, in
line with results obtained with monolingual models (Jawahar, Sagot, and Seddah 2019);
crucially, this quadratic concave trend was coherent across the languages included
in our study. The structural alignment of different language pairs was susceptible to
systematic differences affecting in particular Hebrew, a low-resource language that
also obtains lower performance scores in layer-wise classification. We speculate that
this difference in results might be due, at least in part, to the typological relations
between the languages included in our study. Indeed, English, German, French, and
Russian are Indo-European languages. Hebrew, on the other hand, is a Semitic lan-
guage belonging to the Afroasiatic family,” despite exhibiting some Indo-European
influences (Zuckermann 2006). Furthermore, differently from the others, Hebrew is a
language characterized by a templatic morphology: Verbs and nouns can be inflected
by modifying a consonantal root, adding vowels between the consonants. Hence, a
linear segmentation of the input into sub-word units (as the one underlying mBERT and
XLM-R tokenizers) might not capture the full morphological complexity of the words
(Klein and Tsarfaty 2020). This entails that two inflected forms of the same root might
not share any sub-word token more frequently than in languages with concatenative

7 Following the Omniglot classification of languages at https://omniglot.com/writing/langfam.htm.
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morphological systems, making agreement computations more difficult and based on
representational properties that are different from the other considered languages. We
thus speculate that the weaker correspondence in the neural unit processing agreement
in Hebrew might be motivated by these typological and morphological differences.

Despite a certain degree of language specificity in the intersection patterns, the
independent selection of language-specific relevant units can nonetheless identify a
shared substrate underlying number agreement processing. Across model types and
ranking methods, the size of this shared substrate is consistently larger with increased
distance between the two hierarchically dependent words, as evidenced by the higher
FE in the long-distance condition. The greater distance between subject and verb, as
well as the contingent introduction of attractors between them, makes the task of
word prediction more difficult, as evidenced by standard predictive tests (Mueller et al.
2020). Hence, the comparison between the results obtained in the two agreement con-
ditions suggests that cross-lingual alignment is favored by more complex sentence
representations. A possible objection to this observation lies in the fact that both the
training and the test set in the long-distance condition comprised more items than in
the short-distance condition (see Section 3.3). This asymmetry in training data might
have resulted in a more precise ranking in the long-distance case, which in turn could
have identified more efficiently the cross-lingual components in the network. To rule
out this possible confound, we repeated all our analyses after downsampling the long-
distance set,® and still found a more consistent unit-level convergence with increased
distance between the two interdependent constituents (see Appendix 3). Another factor
that influenced the cross-lingual convergence of syntactic information was model type:
The intersection sizes derived from the XLM-R-based ranks were much larger than the
ones obtained from its predecessor, regardless of the neuron ranking algorithm (in line
with previous results on probing with MMMs, see Antverg and Belinkov [2021] and
Stanczak et al. [2022] for similar results). The two models are minimally different: The
main attributes that distinguish them are the larger amount of training data and the
absence of the NSP objective in XLM-R. This suggests that the NSP loss is not a crucial
determinant of cross-lingual convergence, and that more trained and better performing
multilingual models have stronger language-neutral internal components (see also Del
and Fishel 2021).

From a methodological standpoint, the qualitative convergence in the results ob-
tained with LCA and the probeless ranking method shows that our findings are not
biased by the inherent limitations of the probing framework, such as the conflation
between the information learned by the model and by the probe (Antverg and Belinkov
2021). Indeed, the main outcomes of our study—such as the greater cross-lingual con-
vergence in long- versus short-distance agreement and the stronger alignment in the
RoBERTa-based encoder—are robust regardless of the neuron ranking method applied.

6. Follow-up: The Depth of the Cross-lingual Syntax

In the previous sections, we started from the implicit assumption that the most relevant
layers for computing agreement within a single language would show the highest con-
sistency in their inner organization across languages. In the present follow-up study, we

8 We chose to rule out this confound a posteriori instead of performing our analyses on balanced sets from
the beginning in order to derive more precise estimates for the log-distance condition, where more data
were available.
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empirically tested this premise. First, we examined the weights assigned by the linear
classifiers to the highest scoring individual neurons across layers, and their dispersion
across languages (6.1). Then, as a control, we also analyzed the layer-wise correla-
tions between the weight matrices learned by the classifiers in the five different lan-
guages’ (6.2).

6.1 Top Neurons Across Layers

Whereas in our previous experiments we adopted a maximally conservative approach
by extracting five language-specific independent neuron rankings for each condition,
here we used a more exploratory procedure by jointly searching for relevant cross-
lingual neurons in each layer. We reasoned that a cross-lingual neuron responding to
agreement should satisfy two necessary conditions. First, it should have, on average, a
high impact on the prediction of the grammaticality label. Second, the measures of that
neuron’s impact in the five languages considered should be comparable: Its relevance
should not be driven by a subset of the languages, but rather be cross-linguistically
stable. Following this line of reasoning, we operationalized the cross-lingual relevance
of each unit with respect to the task by averaging the absolute value of its weights
learned by the five language-specific classifiers. This procedure allowed us to construct
a global, language-neutral ranking of the neurons. Then, for each layer, we considered
the neural unit with the highest average weight, and observed the relative standard
deviation of its value across languages. We performed our analyses independently for
short- and long-distance agreement, and for either model type.

The results of our follow-up tests are depicted in Figure 5. The general pattern that
clearly emerges from the four plots is an initial increase in average weight, which is
steeper in the long-distance condition; the average weights then decrease in the last
layers. The growth in the average weight is associated with a contingent reduction
in the cross-lingual measure of dispersion, as indicated by the error bars. In the case
of mBERT, this rise in the average weight reaches its peak in the intermediate [8,9]
layers. In the short-distance condition, the highest weight is obtained in the eighth
layer by neuron 6533 (5a); this neuron’s weights also exhibit a contained amount of
variation across languages (although the top neurons in the embedding and in the
seventh layer display an even smaller amount of dispersion). The best candidate cross-
lingual neuron is easier to identify in the long-distance condition: Neuron 7674 in the
ninth layer exhibits at the same time the two preconditions identified above, being both
the one with the highest weight and the one with the lowest cross-lingual deviation
(5b). XLM-R neurons behave in an analogous way, but reach their maximal cross-lingual
convergence in earlier layers. In the short-distance condition, the highest mean weight
is obtained in the seventh layer by neuron 5621 (5¢); this neuron also displays contained
cross-lingual variation, although the weights of neuron 6545 in the eighth layer are more
stable across languages. In the long distance condition, neuron 5066 in the sixth layer is
the most relevant agreement-responding unit (5d); while neurons 5666, 6928, and 7931
are slightly more stable across languages, 5066 clearly marks the weight peak. In the
case of XLM-R, the weight-by-layer growth curve is steeper if compared with mBERT,
especially in the long-distance condition: While the weights of the top neurons in the
first five layers are close to zero and highly variable across languages, from the sixth
layer we have an almost sudden increment.

9 We thank the anonymous reviewers for the suggestion.
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Figure 5
Mean weight of each layer’s top neuron, averaged over five languages. The error bars indicate

the relative standard variation of the weight across the five languages, rescaled by a 102 factor
for readability purposes. The numbers annotated over the error bars specify the ID of the neuron
whose metrics are depicted in the graph. Note that the i axis scale varies across plots, in order to
highlight the layer-wise progression of the average weights.

6.2 Correlation Between Weight Matrices Across Layers

In the previous section, we considered the individual units of each layer that were
assigned the highest average weight by the linear classifier, in order to draw conclusions
about the layer-wise encoding of agreement across languages. This approach allowed
us to identify a set of individual units that are cross-lingually associated with number
agreement; however, this procedure neglects the vast majority of the network’s units.
Hence, as a sanity check, we also analyzed the cross-lingual correlation between the
weights assigned by the linear classifiers to the neurons of each layer. The weights of the
classifier are supposed to reflect the relevance of each unit with respect to the linguistic
property being investigated, namely, grammatical agreement. Thus, a cross-lingual
correlation in the classifier weights reflects how similarly two given languages encode
agreement relations. Differently from our previous results, this analysis considers all
the neural units within a layer, and not only the top neurons. Following our previous
results, we predicted an increase in cross-lingual weight correlation in the first layers
of the networks, followed by a plateau in the intermediate layers, and a final decrease
toward the deepest layers of the models.

The layer-wise results of our weight correlation analysis are reported in Figure 6;
note that each point in the plot reflects the average weight correlation obtained across
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Figure 6
Layer-wise progression of cross-lingual weight correlations, grouped by model and condition.

the ten combinations of language pairs. All the pairwise correlations are reported in
detail in Appendix 4 (Figure 10). The results of the correlation analyses are largely con-
sistent with what we reported in the previous section. Across model types and condi-
tions, the cross-lingual correlation in the weight matrices (henceforth CCWM) increases
in the intermediate layers of the models, reaching its peak in the seventh (XLM-R, short-
distance agreement) and eighth layer (mBERT, short- and long-distance agreement;
XLM-R, long-distance agreement). Then, the CCWM progressively decreases toward
the deepest layers of the models. While the localization of the correlation peaks does
not coincide exactly with the weight maxima identified in § 6.1, from a qualitative
standpoint the layer-wise progression of the CCWM is mostly coherent with our previ-
ous observations, when considering the effects of both agreement condition and model
type. Indeed, the increase in CCWM is steeper (a) when considering long- as opposed
to short-distance dependencies, and (b) when analyzing XLM-R as opposed to mBERT
embeddings.

Taken together, these layer-wise patterns strengthen our previous findings in two
ways. First, they confirm the premise of our first experiment concerning the layer-wise
flow of cross-lingual syntactic information within the network, supporting our choice
to constrain our tests to the middle layers of the network. Second, they clearly show
that there is a cross-lingual convergence in the encoding of grammatical structures in
the middle-to-deep layers of the networks. This means that MMMs such as mBERT and
XLM-R progressively develop a cross-lingual space where language-neutral individual
units respond to similar grammatical structures in different languages. Overall, these
results are consistent with the view that identifies the first layers of an MMM as a
multilingual encoder (Del and Fishel 2021), where syntactic features are progressively
elaborated and converge toward the same units in the middle-to-deep layers. Then, the
subsequent decline is coherent with the view of MMMs as the stacking of two sub-
networks: a multilingual encoder followed by a task-specific decoder, which has little
importance in the transfer (Muller et al. 2021).

6.3 Single Neurons Encode Grammatical Structures

In § 6.1, we identified four candidate cross-lingual neurons. These units were assigned
on average a high weight by the linear classifier, and their relevance was characterized
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by a reduced variation across languages. In this section, we studied their individual
behavior in response to well-formed and agreement-violating sentences. More precisely,
we tested whether their activation patterns alone were sufficient and necessary to predict
the grammaticality of such sentences. To do so, we assessed whether (a) the activations
of those units alone could predict agreement violations, and (b) the activations of their
respective layers could predict grammaticality when these units were zeroed out. To
increase the generalizability of our results, we measured their responses to agreement
in another condition of the CLAMS dataset, across a Prepositional Phrase (e.g., “The
surgeons behind the architect *smiles/smile”). This condition was chosen as it falls
between the long-distance VP coordination and the short-distance condition in terms of
the distance between subject and verb. A total of 11,200 sentences from this condition!?
were selected and divided in a train and a test set (80% train, 20% test). Then, we
extracted the activations of the models in the verb position, and (a) selected the output
of the four units identified in the previous section (neurons 7674 and 6533 in the case of
mBERT, and neurons 5066 and 5621 for XLM-R), or (b) zeroed out their activations in the
layers output. In the former case (a), we used the output of each of these neurons taken
singularly as a predictor in a logistic regression model, with the dummy-coded label of
grammatical acceptability as dependent variable. We then computed the classification
accuracy in the test set, and assessed the statistical significance of our results against
chance level with a binomial test. As an additional baseline, we also randomly sampled
30 neural units from the corresponding layers in the two models (layers 8 and 9 for
mBERT, and 7 and 6 for XLM-R), and evaluated their average accuracy in predicting the
grammaticality label on the same dataset.!! In the second case (b), we used as predictors
in the logistic regression models all the layer units except for the neuron of interest;
we then compared the results obtained with the full layer embedding with the results
obtained with the ablated layer by means of a McNemar test, a statistical test utilized
on paired nominal data.

6.3.1 Single Neurons Are Sufficient to Compute Agreement. The results of our experiment
are reported in Figure 7. Overall, the neurons that we identified in the previous section
were significantly predictive of grammaticality across languages, providing a sanity
check for our procedure. In the case of mBERT, the activation of neuron 7674, which
had been singled out in the long-distance condition, was sufficient to significantly
classify sentences as agreement-violating in all the languages considered, with an av-
erage accuracy of 0.59 (7a). Not surprisingly, accuracy was lower in the Russian and
Hebrew datasets, but nonetheless the performance levels were still above chance. The
activation of neuron 6533 achieved a rather inferior performance, as it reached statistical
significance only in German and French, with an average cross-lingual accuracy of 0.53.
As in all the tests we reported so far, the results obtained with XLM-R were more
solid, as both neuron 5066 and 5621 were significant predictors of grammaticality in all
languages (7b), with the exception of neuron 5621 in French, which was only marginally
significant (p = 0.056). The logistic classifier based on neuron 5066 achieved an average
accuracy of 0.64; notably, its output alone was sufficient to reach an accuracy level of
0.84 in French. Similarly to mBERT, the neuron identified in the short-distance condition
(5621) was less strongly associated with the label in most languages, but it still obtained

10 The number of instances was chosen to match the smallest challenge set (in Hebrew) for cross-lingual
comparability.
11 We thank an anonymous reviewer for the suggestion.
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Figure 7

Accuracy of the classifiers based on the neurons identified in Section 6 (top row) and average
performance obtained by 30 units randomly sampled from the same layer (bottom row),
grouped by language. The asterisks indicate the statistical significance of the results against
chance level, with p < 0.001***, p < 0.01**, p < 0.05*.

an average accuracy of 0.57. If compared to randomly sampled units from the same
layers, which in theory could be expected to respond to similar linguistic phenomena,
the neurons extracted with our procedure were generally more effective in predicting
the well-formedness of a sentence. Across both model types, the neurons identified
in the long-distance condition (7674 and 5066) consistently outperformed in classifi-
cation accuracy the randomly sampled units extracted from their respective layers,
with the only exception the Russian data, where the outcomes were comparable. Once
again, the results in the short-distance condition are less clear-cut. In the case of mBERT,
neuron 6533 outperformed the randomly sampled baseline only in German and French,
but when considering the RoBERTa-based transformer, neuron 5621 outperformed the
baseline in all the languages but French. However, it should be noted that the neurons
that we randomly sampled from the relevant layers generally obtained above-chance
performance scores in the classification task, suggesting that number agreement com-
putations are spread out across the middle layers of the network.

6.3.2 Single Neurons Are not Necessary to Compute Agreement. Once verified that the
four interlingual neurons we singled out in § 6.1 were sufficient to capture agreement
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Table 1

Comparison of the results of the classifier obtained with the full layer and the ablated layer.
The first two columns indicate the language and the agreement condition where the units were
identified (see § 6.1). The following five columns specify the results obtained with mBERT, and
in particular the target neuron that was zeroed out, the respective layer, the accuracy obtained
with the full layer embedding, the accuracy obtained with the ablated layer, and the statistical
significance of the McNemar test. The last five columns report the same indexes, but relative to
the XLM-R model. *In contrasting the accuracy of the full and the ablated layer, the standard y?
calculation was used instead of the binomial test, as the number of observations per cell in the
contingency table was higher than 25.

mBERT XLM-R

Language Cond. Neuron L  Acc  Accup 14 Neuron L  Acc  Accup 14
French Short 6533 8 1.0000 1.0000 1.0000 5621 7 1.0000 1.0000 1.0000
French Long 7674 9 1.0000 1.0000 1.0000 5066 6 1.0000 1.0000 1.0000
English Short 6533 8 0.9464 0.9451 0.2500 5621 7 0.9527 0.9527 1.0000
English Long 7674 9 09549 0.9558 0.6250 5066 6 09049 0.9040 0.7540
Hebrew Short 6533 8 0.9013 0.9013 1.0000 5621 7 0.8710 0.8705  1.0000*
Hebrew Long 7674 9 0.8933 0.8942 0.6880 5066 6 0.8299 0.8326 0.4170
Russian Short 6533 8 09821 0.9821 1.0000 5621 7 0.9254 0.9259 1.0000
Russian Long 7674 9 09754 0.9754 1.0000 5066 6 0.8777 0.8790 0.6640
German Short 6533 8 1.0000 1.0000 1.0000 5621 7 1.0000 1.0000 1.0000
German Long 7674 9 1.0000 1.0000 1.0000 5066 6 1.0000 1.0000 1.0000

violations with an above-chance performance, we aimed to test whether their contribu-
tion was necessary for the task. The results of these analyses are summarized in Table 1.
As can be seen in the table, the ablation of the candidate cross-lingual units did not show
a significant impact on the results obtained by the classifiers in any of the languages
considered in the analyses, regardless of model type. This result is largely consistent
with our previous observation that number agreement processing is not restricted to a
small number of specialized units in multilingual transformer models, but it is encoded
with redundancy in the network’s embeddings. While the activation patterns of the
neurons we set apart in our cross-lingual search do encode agreement to a significant
extent, their role is not decisive in agreement processing.

6.4 Testing in an Unseen Language

In the previous section, we tested the four candidate interlingual neurons we identified
in § 6.1 in a novel condition of the CLAMS dataset, showing that our selection procedure
was robust to small changes in the sentential structure of the agreement data. To further
assess the cross-lingual abilities of those units, we further extended the analyses to
measure their predictive power in detecting agreement violations in an unseen language,
that is, Italian. Since the CLAMS dataset did not include any other language beyond the
ones that we had previously considered, we artificially created a new agreement dataset
in a rule-based fashion, and replicated our previous analyses in this dataset.

6.4.1 Dataset Creation and Analyses. To generate an agreement dataset in Italian, we
started from a set of 2 determiners (definite and indefinite; D), 20 nouns (N), 20 verbs
(10 transitive, 10 intransitive; V), and 15 temporal prepositional modifiers (M). Then,
we created a corresponding plural set for each of D, N, and V (Dp, Np, Vp). Starting
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from those samples, we created four agreement conditions by computing the Cartesian
products between the three sets:'2

(a)  Singular agreement: D x N x V
(b) Plural agreement: D), X N, x V),
() Violated singular agreement: D x N x V),
(d)  Violated plural agreement: D, x N x V

where each condition consisted of 800 items. We then inserted one modifier sampled
from M after the nouns, to increase the distance between subject and verb to an amount
comparable to the CLAMS condition we used in § 6.3 (across a Prepositional Phrase).
Conditions (a) and (b) were then merged and labeled as grammatical, whereas condi-
tions (c) and (d) were codified as ungrammatical. This method allowed us to generate
3,200 labeled sentences, which were then divided in a train (80%) and a test set (20%).
Following our previous procedures, we used the two transformer models to extract
their internal activations in the verb position; then, we selected from the obtained
embeddings the output of the four candidate cross-lingual units (mBERT: 6533, 7674;
XLM-R: 5621, 5066). We then trained four different logistic regression models—one for
the output of each neuron—in the training set data, and evaluated their accuracy in
the test set. Beside contrasting the model accuracy against chance level with a binomial
test, we implemented a second baseline with 30 neural units randomly sampled from
the same layers as the target neurons.

6.4.2 Results. The neural units that we consider in this study were generally successful
in detecting agreement violations in Italian. When considering mBERT, the neuron
identified in the short-distance condition (6533) reached an accuracy score of 0.57 (p =
0.0001); the unit that had been singled out in the long-distance condition (7674) obtained
an accuracy of 0.52, although the binomial test was not significant (p = 0.1258). On
the other hand, both the units that were identified in the XLM-R model significantly
outperformed chance level (5621: 0.60, p = 1.56 - 107; 5066: 0.64, p = 1.63 - 10713). The
randomly sampled units obtained instead a rather inferior performance in the Italian
test set, with the exception of the sample based on the ninth layer of mBERT (mBERT,
layer 8: 0.53, p = 0.0525; mBERT, layer 9: 0.53, p = 0.0446; XLM-R, layer 7: 0.54, p = 0.0219;
XLM-R, layer 6: 0.51, p = 0.3319). Taken together, these results strengthen the validity of
our methodology, showing that the neural units that were associated with agreement
in a set of languages can successfully capture the same property in a different language
which did not concur in the unit selection.

The performance of individual neurons in predicting well-formedness demon-
strates that explicit knowledge emerges in a quasi-symbolic format in the neural units
we identified in the previous experiment. Interestingly, simply training a transformer
model on a masked language modeling objective on multilingual data causes the
emergence of syntax-sensitive units that respond to the same linguistic phenomenon in
different languages. The knowledge encoded in these units is also sufficiently abstracted

12 Note that the agreement relationship between D and N was set to always be grammatical, so that the only
structure-dependent relationship that could be violated was subject-verb number agreement.
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from the low-level features of the input that can be captured even in settings that
differ from the one employed during unit selection, both in terms of agreement condi-
tions (across a Prepositional Phrase) and languages (Italian). However, the comparison
with randomly sampled neurons further shows that while some units are particularly
responsive to agreement violations, this grammatical phenomenon is encoded with
redundancy in the network’s embeddings. Indeed, other randomly sampled dimensions
in the activation matrix still respond to the same structure-dependent relationship,
although with lower levels of association with the label (see Dalvi et al. [2020] for an
analysis of redundancy in transformer language models). This finding is congruent with
the layer ablation results, where we showed that the activation patterns of the target
neurons were not necessary to reach near-perfect accuracy in the classification task.

7. Conclusion

This study presents the first single-neuron analysis aimed at assessing the cross-lingual
nature of mBERT and XLM-R agreement processing mechanisms. Our findings are in
line with the view that the very large neural capacity in MMMs leads to multilingual
representations that have both language-neutral and language-specific components (see
also Doddapaneni et al. 2021; Gonen, Ravfogel, and Goldberg 2022). While the majority
of the networks” units shows a heterogeneous cross-lingual relevance, several neurons
in the structural embeddings of mBERT and XLM-R respond to syntactic features in two
or more languages. We argue that those neurons can be considered as the implementa-
tional substrate that supports number agreement computations across languages. The
independent neuron rankings, while far from being identical, display an above-chance
level of cross-lingual consistency. This consistency is stronger for long- vis-a-vis short-
distance agreement, suggesting that more complex structures tax more strongly the
language-neutral components of the networks. Our results are also informative in terms
of model comparison: While most research efforts considered a single model—generally
mBERT—when assessing the eventual cross-lingual nature of its representations (Singh
et al. 2019; Chi, Hewitt, and Manning 2020; Dufter and Schiitze 2020; Muller et al.
2021; Guarasci et al. 2022, although see Del and Fishel 2021), our results contrast two
prominent MMMs, showing that the RoBERTa-based transformer excels in cross-lingual
alignment. With respect to the previous literature, our study is novel in that it measures
the convergence of cross-lingual signal in the syntactic domain. Previous studies often
used a coarse-grained approach to cross-lingual coherence; indeed, the emergence of
an interlingual space was often measured as the layer-wise progression of sentence
similarity scores across languages, thus conflating syntactic and semantic features (e.g.,
Singh et al. 2019; Del and Fishel 2021; but see Chi, Hewitt, and Manning 2020). In
this study, we extended the previous findings by showing that even when narrow-
ing the scope of our analyses to subtle structure-dependent phenomena, the mod-
els consistently allocate an overlapping set of resources to similar processes across
languages. In the Introduction, we mentioned how the study of the convergence of
information in a multilingual neural model could inform the debate on the neural
underpinnings of linguistic knowledge in multilingual individuals. In that respect, our
study shows that the optimal solution that naturally emerges from priorless sequence
processing networks is a partial overlap of resources, which is dependent on the typo-
logical similarity between languages.

The very existence of language-neutral components in mBERT and XLM-R shows
that the models address the high surface inconsistency of the multilingual input through

280



de Varda and Marelli Data-driven Cross-lingual Syntax

strong generalization—hence, leveraging truly multilingual knowledge. Once acknowl-
edged that the representation space exploited by MMM s is multilingual in nature, the
study of their predictive behavior could provide us with unique insights into the struc-
tural symmetries that are instantiated across languages, and inform us on the nature of
language as a system beyond the surface discrepancies shown by single languages. We
hope that this investigation will pave the way to future studies inspecting the MMMs’
learned representation spaces to acquire novel knowledge on the properties that are
shared across languages and language families.

8. Limitations and Further Directions

This study showed that number agreement is partly encoded by a language-neutral
set of parameters in the structural embeddings of mBERT and XLM-R. However, two
important caveats must be made. First, the syntactic relationship we analyze is a circum-
scribed expression of the variety of grammatical phenomena that characterize natural
languages. While restricting our analyses to a specific class of grammatical instances
increases the experimental control over our study, it should be noted that the gener-
alizability of our findings to other linguistic structures should be properly assessed in
future research. Second, the phenomenon we investigate is expressed in our language
sample in a rather consistent way, when analyzed in abstract terms: Subject and verb
are paired through a form of morphological inflection—which is mainly concatenative
in four out of the five languages considered—on account of their structural dependency
and their grammatical number. We leave for future research an assessment of whether
our results hold when considering a more typologically diverse language sample that
conveys agreements relationships in fundamentally different ways.

Appendix 1. Weight Mass Analyses

In § 4, we considered the number of top 100 units that were shared among two or
more languages to draw conclusions on the neuron-level cross-lingual convergence
of agreement information in the networks. However, the threshold we used, while
congruent with previous research (Antverg and Belinkov 2021), needs to be motivated.
In particular, it is necessary to ensure that the top neurons that are considered in the
analyses effectively account for a sufficiently ample proportion of the weight mass. In
other words, it is critical to verify that (a) the weight distribution is sufficiently skewed
to motivate the selection of N top neurons, and (b) N = 100 is a sensible threshold
that includes the most relevant units, and does not include too many of the non-
relevant ones. To verify these premises, we plot the weight distribution of the different
model x condition x language combinations, and examine the ratio of the cumulative
weight mass'® accounted for by the top 100 units. The outcomes of these analyses are
summarized in Figure 8. As can be clearly seen from the figure, the weight distributions
are highly skewed, with a small number of units that are assigned high weights, and a
long right tail of less relevant neurons. In general, 100 neurons—which only constitute
13.02% of the layer units—contribute to a substantial proportion of the weight mass
of the layer (on average 45.46%). This proportion is lower when considering mBERT
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Figure 8

Weights (y axis) associated by the linear classifier to the individual units (x axis) of the relevant
layers. The percentage superimposed on the graph indicates the cumulative weight mass

accounted for by the top 100 units in each individual language.
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(d) Long-distance, XLM-R, layer 7

(short-distance: 35.21%; long-distance: 43.36%) as opposed to XLM-R (short-distance:
49.45%; long-distance: 57.81), and with short- as opposed to long-distance dependencies
between subject and verb (see above). This suggests that both model type and subject-
verb distance contribute to the sparseness of the encoding of the phenomenon under
scrutiny, with XLM-R and long-distance dependencies causing the emergence of fewer
specialized units that respond to agreement violations, and mBERT and short-distance
agreement promoting more distributed and possibly redundant encoding patterns.
However, despite a certain amount of variability across models and conditions, 100
units generally contribute to a large amount of the weight mass, justifying a posteriori
the choice of our threshold.
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Appendix 2. Super Exact Test Results in Detail

2.1. Linguistic Correlation Analysis

Table 2
Results of the super exact test relative to all N _ . 5-way intersections of the top 100 neurons in
the short-distance agreement condition (mBERT, LCA).

Intersection Degree  Obs. overlap  Exp. overlap FE [4

FrNRu 2 28 13.0208 21504 121-10%
He NRu 2 26 13.0208 1.9968  1.17-107%
He N Fr 2 19 13.0208 1.4592  4.47-107%2
EnnNRu 2 25 13.0208 1.9200 3.34-107%
En N Fr 2 39 13.0208 29952  5.84-10713
En N He 2 14 13.0208 1.0752  4.28 10791
De N Ru 2 17 13.0208 1.3056  1.34-1079!
De N Fr 2 34 13.0208 26112  3.03-107%
De N He 2 15 13.0208 11520  3.10-1079!
De N En 2 29 13.0208 22272 3.54-107%
He NFrNRu 3 8 1.6954 47186  2.29-107%
En N FrNRu 3 10 1.6954 5.8982  4.68-107%
EnNHeNRu 3 6 1.6954 35389  6.33-10%
En N He N Fr 3 9 1.6954 53084 3.50-10%
De N Fr N Ru 3 10 1.6954 5.8982  4.68-107%
De NHe NRu 3 5 1.6954 29491  259-107%2
De N He N Fr 3 7 1.6954 41288 130-10%
De N EnNRu 3 6 1.6954 35389 6.33-10%
De N En N Fr 3 17 1.6954 10.027 15810713
De N En N He 3 5 1.6954 29491 259 -107%2
EnNHe N FrnRu 4 4 0.2208 18.1194  6.82-107%
De N He N Fr N Ru 4 3 0.2208 13.5895  1.38-107%
De NEnnFrNRu 4 5 0.2208 226492 25910706
De N EnNHe NRu 4 3 0.2208 13.5895  1.38-107%
De N En N He N Fr 4 5 0.2208 226492 2591079
De N En N He NFrnNRu 5 3 0.0287 104.3677  3.39-1079
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Table 3

Long-distance agreement condition (mBERT, LCA).

Intersection Degree Obs. overlap Exp. overlap FE p

Fr N Ru 2 40 13.0208 3.0720 885-1074
He N Ru 2 24 13.0208 1.8432  8.90-107%
He N Fr 2 18 13.0208 1.3824  8.03-107%2
En N Ru 2 26 13.0208 19968  1.17-107%
En N Fr 2 38 13.0208 29184  3.64-10712
En N He 2 21 13.0208 16128  1.13-107%2
De N Ru 2 35 13.0208 26880  6.17-10710
De N Fr 2 27 13.0208 20736  3.90-10%
De N He 2 24 13.0208 1.8432  8.90-107%
De N En 2 31 13.0208 23808 2.51-10%7
He N Fr N Ru 3 9 1.6954 53084 3.50-1070°
EnNFrNRu 3 16 1.6954 94372  250-10712
En N He NRu 3 8 1.6954 47186  229-107%
En N He N Fr 3 10 1.6954 5.8982  4.68-1070
De N FrNRu 3 16 1.6954 94372 25010712
De N He N Ru 3 12 1.6954 70779  5.83-1078
De N He N Fr 3 9 1.6954 53084  3.50-107%
De N En N Ru 3 15 1.6954 88474  359-1071!
De N En N Fr 3 17 1.6954 10.0270  1.58-10713
De N En N He 3 11 1.6954 6.4881  5.54-107%
EnNHeNFrNRu 4 6 0.2208 271791  7.95.107%8
De N He N FrN Ru 4 6 0.2208 271791  7.95.107%8
De N EnNFrNRu 4 10 0.2208 452985 1.22-1074
De N En N He N Ru 4 6 0.2208 271791  7.95.107%8
De N En N He N Fr 4 7 0.2208 31.7089  2.00-107%
De N En NHe N FrN Ru 5 4 0.0287 139.1569  2.12-1078
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Table 4

Short-distance agreement condition (XLM-R, LCA).

Intersection Degree  Obs. overlap Exp. overlap FE p
FrNRu 2 32 13.0208 24576 6.13-107%8
He NRu 2 30 13.0208 23040 9.74-107%
He N Fr 2 31 13.0208 23808 2.52-107%
EnNRu 2 32 13.0208 24576 6.13-10708
EnnN Fr 2 35 13.0208 26880 6.17-10710
En N He 2 25 13.0208 1.9200 3.34-107%
De NRu 2 21 13.0208 1.6128 1.14-10792
De N Fr 2 23 13.0208 1.7664 222.107%
De N He 2 28 13.0208 21504 1.21-107%
De N En 2 29 13.0208 22272 3541079
He N FrNRu 3 16 1.6954 94372 2.50-10712
En N FrNRu 3 14 1.6954 82575 4.68-10710
En N HeNRu 3 13 1.6954 7.6677 5.51-107%
En N He N Fr 3 14 1.6954 82575 4.68-10710
De N Fr N Ru 3 9 1.6954 5.3084 3.50-107%
De N He N Ru 3 12 1.6954 7.0778 5.84-10708
De N He N Fr 3 13 1.6954 7.6677 5.51-107%
De N EnNRu 3 12 1.6954 7.0779 5.84-10708
De N En N Fr 3 14 1.6954 82575 4.68-10710
De N En N He 3 15 1.6954 8.8474 3.59-1071
En N He N FrNRu 4 9 0.2208 40.7686 7.79 - 10713
De NHe N Fr N Ru 4 7 0.2208 31.7089 2.01-107%
De NEnNFrNRu 4 7 0.2208 31.7089 2.01-107%
De NEnNHeNRu 4 9 0.2208 40.7686 7.79-10713
De N En N He N Fr 4 11 0.2208 49.8283 1.69-10716
De N En N He N FrNRu 5 6 0.0287 208.7354 3.87-10713
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Table 5

Long-distance agreement condition (XLM-R, LCA).

Intersection Degree Obs. overlap Exp. overlap FE p
FrNRu 2 54 13.0208 41472 584-10728
He N Ru 2 34 13.0208 26112 3.03-107%
He N Fr 2 30 13.0208 3.3040 9.74-107%
EnNRu 2 48 13.0208 3.6864 2941072
En N Fr 2 48 13.0208 3.6864 2.94-10721
En N He 2 18 13.0208 1.3824 8.04-1072
De N Ru 2 54 13.0208 41472 584-10728
De N Fr 2 57 13.0208 43776 1.12-10731
De N He 2 26 13.0208 1.9968 1.18-107%
De N En 2 52 13.0208 39936 1.28-107%
He N FrNRu 3 22 1.6954 12.9761 4.42-107%0
EnNFrNRu 3 36 1.6954 212337 6.28-107%
EnNHeNRu 3 13 1.6954 7.6677 5.51-107%
En N He N Fr 3 15 1.6954 8.8474 3.59-10°1
De N FrNRu 3 42 1.6954 247726  1.29 107
De N He NRu 3 19 1.6954 11.2067 4.90-10716
De N He N Fr 3 21 1.6954 12.3863 1.07-10718
De N En N Ru 3 38 1.6954 224133 1.07-107%
De N En N Fr 3 35 1.6954 20.6438 4.33-107%
De N En N He 3 13 1.6954 7.6677 5.51-1070°
EnNHe N FrNRu 4 12 0.2208 543582 2.04-10718
De N He N FrN Ru 4 17 0.2208 77.0074  9.49-107%
De N EnNFrNRu 4 30 0.2208 135.8955 1.52-107%0
De N En N He NRu 4 11 0.2208 49.8283 1.69-10716
De N En N He N Fr 4 12 0.2208 543582 2.04-10718
De N En N He NFrN Ru 5 10 0.0287 347.8924 1.29-107%
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2.2. Probeless

Table 6

Short-distance agreement condition (mBERT, probeless).

Intersection Degree Obs. overlap Exp. overlap FE [4
FrNRu 2 26 13.0208 1.9968 1.18-107%
He N Ru 2 30 13.0208 33040 9.74-107%
He N Fr 2 31 13.0208 23808 2.52-107%
EnNRu 2 21 13.0208 1.6128 1.14-1072
En N Fr 2 54 13.0208 41472 5.84-10728
EnnNHe 2 18 13.0208 1.3824 8.04-1072
DeNRu 2 30 13.0208 33040 9.74-107%
De N Fr 2 50 13.0208 3.8400 2.19-107%
De N He 2 23 13.0208 1.7664 222.107%
DeNEn 2 48 13.0208 3.6864 2.94-107%
He N FrNRu 3 11 1.6954 6.4881 5.55-107%7
EnNFrNRu 3 13 1.6954 7.6677 5.51-107%
En N HeNRu 3 9 1.6954 53084 3.5-10%
En N HeNFr 3 15 1.6954 8.8474 3591071
De NFrNRu 3 16 1.6954 94372  25-10712
De NHe NRu 3 14 1.6954 8.2575 4.68-10710
De NHe N Fr 3 13 1.6954 7.6677 5.51-107%
DeNEnNRu 3 10 1.6954 5.8982 4.69 1079
DeNEnnFr 3 35 1.6954 20.6438 4.33-107%
DeNEnnNHe 3 11 1.6954 6.4881 5.55-107%
EnnNHeNFrNRu 4 6 0.2208 271791 7.95-107%8
De NHeNFrNRu 4 7 0.2208 31.7089 2.01-107%
De NEnNFrNRu 4 7 0.2208 31.7089 2.01-107%
DeNEnnNHeNRu 4 6 0.2208 271791 7.95-107%8
De NEnnNHeN Fr 4 8 0.2208 36.2388 4.28-10711
DeNEnnNHeNFrNRu 5 3 0.0287 104.3677 3.39-107%°
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Table 7

Long-distance agreement condition (mBERT, probeless).

Intersection Degree  Obs. overlap  Exp. overlap FE p
FrNRu 2 60 13.0208 4608 121-107%
HeNRu 2 42 13.0208 32256 1.7-10715
He N Fr 2 38 13.0208 29184 3.64-10712
EnNRu 2 37 13.0208 28416 2.14-1071
EnnFr 2 36 13.0208 27648 1.18-10710
En N He 2 26 13.0208 1.9968 1.18-107%
De NRu 2 52 13.0208 39936 1.28-10%
De N Fr 2 57 13.0208 43776 1.12-10731
De N He 2 36 13.0208 27648 1.18-10710
De N En 2 45 13.0208 34560 2.92-10718
HeNFrNRu 3 30 1.6954 17.6947 229 -10732
En N FrNRu 3 27 1.6954 15.9253 1.64-10%
EnnHeNRu 3 17 1.6954 10.027 159-10713
EnnHeNFr 3 17 1.6954 10.027  159-10713
De NFrNRu 3 39 1.6954 23.0031 1.25-108
De NHe NRu 3 26 1.6954 15.3354 5.85-10726
De N He N Fr 3 24 1.6954 141558 5.94-1072
De NEnnNRu 3 26 1.6954 15.3354 5.85-1072
De NEn N Fr 3 29 1.6954 17.1049 1.02-10730
De NEn N He 3 17 1.6954 10.027  159-10713
EnnHeNFrNRu 4 13 0.2208 58.888  2.19-1020
De NHe NFrNRu 4 18 0.2208 81.5373 5.93-10731
De NEnnFrNRu 4 22 0.2208 99.6567 3.45-107%0
De NEnnNHeNRu 4 13 0.2208 58.888  2.19-107%0
De NEnNHe N Fr 4 14 0.2208 63.4179 2.09 10722
De NEnNHeNFrNRu 5 10 0.0287 347.8924 1.29-107%
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Table 8

Short-distance agreement condition (XLM-R, probeless).

Intersection Degree  Obs. overlap  Exp. overlap FE p
FrNRu 2 16 13.0208 1.2288 2.12-107%
He N Ru 2 26 13.0208 1.9968 1.18-107%
He N Fr 2 15 13.0208 11520 3.11-1079
EnNRu 2 19 13.0208 1.4592  4.48-10702
EnNFr 2 47 13.0208 3.6096 3.12-107%0
EnnNHe 2 13 13.0208 0.9984 5.54.10
De N Ru 2 21 13.0208 1.6128 1.14-1072
De N Fr 2 37 13.0208 28416 2.14-10711
De NHe 2 10 13.0208 0.7680 8.71-107
De N En 2 38 13.0208 29184 3.64-10712
HeNFrNRu 3 5 1.6954 29491 2.59-107%2
EnNFrNRu 3 10 1.6954 5.8982 4.69-107%
EnNnHeNRu 3 5 1.6954 29491 2.59.107%2
En N HeNFr 3 9 1.6954 53084 3.5-10%
De N FrNRu 3 11 1.6954 6.4881 5.55-107%7
De NHe NRu 3 4 1.6954 23593 8.78-107%2
DeNHeNFr 3 4 1.6954 23593 8.78-1079%2
DeNEnNRu 3 10 1.6954 5.8982 4.69-1070°
DeNEnnFr 3 24 1.6954 14.1558 5.94-10723
De N En N He 3 5 1.6954 29491 2.59.107%2
EnNHeNFrNRu 4 4 0.2208 18.1194 6.82-107%
De NHe NFrNRu 4 4 0.2208 18.1194 6.82-107%
DeNEnNFrNRu 4 8 0.2208 36.2388 4.28-1071
De NEnnNHeNRu 4 4 0.2208 18.1194 6.82-107%
De N EnnNHeN Fr 4 4 0.2208 18.1194 6.82-107%
De NEnnNHeNFrNRu 5 4 0.0287 139.1569 2.13-107%8
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Table 9

Long-distance agreement condition (XLM-R, probeless).

Intersection Degree  Obs. overlap  Exp. overlap FE p
FrNRu 2 69 13.0208 52992  346-107%
He NRu 2 53 13.0208 40704 892-10%
He N Fr 2 47 13.0208 3.609 3.12-102%
EnNRu 2 61 13.0208 46848 5.01-107%
En N Fr 2 74 13.0208 56832  6.89-1078
En N He 2 35 13.0208 26880 6.17-10710
De NRu 2 61 13.0208 46848 5.01-107%
De N Fr 2 68 13.0208 52224  1.49.107%
De NHe 2 38 13.0208 29184 3.64-10712
De N En 2 69 13.0208 52992  346-107%
He N FrNRu 3 40 1.6954 23.593 1.36 - 10750
EnNFrNRu 3 58 1.6954 342098 1.77-1071
EnnNHeNRu 3 31 1.6954 18.2845  4.77-1073
En N HeN Fr 3 34 1.6954 20.054 2.78-107%
De NFrNRu 3 56 1.6954 33.0301 2.17-10786
De NHe NRu 3 33 1.6954 194642  1.66-1077
De NHe N Fr 3 33 1.6954 19.4642  1.66-107%
De NEnNRu 3 52 1.6954 30,6709 1221076
De NEn N Fr 3 62 1.6954 36.5691  4.19-107102
De NEnnHe 3 29 1.6954 17.1049  1.02-107%0
EnnHeNFrNnRu 4 31 0.2208 140.4253  2.94 .10
De NHe NFrNRu 4 31 0.2208 140.4253  2.94-107%
De NEnNFrNRu 4 51 0.2208 231.0223  1.99-1071%
De NEnnNHeNRu 4 27 0.2208 1223059  1.26-1072
De NEnNHe N Fr 4 29 0.2208 1313656  7.23-107°8
DeNEnnHeNFrNRu 5 27 0.0287 939.3093  5.53-1078
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Appendix 3. Long-distance Condition Downsampled
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Figure 9

Layer-wise performance of the logistic classifier (top) and N3 5s-way intersection statistics
obtained with LCA (middle) and probeless ranking (bottom) on the downsampled long-distance
agreement data.
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In this section, we report the results we obtained by downsampling the long-
distance condition to match the number of items available in the short-distance
dataset—224 in the training (80%) and 56 in the test set (20%). Given the rather limited
number of instances available in this condition, we decided to report in the article the
results obtained with the larger dataset. Nonetheless, because we also comment on the
short- vs. long-distance comparison, it is necessary to rule out the possible confound
of the different amount of training data.'* The peak of performance is obtained in the
same layers as in the non-downsampled analyses (layers 9 and 7 for mBERT and XLM-R,
respectively, see Figure 9a, 9b). The multi-set intersection analysis also shows a coherent
pattern of results with respect to what we reported above. Indeed, in the case of mBERT
the N, . 4-way intersections with the highest FE are Fr N Ru, Fr N Ru N (En & De),
and Fr N En N De N Ru, with Hebrew being absent in three combinations and French
appearing in all of them (see Figure 9c, Table 10). Similarly, in the case of XLM-R the
highest FE is obtained in De N Fr, De N Ru N (En @ Fr), and Fr N En N De N Ru (Figure 9d,
Table 11). Crucially, intersection sizes are consistently bigger in the downsampled long-
distance condition (Figure 9c, 9d) than in the short-distance condition (Figure 3a,3a)
across both model types.

Table 10

Downsampled long-distance condition, mBERT.

Intersection Degree Obs. overlap Exp. overlap FE p

Fr N Ru 2 46 13.0208 35328 3.11-107
He N Ru 2 22 13.0208 1.6896 5.20-107%
He N Fr 2 23 13.0208 1.7664 222.107%
EnNRu 2 37 13.0208 28416 2.14-10711
En N Fr 2 41 13.0208 3.1488 1.27-1074
En N He 2 24 13.0208 1.8432 8.90-107%
De N Ru 2 42 13.0208 32256 1.70-1071°
De N Fr 2 37 13.0208 28416 2.14-101
De N He 2 25 13.0208 1.9200 3.34-107%
De N En 2 41 13.0208 3.1488 1.27-10714
He N Fr N Ru 3 13 1.6954 7.6677 5.51-107%
EnNFrNRu 3 27 1.6954 15.9252  1.64-107%
En N He NRu 3 12 1.6954 7.0779 5.84-107%8
En N He N Fr 3 11 1.6954 6.4881 5541077
De N Fr N Ru 3 27 1.6954 15.9252  1.64-10%
De NHe N Ru 3 14 1.6954 82575 4.68-10710
De N He N Fr 3 13 1.6954 7.6677 5.51-107%
De N En N Ru 3 26 1.6954 15.3354 5.85-1072¢
De N En N Fr 3 23 1.6954 13.5660 1.69 - 10721
De N En N He 3 13 1.6954 7.6677 5.51-107%
En N He N FrNRu 4 9 0.2208 40.7686 7.79 -10713
De N He N FrN Ru 4 10 0.2208 452985 1.23-1074
De N EnNFrNRu 4 19 0.2208 86.0671 3.36-1078
De N En N HeNRu 4 10 0.2208 452985 1.23-1071
De NEn N He N Fr 4 9 0.2208 40.7686 7.79 -10713
De N En N He NFrN Ru 5 8 0.0287 2783139 3.13-10718

14 We thank the anonymous reviewers for bringing this issue to our attention.
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Table 11

Downsampled long-distance condition, XLM-R.

Intersection Degree  Obs. overlap Exp. overlap FE p
FrNRu 2 54 13.0208 29952 58510713
He NRu 2 34 13.0208 3.1488 1.27-1074
He N Fr 2 30 13.0208 20736 3.90-107%°
En N Ru 2 48 13.0208 3.1488 1.27-1074
En N Fr 2 48 13.0208 27648 1.18-10710
En N He 2 18 13.0208 1.9200 3.34-107%
De NRu 2 54 13.0208 3.6096 3.12-10720
De N Fr 2 57 13.0208 37632 2.62-107%2
De N He 2 26 13.0208 1.9968 1.18-107%
De N En 2 52 13.0208 33792 2.59.107Y
He N FrNRu 3 22 1.6954 10.6168 9.22-1071°
En N FrNRu 3 36 1.6954 12.3863 1.07-10718
EnNHeNRu 3 13 1.6954 11.7965 239-107Y7
En N He N Fr 3 15 1.6954 7.6677 5.50-107%
De N FrNRu 3 42 1.6954 15.9252  1.64-107%
De NHe NRu 3 19 1.6954 11.7965 2391071
De N He N Fr 3 21 1.6954 94372 250-10712
De NEnnNRu 3 38 1.6954 159252  1.64-10%
De N En N Fr 3 35 1.6954 14.7456 194 -107%
De N En N He 3 13 1.6954 8.8474 3591071
En N He N FrNRu 4 12 0.2208 498283 1.69-10716
De N He N Fr N Ru 4 17 0.2208 63.4179 2.09-10%
De NEnNFrNRu 4 30 0.2208 77.0074 9.49-107%°
De N EnNHeNRu 4 11 0.2208 58.8880 2.19-107%0
De N En N He N Fr 4 12 0.2208 49.8283 1.69-10716
De N En N He N FrNRu 5 10 0.0287 347.8924 1.29-107%
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Appendix 4. Pairwise Correlations in the Weight Matrices
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Figure 10

Pairwise correlation coefficients between the weights learned by the classifiers, divided by layer,

condition, and model type.
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