
Proceedings of the 10th Workshop on Argument Mining, pages 64–75
December 7, 2023. ©2023 Association for Computational Linguistics

64

Argument Detection in Student Essays under Resource Constraints

Omid Kashefi, Sophia Chan, Swapna Somasundaran
Educational Testing Service (ETS)

660 Rosedale Rd, Princeton, NJ, USA
{okashefi,schan,ssomasundaran}@ets.org

Abstract

Learning to make effective arguments is vital
for the development of critical-thinking in stu-
dents and, hence, for their academic and ca-
reer success. Detecting argument components
is crucial for developing systems that assess
students’ ability to develop arguments. Tra-
ditionally, supervised learning has been used
for this task, but this requires a large corpus
of reliable training examples which are often
impractical to obtain for student writing. Large
language models have also been shown to be
effective few-shot learners, making them suit-
able for low-resource argument detection. How-
ever, concerns such as latency, service reliabil-
ity, and data privacy might hinder their practi-
cal applicability. To address these challenges,
we present a low-resource classification ap-
proach that combines the intrinsic entailment
relationship among the argument elements with
a parameter-efficient prompt-tuning strategy.
Experimental results demonstrate the effective-
ness of our method in reducing the data and
computation requirements of training an argu-
ment detection model without compromising
the prediction accuracy. This suggests the prac-
tical applicability of our model across a variety
of real-world settings, facilitating broader ac-
cess to argument classification for researchers
spanning various domains and problem scenar-
ios.

1 Introduction

In today’s educational landscape, the development
of critical thinking and persuasive writing skills
holds significant importance. The ability to con-
struct compelling arguments is essential for effec-
tive communication and argumentative writing en-
ables students to express ideas clearly, present clear
evidence, and address counterarguments effectively.
These skills are vital for academic success, profes-
sional growth, and civic engagement (Farra et al.,
2015; Bertling et al., 2015). Therefore, having a
system to analyze and detect argumentation in stu-

dents’ writing would be essential for educators to
assess and provide feedback on students’ argumen-
tative skills and foster continuous growth in their
argumentative writing skills. Furthermore, by us-
ing the tool to evaluate their writing, students can
identify any weaknesses or gaps in their arguments
and make necessary revisions independently. This
promotes self-reflection and empowers students to
take ownership of their learning, improving their
critical thinking and communication skills.

However, the task of detecting arguments within
students’ essays poses several challenges due to
the nuanced nature of argumentation. Construct-
ing an argument involves presenting a “claim” and
supporting it with “premises.” However, claims
can take various forms, ranging from explicit state-
ments to implicit assertions that require inferential
reasoning. Similarly, premises may be stated ex-
plicitly or indirectly implied, further complicating
the process of argument detection.

Traditional supervised models for argument anal-
ysis often rely on large amounts of training data to
achieve satisfactory performance. Collecting and
annotating such data can be time-consuming and
resource-intensive, making it challenging to build
large training datasets that cover the diverse range
of argumentative patterns and structures present in
student essays. Moreover, the practical deployment
of large language models such as GPT (Radford
et al., 2019; Brown et al., 2020) and PaLM (Chowd-
hery et al., 2022) can be hindered by cost, latency,
and data privacy concerns.

To address these challenges, we introduced an
argument classification approach that combines the
inherent linguistic characteristics of argumentation
with advanced machine learning techniques. We
showed the efficacy of exploiting the natural lan-
guage inference (NLI) relationship between argu-
ment components to prime a pre-trained language
model for the argument detection task. By merging
this with a well-suited prompt-tuning strategy, we
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established a streamlined architecture that effec-
tively reduces the data and computation require-
ments of training an argument detection model
without compromising the prediction accuracy.

We evaluate the performance and generalizabil-
ity of our approach across two scenarios: one char-
acterized by availability of reliable training data,
and the other representing a resource-constrained
noisy domain more akin to real-world settings. In
both cases, our approach yielded competitive re-
sults, often surpassing the performance of resource-
intensive alternatives in classifying argument com-
ponents. This suggests the practical viability of our
model across a variety of real-world settings. We
believe that our approach has the potential to make
argument classification accessible to a wider range
of researchers and problem domains.

2 Argumentation as Entailment

Automated argument detection systems have the
potential to help teachers and students by offering
a consistent and objective means of evaluating stu-
dents’ work, providing them with timely feedback
to enhance their critical thinking and argumentative
skills. By automating the process of identifying
argument components like claims and premises,
educators can redirect their efforts toward other
crucial aspects of teaching and providing person-
alized support to students. However, developing a
reliable and accurate automatic system poses cer-
tain challenges. Natural language processing al-
gorithms must be sophisticated enough to compre-
hend the nuances of human language, including var-
ious writing styles and levels of proficiency. The
system must also recognize context and cultural
differences to avoid misinterpretations.

To address these challenges, we propose lever-
aging semantic relationships between argument el-
ements by framing the argument detection task as
natural language inference (NLI). NLI involves
discerning the semantic connection between two
sentences, where one sentence logically follows
(entails) from the other (van Benthem, 2008; Mac-
Cartney and Manning, 2009). This notion of entail-
ment and contradiction serves as a foundation for
enhancing the semantic representation of various
natural language understanding (NLU) problems,
including parsing, coreference resolution, and rea-
soning tasks (Bowman et al., 2015). Similarly, we
argue that the NLI framework can be effectively
extended to capture the semantic relationships be-

tween different components within argumentation.
For instance, a counter-claim may contradict the
main claim of an argument, or a supportive premise
might entail the corresponding claim (Cabrio and
Villata, 2013).

We believe that this formulation allows NLP
models to leverage their inherent understanding of
semantic relationships between logical elements to
recognize whether a sentence provides the neces-
sary support or context for a given argument com-
ponent, and facilitate the development of argument
component classification systems, even with a lim-
ited volume of training examples. However, em-
ploying the entailment paradigm for argument clas-
sification requires (a small set of) reliable labeled
training data and careful consideration of complex
structure of argumentation to ensure accurate and
robust results.

3 Proposed Approach

Given that a primary emphasis of this research lies
in addressing the challenges posed by resource-
limited and noisy conditions in student essay
argument detection, we naturally lean towards
the utilization of zero-shot/few-shot classification
methodologies. In Section 3.1, we discuss how to
leverage the inherent structure of zero-shot classi-
fication to improve the performance of argument-
detection models, and in Section 3.2, we discuss an
approach based on efficiently tuning prompts for
argument component classification using a small
set of training examples.

3.1 Entailment Tuning (ARG-NLI)

Zero-shot classification is a machine learning ap-
proach that allows a model to classify instances be-
longing to classes it has never seen during training.
Zero-shot classification in NLP is often approached
as an NLI problem, where the goal is to determine
the relationship between two sentences: a premise
(not to be confused with the premise in argumenta-
tion) and a hypothesis, categorized as “entailment,”
“contradiction,” or “neutral”. This framework can
be extended to zero-shot classification by casting
the classification task as an entailment problem,
where the input serves as the premise, and the hy-
pothesis corresponds to a descriptive representation
of the target class (Yin et al., 2019).

As we mentioned in Section 2, the relation be-
tween argument components can be represented as
entailment relations:
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• a premise “entails” the corresponding claim
(premise → claim)

• a claim “entails” the stance of the essay
(claim → stance)

• a counter-claim “contradicts” the
stance and claims of the essay (counter-
claim ⊥ stance)

• unrelated argument components are “neutral”
to each other

We believe further fine-tuning a zero-shot classi-
fier (i.e., a pre-trained transformer-based model
trained for NLI task (Bowman et al., 2015;
Williams et al., 2018)) on a small set of argu-
mentative training data orchestrated as the entail-
ment task (we refer to this as ARG-NLI) would
help the model better understand the semantic
relationship between different argument compo-
nents (i.e., between premise and claim, between
claim and stance, and between counter-claim and
claims/stances). By fine-tuning zero-shot models
through ARG-NLI, we anticipate improvements in
performance of such models on the task of argu-
ment component classification.

3.2 Prompt-Based Tuning (Bart-PEPT)

Large pre-trained language models like GPT (Rad-
ford Alec et al., 2018) and BERT (Devlin et al.,
2019) have achieved impressive results in NLP
benchmarks. However, fine-tuning these models
on downstream tasks requires a large dataset of la-
beled data, which may be a barrier for many NLP
tasks. In-context learning is an alternative approach
that allows large language models (LLMs) to learn
new tasks from a few examples, where a single
pre-trained model with fixed parameters is shared
across all downstream tasks (Radford et al., 2019).
This approach works by providing the model with
a prompt design for a given task. A prompt is a
hand-crafted piece of text that describes or provides
examples of the task, usually in natural language.
For example, to condition a model for sentiment
analysis, one could attach the prompt, “Is the fol-
lowing sentence positive or negative” before the
input sequence, “No reason to watch.”

Le Scao and Rush (2021) show that a prompt
may be worth 100 conventional data points, sug-
gesting that prompts can bring a giant leap in
sample efficiency; sharing the same frozen model

across tasks also greatly simplifies serving and al-
lows for efficient mixed-task inference. However,
task performance can be highly dependent on the
prompt design; seemingly trivial changes to the
prompt may affect the results. Prompt tuning is
an emerging research area that aims to address the
limitations posed by manually crafted prompts. In-
stead of relying on fixed prompts, this approach
leverages tunable prompts that are dynamically
generated from a small set of training examples.
Prompt tuning can improve sample efficiency and
enable the seamless integration of mixed tasks, fa-
cilitating more effective and versatile inference pro-
cesses (Schick and Schütze, 2020; Gao et al., 2020;
Qin and Eisner, 2021; Zhong et al., 2021; Li and
Liang, 2021; Liu et al., 2021; Zhao et al., 2021).

In addition to natural language prompts, LLMs
can also be primed by soft prompts. These soft
prompts are learnable vectors rather than pre-
existing vocabulary items (Qin and Eisner, 2021;
Zhong et al., 2021; Han et al., 2022). This mech-
anism allows for end-to-end optimization over a
training dataset, and for the prompt to serve as a
mechanism for condensing information from large
datasets (Lester et al., 2021).

Parameter efficient prompt tuning (PEPT)
(Lester et al., 2021) is a (soft) prompt tuning ap-
proach that focuses on optimizing only a small
subset of the model’s parameters, specifically the
prompt, while keeping the rest of the parameters
fixed. PEPT was initially introduced in the context
of the T5 model (Raffel et al., 2019) for text-to-text
problems. Lester et al. (2021) show that by just
tuning the prompt rather than fine-tuning the entire
model, T5 can achieve comparable performance on
generation and NLU tasks.

Inspired by this, we adapted a version of PEPT
to utilize Bart (Lewis et al., 2019) as the core trans-
former model and made slight modification by in-
corporating a linear classification head. This model
serves as our approach for few-shot classification
using smaller language models (SLMs). The over-
arching architecture of PEPT is illustrated in Fig-
ure 1. PEPT operates by attaching a tunable vector
of numbers to the beginning of the (encoded) in-
put, which functions as the prompt. During the
training process, the model parameters are frozen,
and gradient updates are only applied to this (soft)
prompt vector. Subsequently, the trained prompt is
concatenated to the beginning of each input during
inference to generate predictions.
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Figure 1: PEPT Model Structure (Lester et al., 2021)

4 Evaluation Methodology

In order to examine the practical viability of our
proposed low-resource argument classification ap-
proach in a variety of real-world settings, we eval-
uate the performance and generalizability of our
methods in two different scenarios: (i) a problem
domain characterized by an abundance of reliable
training data (Section 5.1), wherein the availabil-
ity of the data allows for training traditional su-
pervised models, and (ii) a resource-constrained
noisy domain more akin to real-world conditions
(Section 5.2), wherein LLMs as an effective low-
resource alternative to supervised training, may
seem a more suitable option to approach the prob-
lem. While we were able to carry out a small anno-
tation project to collect data for the middle school
domain, such annotations may not be feasible, es-
pecially if we wish to adapt the system to multiple
new domains.

Further information about these problem do-
mains can be found in Section 4.1. The detailed
overview of the baseline models we established
for both the supervised and zero-shot/few-shot
LLM training approaches, as well as the details
of our proposed low-resource argument classifica-
tion methods, are discussed in Section 4.2.

4.1 Problem Domains
4.1.1 Abundance of Reliable Data
In our first set of experiments we use the dataset
from Stab and Gurevych (2017), which we refer to
as SG17 in this work. This is a well-known, reli-
able dataset of argumentation annotations contain-
ing essays from “essayforum.com”, a site where
users submit their academic essays for feedback.

By leveraging this dataset, we can train tradi-
tional supervised models as benchmarks for top-
line performance for the argument classification
problem and allows us to assess the comparative ef-

SG17 ARG
train test train test

Claim 1,800 457 64 202
Premise 3,023 809 64 799

Table 1: Total number of samples in each class for
sentence-level datasets for Experiment 1 (SG17) and
Experiment 2 (ARG).

fectiveness of our proposed approach against these
traditional methods in an ideal scenario where reli-
able training data is available.

The statistics of class distribution of examples in
SG17 dataset is shown in Table 1. For simplicity,
we project the label of the clauses onto sentences
and use the dataset at sentence level in all of our
experiments. It’s important to highlight that there
are sentences that contain multiple clauses with
different labels (e.g., “CLAIM because PREMISE”).
However, these cases are comprising only about
2% of the dataset, wherein we assign the label of
the minority class to theses sentences to enhance
the diversity of the class distribution within our
sentence-level dataset.

4.1.2 Limited Noisy Data
A second set of experiments was conducted on
an in-house dataset of students’ essays, which we
refer to as ARG. We consider this our low-resource
and noisy domain and use these experiments to
demonstrate that our approach is suitable for such
real-world settings.

This dataset comprises of essays written by stu-
dents in grades 5 through 9 who reside in the United
States. These essays, along with the prompt, were
presented to eight annotators as part of the an-
notation project. Annotators were asked to pro-
vide a score along four different persuasive dimen-
sions (claim, counter-claim, premise, and persua-
sive strategy), and to select a text span as the ra-
tionale for that score. We consider these ratio-
nales as our argument components, and used a
remapping heuristic to project them to the binary
{Claim, Premise} classes (see Appendix A for
more details).

4.2 Argument Classification Models

In this section, we present the technical details
of our proposed low-resource argument classifi-
cation approaches. Furthermore, we outline the
supervised, SLM, and LLM-based baselines that
we have established as alternative methods.
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4.2.1 Supervised Models
We establish two supervised argument classifier
baselines as follows:

Bert-Sequence We use the HuggingFace (Wolf
et al., 2019) bert-base-uncased (Devlin et al.,
2018) model with a classification head to predict
whether a sentence is either a Claim, or a Premise.

Bert-BIO We adopt the model architecture in-
troduced by Alhindi and Ghosh (2021), which
employs a BIO classification scheme to iden-
tify and classify argument components. We
use bert-base-uncased as the base transformer
model and train a token-level classifier head on
top. This baseline aims to label each token as
B-claim, I-claim, B-premise, I-premise, or O.
For consistency in our evaluation, we incorporate a
label projection heuristic to map BIO prediction to
sentence-level labels, as discussed in Appendix B.

4.2.2 Large Language Models
To establish our LLM-based baselines, we utilize
the OpenAI GPT-3 models in zero-shot and few-
shot settings. In the zero-shot configuration, the
model relies solely on its pretrained knowledge
without any task-specific fine-tuning. In the latter
setup, we provide the model with a limited amount
of task-specific examples to adapt it to our argu-
ment detection task. It’s also important to note that
at the time of conducting this study, the newer GPT-
4 model was not publicly accessible, restricting our
experiments to the utilization of the GPT-3 version.

GPT3:Zero-shot We use text-davinci-001
via the OpenAI Completion endpoint1 with the
following prompt:

Classify the text as
{claim_label} or {premise_label}.
Text: {sentence}
Label:

For each sentence in the test set, we re-
place the placeholder in the prompt with that
sentence and feed it to the completion end-
point. We experiment with a couple differ-
ent values for claim_label ({Claim|Idea}) and
premise_label ({Premise|Support}) due to a
trait of generative models that “causes probability
to be rationed between different valid strings, even
ones that differ trivially” (Holtzman et al., 2021).

1https://openai.com/blog/openai-api

We then pick and report the result of the combina-
tion that performs best within each experiment and
problem domain.

GPT3:Fine-tuned The extensive pretrained
knowledge of LLMS enables them to adapt effi-
ciently to specific tasks or domains, even with a
relatively small number of training examples, mak-
ing them a potentially suitable low-resource base-
line for argument detection tasks. Accordingly, we
fine-tuned a GPT3-DaVinci model via the OpenAI
endpoint using 64 randomly sampled sentences
from each class and obtained predictions from the
completions endpoint.

4.2.3 Smaller Language Models
Bart-MNLI:Zero-shot We use the HuggingFace
port of facebook/bart-large-mnli out of the
box as our zero-shot baseline. This is a checkpoint
for the Bart-large model (Lewis et al., 2019) after
training on the MultiNLI (MNLI) dataset (Williams
et al., 2018). Similar to the GPT3:Zero-shot base-
line, we used a simple prompt template of:

This sentence is {label}

Again, we experiment with a couple differ-
ent values for claim_label ({Claim|Idea}) and
premise_label ({Premise|Support}). Our ex-
periments revealed that employing the labels
{Idea|Support} yielded the the most promising
and robust results, so we present and discuss the
results of this label configuration in this study.

Adjustment for Bias. The language models, in-
cluding our Bart-MNLI:Zero-shot baseline, may
exhibit biases towards certain values within the
answer space. For example, there could be an im-
balance in the training data, resulting in a higher
likelihood of predicting certain answers, such as
“positive”, over others like “negative”.

To address this issue of prompting bias, we im-
plemented a threshold adjustment strategy as sug-
gested by Sun et al. (2022). We initiated this pro-
cess by determining the probability of an empty
input (x = “”) being classified as “claim” by query-
ing the model with the prompt:

[x] is an idea

This probability value serves as the basis for es-
tablishing the threshold used to categorize inputs
as claims. For instance, if the probability of being
claim for the empty input be 0.63, any input with

https://openai.com/blog/openai-api
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a probability of lower than 0.63 would no longer
be classified as a claim, whereas any value above
0.5 would have been categorized as such prior to
the bias adjustment. This strategy has the potential
to enhance the fairness, accuracy, and reliability of
our zero-shot baselines, making them more equi-
table and dependable classifiers.

4.2.4 Our Proposed Models
ARG-NLI In order to investigate the effective-
ness of using the entailment formulation of argu-
ment classification problem as we proposed in Sec-
tion 3.1, we randomly picked a few essays from the
training datasets and created the entailment pairs
for the premises and related claims, and claims and
major claims. The SG17 dataset (Section 4.1.1)
contains relation annotations in the form of (source,
target) tuples, where the source claim/premise ei-
ther supports or attacks the target claim/premise.
An attacking claim is also known as a counter-
claim. In addition to claims and premises, major
claims that express the writer’s stance towards the
prompt are also annotated. We used this informa-
tion to create the NLI representation of argumenta-
tive annotation of claim and premises in SG17, as
follows:

• claims entail major claims in the same essay

• premises entail their related claim

• counter-claims contradict their related major
claim

• premises of an essay are neutral towards the
claims of other essays

Our in-house ARG dataset (Section 4.1.2) does
not have the relation annotations so we used a sim-
ple heuristic to relate the argument components:

• claims within an essay entail one another

• premises entail claims within the same para-
graph

• counter-claims contradict all the claims in
the same essay

• premises of an essay are neutral towards the
claims of other essays

After creating the NLI representation of ar-
gumentation datasets (pair of sentences with ap-
propriate entailment label), we use them to fine-
tune the same Bart:MNLI:Zero-shot we used

in Section 4.2.3. We then used the fine-tuned
model in zero-shot classification fashion– feed in
a single sentence and prompt the model to deter-
mine whether the input sentence is a claim, or a
premise?

Bart-PEPT As mentioned in Section 3.2, we
developed a modified version of the model in-
troduced by Lester et al. (2021) to operate on
facebook/bart-large-mnli of HuggingFace for
“classification” tasks as our approach for few-shot
classification using SLMs.

ARG-NLI + Bart-PEPT This variation of Bart-
PEPT uses the argument-NLI finetuned version of
the Bart we developed (a.k.a, ARG-NLI) as the core
transformer model; a prompt is then tuned on top
of this base model.

5 Experiments

5.1 Exp. 1: Large Reliable Training Data

In this experiment, we use the SG17 dataset de-
scribed in Section 4.1.1 to evaluate our model in a
scenario where a large corpus of reliable training
data with argument annotation is available.

The anticipation is that supervised models
will excel in the task of distinguishing between

“claim” and “premise” sentences within this con-
text. Therefore, our main objective of this is to ex-
plore the comparative capabilities of our proposed
low-resource alternative models in relation to the
well-established supervised training paradigm.

We trained all argument classifier models on
the SG17 train set described in Table 1. The
Bert-Sequence, and Bert-BIO baselines are
trained on the entire training set of the SG17,
which consists of 4.8K sentences with 115K to-
kens. The zero-shot baselines (GPT3:Zero-shot
and Bart-MNLI:Zero-shot) are not exposed to
any training examples. The GPT3:Finetuned and
Bart-PEPT models are trained with 64 claim ex-
amples and 64 premise examples from the training
set. For entailment tuning for ARG-NLI model, we
randomly picked 20 essays from the train set and
created the argument component pairs of “entail-
ment” and “contradiction” examples.

Overall, we fine-tune the Bart-MNLI model with
700 argumentative entailment examples and eval-
uated that as a zero-shot classifier on the test set
of SG17. For more details on our argumentative
entailment dataset please refer to Appendix D.
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Model SG17 ARG
Supervised

Bert-Sequence 72% 66%
Bert-BIO 69% 62%

L(arge)LM
GPT3:Zero-shot 61% 56%
GPT3:Finetuned 66% 62%

S(mall)LM
Bart-MNLI:Zero-shot 52% 51%

Our approach
ARG-NLI 61% 59%
Bart-PEPT 70% 72%
ARG-NLI + Bart-PEPT 73% 77%

Table 2: Macro-F1 scores for argument classification
across various models and training paradigms for Ex-
periment 1 (SG17) and Experiment 2 (ARG). The bold-
faced numbers indicate the best performing models.

5.1.1 Results

Table 2 shows the macro-F1 score of our models
in classifying 1.3K argument-related sentences of
the SG17 test set as either “claim”, or “premise”.
As expected, both supervised baselines are capa-
ble of reliably predicting the correct label for the
argument components within this dataset, with the
sequence classifier baseline (F1 = 72%) performs
better than the token classifier baseline (F1 = 69%).

Both zero-shot baselines yield sub-par perfor-
mance compared to their counterparts. Also in line
with our expectations, the LLM-based baseline out-
performed the SLM-based baseline (61% versus
52%). These results highlight the challenging na-
ture of argument classification, indicating that dis-
tinguishing between claims and premises involves
subtleties beyond what can be achieved through
simply prompting pre-trained transformers. In-
corporating argument entailment tuning (ARG-NLI)
leads to a substantive 9% enhancement over the
SLM zero-shot baseline (61% vs. 52%), indicating
that priming models with the entailment relation-
ship between argument components can make them
better zero-shot learners for the task.

Fine-tuning LLM on the task with 128 training
examples led to a 6% performance increase com-
pared to the baseline achieved by the zero-shot
LLM. However, with the same number of train-
ing examples, our Bart-PEPT approach achieved
a remarkable F1 performance of 70%, trails the
best-performing supervised alternative by only 2%,
even though the latter is trained on a corpus over

35 times larger. Furthermore, once we combined
our argument NLI fine-tuned model with PEPT
(ARG-NLI + Bart-PEPT), we achieve a substantial
21% improvement over the SLM zero-shot baseline
and 3% over our Bart-PEPT model. This model
surpasses the top-performing supervised model in
terms of F1 performance, despite using only a frac-
tion of the training data.

5.2 Exp. 2: Limited Noisy Training Data

In this experiment, we evaluate our model on the
ARG dataset (described in Section 4.1.2), a sce-
nario more akin to real-world conditions, wherein
a large corpus of reliable training data is not avail-
able. In this setting, we annotate about 1.2K argu-
mentative sentences of student’s essays. We used
128 of these examples for training the models and
held-out the remainders for testing.

Since there is not enough data to train a robust
supervised model, we anticipate that traditional su-
pervised models will fail to accurately distinguish
between “claim” and “premise” sentences in this
experiment. Therefore, this experiment would help
us to assess the applicability of our proposed low-
resource argument classifier approaches as an al-
ternative to data and resource intensive supervised
and LLM baselines.

We trained the Bert-Sequence,
GPT3:Finetuned and Bart-PEPT models on
the 64 claim examples and 64 premise examples of
our in-house argumentative student writing dataset
ARG. The Bert-BIO baseline a variation of ARG
dataset with token-level annotation, containing
68 claim and 96 premise entities. Appendix C
presents the BIO statistics of ARG dataset.
The zero-shot baselines (GPT3:Zero-shot and
Bart-MNLI:Zero-shot) are not exposed to any
training examples. In addition, we used the ARG
training essays to create 700 argument component
pairs with entailment labels. We then leverage this
dataset to finetune our proposed ARG-NLI model.

5.2.1 Results
The numbers under the ARG column of Table 2 are
showing the macro-F1 score of different models in
classifying 1K argument-related sentences of our
ARG test set as either “claim” or “premise”.

Although both the sequence and BIO supervised
classifier baselines are still performing in a rea-
sonable range (62% and 66%, respectively), we
observe a noticeable drop (5% on average) in per-
formance compared to the previous experiment,
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which was conducted on a larger training dataset.
These outcomes corroborate that supervised ap-
proaches rely heavily on access to high-quality
training data, a requirement that does not consis-
tently align with resources available for various
real-world NLP problems.

Consistent with previous experiments, zero-shot
baselines continue to show relatively poor perfor-
mance on this dataset (51% and 56% for SLM and
LLM zero-shot baselines respectively). This out-
come, however, is inline with expectations, as these
baselines are not trained with examples from the
target domain. Our proposed argumentative entail-
ment fine-tuning approach (ARG-NLI) exhibits an
8% improvement over the SLM zero-shot baseline
(59% vs. 51%). These consistent observations
from both of our experiments demonstrates the ef-
fectiveness of pre-training (smaller) foundational
models with the inherent entailment structure of
argument elements. This approach helps models
comprehend the semantic structure of argumenta-
tion more thoroughly, leading to improved perfor-
mance as zero-shot learners for the task.

Fine-tuning LLMs with domain-specific train-
ing data shows certain performance enhancements
compared to their zero-shot counterparts (62% vs.
56%). However, similar to the previous experiment,
these improvements remain limited. Despite the
relatively high costs associated with using LLMs,
their performance as a low-resource solution still
falls short of being viable for production deploy-
ment in the argument classification task.

As shown in Table 2, our prompt-based tuning
approach Bart-PEPT outperformed all other meth-
ods in this low-resource setting (F1=72%). More-
over, once it uses our ARG-NLI model as the core
foundation models, we observe an additional 5%
performance boost. These outcomes underscore the
suitability of our proposed approach as a reliable
and accurate method for argument classification
in low-resource domains. Our approach achieves
results on par with data and resource-intensive su-
pervised and LLM alternatives within resource-
abundant contexts, while outperforming them in
problem domains lacking such extensive training
corpora. This positions our approach as a versatile
choice for a broader range of problems.

5.3 Latency Analysis

While LLMs can yield reasonable results with a
small number of training examples, fine-tuning

Models Latency (ms)
Bert-Sequence 0.66
Bert-BIO 22.46
GPT3:Finetuned 19.74
Bart-PEPT 7.6

Table 3: Average inference time of selected argument
classifier models.

them demands extensive parameter updates, con-
suming substantial time and computation. For
instance, the fine-tuning of the GPT-3 “davinci”
model entails updating over 170B parameters,
whereas our Bart-PEPT model requires modify-
ing only 40K parameters within the prompt (the
model parameters frozen). This raises practical
concerns regarding the latency when working with
these models. Therefore, we conducted a com-
parison of inference latency among the methods
discussed in this study, as shown in Table 3.

Latency measurements were conducted on the
ARG test set, comprising 1K sentences with an
average of 17 tokens per sentence. For transformer-
based models, we use a single Tesla K20Xm GPU
with 22.5 GiB of RAM and a batch size of 32. For
GPT-3 we batched up to 20 requests, the current
maximum allowed by the completion endpoint.

6 Conclusion

In this work, we introduced an argument classifi-
cation strategy that effectively leverages the logi-
cal entailment relationship within argument com-
ponents, along with a parameter efficient prompt-
tuning technique. Our approach demonstrates re-
markable efficiency in reducing data and computa-
tional requirements for training while maintaining
high prediction accuracy. Its robust performance
across diverse scenarios highlights its practical ap-
plicability in real-world settings, making argument
classification more accessible to researchers across
various domains. Notably, the model’s ability to
achieve competence with a minimal number of ex-
amples per class sets it apart from traditional data-
intensive supervised alternatives.

Additionally, unlike expensive and time-
intensive LLM-based solutions, our proposed ap-
proach can reliably operate on smaller foundation
models such as Bart, offering expedited training
and inference, making it a cost-effective and effi-
cient solution suitable for in-house deployment and
enjoying the added benefits of data privacy.
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Limitation

The focus of this study lies in argument com-
ponent classification. A more practical applica-
tion would entail a pipeline system that initially
distinguishes argumentative sentences from non-
arguments—potentially through a separate predic-
tive model. Then, our approach in this study could
offer fine-grained insights into the usage and devel-
opmental stages of argumentation within student
writing at the claim and premise levels. It is also
important to note that while our method stream-
lines requirements, it still requires a small amount
of data for model tuning.

As future work, we intend to expand our ef-
forts towards multi-class prediction, incorporating
the “none-argument” category as a potential label.
This expansion necessitates re-annotating our in-
house dataset using an argumentative annotation
scheme, as we suspect that rationale-based anno-
tation schemes tend to classify argumentative el-
ements as non-arguments, inviting the need for a
more specific annotation guideline.

Furthermore, our company’s data privacy policy
prohibits us from publicly releasing student-written
essays. Unfortunately, we are unable to make our
in-house argument dataset (ARG) mentioned in this
work available to the public.

Ethics Statement

While we strive to contribute positively to the field
of argument detection, we are fully aware of the
ethical dimensions and potential challenges associ-
ated with deployment of AI models, particularly in
education domain. We recognize the potential for
representational harm (Suresh and Guttag, 2021),
which is complex and often challenging to quan-
tify. Biases can emerge from multiple sources, in-
cluding annotators, system designers, and the data
itself, and it can shape how claims, premises, and
arguments are defined and interpreted (Gaskins,
2023). Despite our efforts to source a diverse range
of student essays and annotators, biases within
the data are possible. We are also aware of well-
documented biases in language models like Bert
and GPT (Monarch and Morrison, 2020). These
biases could inadvertently manifest in our system’s
output, potentially perpetuating and amplifying in-
equalities.

To mitigate these risks, we have taken several
steps. Our primary intention is to assist students
in becoming better writers and reduce the burden

on teachers, fostering formative assessment. We
require teacher approval before presenting feed-
back to students, thereby minimizing representa-
tional harm by ensuring that feedback aligns with
educational objectives. Additionally, we commit
to avoiding the use of our system in high-stakes
testing or consequential decisions, thereby reduc-
ing allocational harm. We remain committed to
continuous evaluation, refinement, and transparent
communication of the ethical considerations in our
work, with the ultimate goal of fostering responsi-
ble and equitable AI adoption in education.
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A ARG Annotation

We conducted the annotation study on the Inception
platform (Klie et al., 2018). In total, eight annota-
tors double-annotated 300 essays after completing
a calibration exercise that involved annotating 30
essays. Annotators gave each essay a score along
four persuasive dimensions (claim, counter-claim,
premise, and persuasive strategy). For each dimen-
sion, the annotators selected text spans that served
as the rationale or explanation for their score, and
we take these spans to be our argument compo-
nents. A span was counted if it was selected by any
annotator, and spans were combined when more
than 10% tokens overlap.

After the annotation was completed, one of
the authors examined ten essays and created
rules to map rationale labels to the binary
{Claim, Premise} classes. In addition, based
on our review of the data, we decided to only count
double-annotated premise spans and remove any
essays that contain no claims. The rules for remap-
ping are as follows:

• claim → claim

• counter-claim → premise

• claim, premise → claim

• persuasive strategy → discard

B BIO Label Projection

In the Bert-Sequence baseline every sentence re-
ceives only one label (either claim or premise),
while the BIO baseline can predict different seg-
ments of the sentence as different argument com-
ponents. To ensure a uniform sentence-level pre-
diction scheme across baselines, we incorporate a
label projection policy as follows:

• when all predicted argument components
within a sentence are classified as the same
class, we project that prediction to the entire
sentence
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• if a sentence contains argument components
with different classes, we label the sentence
with the label of the minority class (in our
experiments, the “claim” class)

C Token-Level Annotation

Table 4 shows the token-level class distribution of
the SG17 and ARG examples, used to train the
supervised token classifier baseline.

To make the token-level dataset for our low-
resource ARG examples comparable to the
sentence-level dataset described in Table 1, we in-
cluded a similar amount of claims and premises.
The sentence-level dataset contains 64 claims and
64 premises, while the BIO dataset contains 68
claim and 96 premises entities. For both SG17
and ARG, we excluded O spans from the test set,
as only claims and premises are included in the
sentence-level experiments.

Label SG17 ARG
train test train test

B-claim 1.8k 573 62 527
I-claim 25k 6.2k 1.1k 3.8k
B-premise 3k 833 87 585
I-premise 50k 10.6k 1.8k 7.5k
O 35k - 1.4k -

Table 4: Total number of samples in each class for BIO
datasets for Experiment 1 (SG17) and Experiment 2
(ARG).

D Entailment Argument Dataset

Table 5 shows the class distribution of the 700 NLI
examples we created from SG17 and ARG datasets,
used to train our ARG-NLI fine-tuned zero-shot
model.

Label SG17 ARG
train dev train dev

Entails 263 56 225 56
Contradicts 17 4 27 7
Neutral 280 60 308 77

Total
560 140 560 140

700 700

Table 5: Total number of argument entailment samples
in each class for Experiment 1 (SG17) and Experiment
2 (ARG).

E Hyperparameters

We used the default settings of HuggingFace trans-
formers and OpenAI for most of the parameters
except the following:

• Bert-Sequence

– eps=1e-8
– lr = 2e-5
– max_length = 256

• Bert-BIO

– lr = 5e-5
– max_seq_length = 512

• LLM zero-shot

– temperature = 0
– top_p = 1
– max_tokens = 16

• LLM fine-tuned

– temperature = 0
– top_p = 1
– max_tokens = 2

• Our approach (Bart-PEPT)

– model_max_length = 1024
– prompt length = 20 tokens
– lr = 2e-5 (significantly different from the

value Lester et al. (2021) used)


