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Abstract
This paper describes our contribution to the
PragTag-2023 Shared Task. We describe and
compare different approaches based on sen-
tence classification, sentence similarity, and se-
quence tagging. We find that a BERT-based sen-
tence labeling approach integrating positional
information outperforms both sequence tagging
and SBERT-based sentence classification. We
further provide analyses highlighting the poten-
tial of combining different approaches.

1 Introduction

This paper describes the CATALPA_EduNLP entry
to the First Shared Task on Pragmatic Tagging of
Peer Reviews (Dycke et al., 2023). In this task,
sentences within peer-reviews for academic arti-
cles from various domains are assigned a label ex-
pressing the pragmatic function of that sentence,
namely Recap, Strength, Weakness, Todo, Structure
or Other (Kuznetsov et al., 2022).

We experiment with various approaches pre-
sented in Section 3 and 4. As there is no clear win-
ner among them (see results in Section 5), we fur-
ther focus on comparing them to see under which
conditions each setting works best (Section 6).

2 Datasets

We participated in all three evaluation setups of the
Shared Task, which provided different amounts of
training data. In the full-data setting, 117 reviews
with 2326 sentences are provided, from which we
split ten reviews to serve as our internal validation
data. In the low-data setting, 33 reviews with 739
sentences are used (we take five of these reviews
as our internal testing data or perform four-fold
cross-validation). In the no-data setting, we use
our internal test data from the full-data setting for
evaluation.

The Shared Task provides two additional data
sets: F1000raw contains unlabeled data (7423 re-
views from the same domains as the training data.

To use this data, we first extract the domain for
each article via a lookup of the respective gateway
on https://f1000research.com. Since a large
number of articles cannot be assigned any domain,
we only use articles for which we can assign a do-
main, yielding 269 additional iscb, 144 rpkg, 445
diso, 525 case and 227 scip reviews. The ARR-
22 dataset consists of 684 labeled reviews coming
from a different domain and using a different an-
notation scheme (Dycke et al., 2022). While some
of the mappings are straightforward (paper sum-
mary to Recap, summary of strengths to Strength,
summary of weaknesses to Weakness), we mapped
comments, suggestions and typos to Todo and found
no correspondences for Structure and Other.

3 Approaches with Training Data

We explore three complementary approaches, fol-
lowing similar tasks of identifying sections in sci-
entific articles or abstracts that cast the problem as
one of sentence classification (Mullen et al., 2005;
Teufel and Kan, 2009) or sequence labeling (Hiro-
hata et al., 2008): A BERT-based sentence classi-
fication model (Liu et al., 2019), a Longformer-
based sequence tagging model (Beltagy et al.,
2020), and a SBERT-based model (Reimers and
Gurevych, 2019) to compute semantic similarity
between sentences. The total training and inference
time was about 22 hours on a single GPU.

3.1 BERT-Based Sentence Classification

This set of approaches are extensions of the
Roberta-based baseline released with the Shared
Task training data. In the full-data setting, apart
from experimenting with a different variant of pre-
trained models (roberta-large) (Liu et al., 2019),
we also included positional information (+ Pos.),
by providing either the absolute position of the
respective sentence within a review and the rel-
ative position by normalizing the former by the
number of sentences in that review. Besides, the

https://f1000research.com
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one-hot-encoded review domain is also used as an
additional feature (+ Domain). These additional
features are concatenated to the sentence embed-
ding as an array. The combined representation was
used to train the classification layer. To provide
contextual information, we append the full review
text after the sentence to be classified after a special
separator token in the + Context setting.

Reviews often contain domain-specific words
occurring mainly in one domain, but not the others
such as “malaria" in the “diso" domain or “cyto-
browser" in “iscb". To improve the cross-domain
generalizability of the model, we compute for each
word (in its original form) a metric inspired by
tf-idf where we set the frequency in the domain
(using the F1000raw dataset to have a broader data
basis) in relation to its general frequency provided
by the wordfreq Python package1 in its default
setting. We replaced words exceeding a certain
threshold (Equation 1) with a special <term> to-
ken. In addition, tokens containing the string “http"
were replaced by a special <link> token and tokens
without any letters by a <non_letter> token. We
named this approach as + Word Normalization.

domain frequency

general frequency + 0.5
> 1 (1)

Combining the approaches above, we made a
domain-specific model selection where sentences
from a certain domain are scored by the model that
performed best on this domain during validation.
The result is reported as Best.

Using the Additional ARR-22 data We exper-
imented with the ARR-22 dataset as additional
training data (+ ARR), but found the label distri-
bution to be very different from the main training
data. (The majority class in ARR-22 is “weak-
ness", while “Todo" is the dominant class in the
full data.) Therefore, we sampled the mapped el-
ements in ARR-22 dataset according to the class
distribution in the full-data. No further filtering or
normalization was applied to this dataset.

3.2 Longformer-based Sequence Tagging
This approach follows Ding et al. (2022) to inher-
ently integrate a sentence’s context into the pre-
diction. We applied it on the full data setting.
Since it shows no advantage compared to the other
sentence classification approaches, we didn’t ap-
ply it to other settings. It utilizes tokens with

1https://pypi.org/project/wordfreq/

gold-standard annotation represented by Inside-
Outside-Beginning (IOB) tags. For example, the
gold-standard annotation Recap: “The paper pro-
poses ..." will be represented as B-Recap: The,
I-Recap: paper, I-Recap: proposes, ... These la-
beled tokens are input into a pretrained Longformer
language model (longformer-large-4096) for token
classification. We trained for 10 epochs and then
used the model with the best performance on the
validation data to predict a label for each token
in the test data. Each sentence got the most fre-
quent token label assigned. We also tested the +
Word Normalization approach from the sentence
classification in this setting.

3.3 SBERT-Based Sentence Classification

In this approach, we follow the similarity-based
content scoring methodology described in Bexte
et al. (2022) and Bexte et al. (2023), making predic-
tions based on the most similar reference examples
and fine-tuning an SBERT model (Reimers and
Gurevych, 2019) for 10 epochs with a batch size of
8, otherwise sticking to default values.

In the full-data setting, we train eight separate
models and take their majority vote to obtain pre-
dictions on the test data. Five of these models are
experts for one of the five domains in the dataset.
These are therefore trained on the respective subset
of the training data (fine-tuning the All-MiniLM-
L6-v2 base model). The remaining three models
are trained across all domains: An overall model
builds training pairs across all training instances,
while the training instances of two within-domain
models (one based on All-Mini-LM-L6-v2, the other
on All-MiniLM-L12-v2) are restricted to pairs of
sentences from the same domain.

We pursue the same similarity-based approach in
the low-data setting: First, we train a single model
on our internal split of the limited training data.
We then further pursue a 4-fold cross-validation.
We found it beneficial to augment the training data
using the auxiliary data from F1000Research. For
each of our models from the cross-validation, we
select additional reference sentences in the follow-
ing way: For each target label, we include the 15
nearest neighbors, i.e., those we find the highest
similarity to an existing reference answer to. This
is done for three rounds, after which the result-
ing extended set of reference data is used to make
predictions on the test data by taking the label of
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the most similar reference element2 To prepare our
submission to the challenge, we again perform a
majority voting, taking the four votes of the aug-
mented models from our cross-validation and that
of the model trained on our internal train-test split.

4 Zero-Shot Approaches

This section describes our no-data approaches.

4.1 Clustering

Using a pretrained SBERT model (All-MiniLM-
L12-v2), we encode representations of the target
labels to serve as the centroids of clusters. These
representations are derived from the label descrip-
tions the challenge organizers gave and a set of at
most three keywords per label (see Appendix A.1).
Each answer from the testing data is then assigned
to the label representation with the highest cosine
similarity, thus predicting the respective label for
this test instance.

4.2 GPT

We also explore using large commercial language
models in a zero-shot setting. We prompt the
GPT3.5 through the openai API by providing label
definitions in the Shared Task description. As a
post-processing step, we replace labels not corre-
sponding to one of the six categories provided with
Other.

5 Results

Following the evaluation scheme in the Shared
Task, we report macro-averaged F1-scores per do-
main for our own data split and only an overall
F1-score for the challenge test set.

Table 1 shows the results of our internal splits of
the data. For the full-data setup, we see that adding
additional information like position, domain, or
context to the BERT-based model does only im-
prove the results for individual domains but leads to
performance drops on others, so there is no substan-
tial improvement overall (column mean). However,
if we select per domain the setup performing best
on the training data, we see an overall improvement
on the test data (.88 vs .82 for the baseline model.)
Adding the ARR data as additional training data
led to decreased performance, although sampling
the ARR data to a similar distribution to the main

2We also experimented with additional fine-tuning using
this augmented training set but found this not helpful.

Domain
case diso iscb rpkg scip mean

Full-data

BERT-based
Roberta-large .80 .87 .88 .75 .77 .82
+ Word Normalization .87 .88 .94 .68 .56 .79
+ Pos. .76 .85 .92 .74 .77 .81
+ Domain .89 .79 .82 .69 .81 .80
+ Context .87 .83 .83 .75 .76 .81
+ Pos., Context .87 .82 .94 .83 .70 .83
+ Pos., Context, Domain .83 .81 .88 .72 .85 .82
Best .89 .88 .94 .83 .85 .88

+ ARR .60 .72 .78 .61 .67 .68
+ ARR Sampled .68 .66 .78 .60 .78 .70

Sequence Tagging .67 .65 .72 .56 .51 .62
+ Word Normalization .59 .65 .77 .56 .53 .62

SBERT-based
ALL .82 .78 .83 .64 .85 .78
ALL_large .71 .74 .86 .67 .70 .74
ALL_cross .84 .74 .77 .67 .77 .76
Domains .75 .76 .66 .74 .80 .74
Voting .88 .81 .84 .67 .77 .79

Low-data

BERT-based
Roberta-large .10 .17 .19 .11 .24 .16

SBERT-based
Train-test split .52 1.0 .70 .91 .68 .76
4-fold CV .71 .71 .77 .66 .69 .71
4-fold CV + aux .74 .72 .80 .65 .74 .73

No-data

SBERT-based .19 .33 .17 .22 .15 .21
GPT .53 .54 .46 .24 .42 .44

Table 1: F1 results on our internal validation split.

Setting Submission mean

Final Roberta large + Pos., Text .81
Full-data Roberta large + Pos., Text .82
Low-data SBERT 4-fold voting .75
No-data SBERT clustering .22

Table 2: F1 results on challenge test data.

training data helped somewhat. Both the SBERT-
based model and the sequence tagging approach
did not reach the performance of the BERT-based
model in the full-data setup (.62 and .79 vs .88 in
the best configuration).

However, the situation changes drastically when
the amount of available training data is reduced
(low-data). In this scenario, the BERT-based
model could hardly learn anything while the
SBERT-based model reached a performance close
to the full-data setup. Note that the results
are not directly comparable across the different
dataset variants, as the test data is not identical.
Performance in the no-data setting is unsurpris-
ingly again reduced, with GPT outperforming our
SBERT-based clustering method.

Table 2 shows the methods that led to the best
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Figure 1: Per-label precision and recall of our different methods on our internal test data of the full-data setting.
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Figure 2: Venn diagram of how many sentences are
classified correctly by which methods.

performance on the challenge test data in the differ-
ent settings. Unfortunately, our Best approach on
the validation set did not beat the +Pos., Context
approach on the test data in the full-data setting.
Therefore, we only submit the +Pos., Context ap-
proach in the final round.

The test data in the final setting contains unseen
data from a "secret" domain, which might explain
the slight performance drop (.82 vs. .81). But
our approach reaches the second-best performance
on the data from the "secret" domain with an F1-
score of 0.79 on the leaderboard, indicating its good
generalization ability.

In the low-data setting, our SBERT-based
method performs better than the BERT-based meth-
ods, which consists of the results observed on
the validation set. The no-data performance of
our SBERT-based method is slightly better on the
test set than the average on our validation splits.
(Following the competition rules regarding repro-
ducibility, we did not submit our GPT results since
the model requires a paid API.)

6 Analysis

The different approaches produce results in the
same ballpark so that one may wonder if they can
be used interchangeably. To investigate this we
compare the results by checking four conditions:

The percentage of sentences that all four models
judge correctly, the percentage that none of the
models classified correctly, which proportion is
classified correctly in a majority setting and the
percentage of correctly classified sentences that
could be reached in an oracle condition if we knew
to which model a sentence should be passed, i.e.
the percentage of sentences judged correctly by at
least one model.

For this analysis, we use the respective best-
performing model variant on our internal split of
the data provided for the full data setting. We an-
alyze all four approaches we took: Sentence clas-
sification using Roberta, similarity-based classifi-
cation with SBERT, sequence tagging using the
longformer architecture, and zero-shot application
of GPT. Figure 2 gives an overview of how many
sentences are correctly classified by which method.
The oracle condition sums up to 94% of test in-
stances being assigned the correct label, meaning
that the remaining six percent are classified cor-
rectly by none of the methods. About a third (36%)
of the data is correctly solved by all four models,
and a majority voting over their predictions comes
up to 83% accuracy, which is 1% lower than what
Roberta achieves on its own.

Overall, GPT seems the most distinct from the
other methods: It has the highest number of 11
sentences that none of the other methods can clas-
sify correctly. Such sentences often have the la-
bel Other, for example “Dear Authors". However,
there are 66 sentences for which all other methods
except GPT predict the correct label. GPT rarely la-
beled instances of “Recap" correctly and often mis-
labeled “Structure" as “Other", such as “Reviewer
response for version 1". Figure 1 breaks down
performance for the individual labels, revealing
GPT to be much worse in both precision and recall
when it comes to Structure, and showing especially
low recall for Recap. All methods have the most
difficulty with sentences labeled Other, with our se-
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quence tagging approach having both precision and
recall of zero. The overall best-performing Roberta
method especially shows superiority in terms of
high and balanced precision and recall values for
the labels Strength, Todo, and Weakness.

7 Conclusion

We have presented experiments using a variety of
very different approaches. The comparison shows
that they behave quite differently and that a sensible
combination of approaches yields further improve-
ments. Future work therefore has to determine
which approach is most suitable for a given item to
be classified.
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A Appendix

A.1 Keywords for Zero-Shot Clustering Label
Assignment

’Todo’: [’should’, ’could’, ’need’], ’Strength’:
[’good’, ’strength’, ’clear’], ’Weakness’: [’weak-
ness’, ’shortcoming’, ’flaw’], ’Structure’: [’re-
viewer’], ’Recap’: [’authors’, ’describe’, ’article’],
’Other’: [’other’]
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