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Abstract

We evaluate four count-based and predict-
ive distributional semantic models of Ancient
Greek against AGREE, a composite benchmark
of human judgements, to assess their ability to
retrieve semantic relatedness. On the basis of
the observations deriving from the analysis of
the results, we design a procedure for a larger-
scale intrinsic evaluation of count-based and
predictive language models, including syntactic
embeddings. We also propose possible ways
of exploiting the different layers of the whole
AGREE benchmark (including both human-
and machine-generated data) and different eval-
uation metrics.

1 Introduction

The application of Natural Language Processing to
the study of Ancient Greek semantics is an emer-
ging research area which has proven to be a fruitful
avenue for our understanding of the Ancient Greek
language and culture. Previous work has focused
on the training of Distributional Semantic Mod-
els (DSMs) on Ancient Greek corpora (Boschetti,
2009; Rodda et al., 2017, 2019; McGillivray et al.,
2019; Perrone et al., 2021a), a task enabled by the
relatively large quantity of extant texts available for
this language. DSM evaluation is a necessary step
to properly assess the usefulness of applying these
models to large-scale studies of Ancient Greek, but
is made particularly challenging by the lack of nat-
ive speakers and, compared to modern languages,
a limited number of experts available.

This paper offers an evaluation of DSMs for
Ancient Greek against the newly created AGREE
benchmark (Stopponi et al., 2024b) and a road

map for further, wider evaluation. We exploit the
layered nature of AGREE to assess at different
levels four DSMs, and discuss results not only in
terms of model comparison, but mostly in terms
of best evaluation strategies, suggesting various
precision- and recall-based options. On that basis,
in Section 6 we propose a road map for a more
comprehensive evaluation campaign, which would
involve training a wider range of models, including
dependency-based embeddings (see, among others,
Padó and Lapata 2007; Levy and Goldberg 2014;
Lapesa and Evert 2017; Lenci et al. 2022), already
preliminarily tested in Stopponi et al. (2024a), and
studying their behaviour with respect to a number
of metrics. Specifically, we propose to assess the
difference in performance between syntactic em-
beddings trained on manually tagged and on auto-
matically tagged treebanks. We plan to evaluate the
DSMs, trained with different parameters, against
the full version of AGREE, including both human-
and machine-generated judgements. We also sug-
gest alternative ways to use the data collected for
AGREE and possible evaluation metrics.

2 Previous work

Few resources exist as gold standards for the evalu-
ation of DSMs on Ancient Greek. Vatri and Läht-
eenoja (2019) contains the manual annotation of
the senses of the lemmas μῦς, ἁρμονία, and κόσμος
(Vatri and McGillivray, 2018) and was used in Per-
rone et al. (2021a) and Perrone et al. (2021b) to
evaluate models for semantic change detection.

Rodda et al. (2019) evaluated count-based DSMs
for Ancient Greek against benchmarks obtained
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from an ancient lexicon, a modern dictionary of
synonyms, and the computational lexicon Ancient
Greek WordNet (Boschetti et al., 2016). The data
they released represent the first benchmark for the
evaluation of Ancient Greek DSMs.1 Reusing
preexisting resources, as they did, allows incorpor-
ating in the evaluation the semantic knowledge of
real speakers of Ancient Greek (as in the case of the
ancient lexicon) and to leverage the semantic know-
ledge of highly specialized experts, from resources
that can be the product of years of work. This
data collection seems less biased by the aims of the
research, however it also has downsides. Lexical
resources, compiled by humans, can suffer from
idiosyncrasies, for example being biased by the
interests and language taste of their author, and if
the author is not alive anymore, it is not possible to
get explanations about specific choices. Moreover,
ancient resources can reflect ideas of semantic rela-
tionships between words (e.g. word similarity) that
are different from the contemporary conceptualiz-
ation, as also noticed by Rodda et al. (2019, 6–8)
and discussed in Stopponi et al. (2024b).

3 Training Data for DSMs of Ancient
Greek

The largest corpus of Ancient Greek, the Thesaurus
Linguae Graecae (Pantelia, 2022), containing more
than 110 million tokens,2 is only accessible through
the web interface. However, scholars can use a
number of open-access machine-readable Ancient
Greek corpora, containing different ranges of text
types.3 Some corpora are annotated, for example
with lemma, POS, and syntactic information. The
Diorisis Ancient Greek Corpus (Vatri and McGilli-
vray, 2018), a portion of which was used as training
data for the study presented in this paper, contains
10,206,421 automatically lemmatized and POS-
tagged tokens. But many corpora with syntactic
annotation also exist: an overview of the most often
used treebanks for Ancient Greek is in Table 1.

As the case of GLAUx shows (see Table 1),
automatic parsing allows for the creation of lar-
ger treebanks, even if the syntactic annotation is
expected to be less accurate. We thus plan to train
syntactic embeddings on two corpora, GLAUx and

1https://zenodo.org/record/3552763#
.YfAItOrMKWA

2https://wiki.digitalclassicist.org/
Thesaurus_Linguae_Graecae

3A review of most available open-access corpora for An-
cient Greek is in Keersmaekers (2021, 40).

the largest possible manually-annotated treebank,
created from a collation of the available corpora.

4 The AGREE Benchmark

The AGREE benchmark contains pairs of lemmas
semantically related to 36 selected ‘seed’ lemmas
(12 nouns, 12 adjectives, and 12 verbs), for a total
of 638 lemma pairs.4 The judgements were collec-
ted via questionnaires distributed to a large number
(> 50) of academic scholars of Ancient Greek. The
final benchmark, AGREE, incorporates a mix of
expert-elicited pairs and expert-assessed, machine-
generated pairs. The machine-generated items are
pairs of [seed lemma - nearest neighbour], with
nearest neighbours extracted from Word2Vec mod-
els (Mikolov et al., 2013) that underwent expert
judgement and were assessed as highly related.
For the experiments reported in this paper, we
only use the human-elicited portion of the bench-
mark: AGREE-task1. This portion can be further
divided into the subset of pairs that were proposed
by one expert only, and the subset of pairs that
were proposed by more than one annotator, under
the assumptions that the latter might be cases of a
stronger relatedness, and/or higher frequency.

5 Evaluation of DSMs of Ancient Greek

5.1 Procedure

For this study we evaluated two count-based and
two predictive DSMs trained on a portion of the
Diorisis corpus (Vatri and McGillivray, 2018), mer-
ging text from the Archaic, Classical and Hellen-
istic periods, since the AGREE benchmark (and
especially the pairs proposed by experts) is particu-
larly suited to the evaluation of models trained on
texts from those periods (Stopponi et al., 2024b).
The lemmatized version of Diorisis was used, to
reduce the impact of word sparsity. Stop word filter-
ing was performed, according to the list also used
in Rodda et al. (2019)5. Stop word filtering reduced
the size of the corpus from 5,768,916 to 2,960,459
tokens. The four models were evaluated against
AGREE-task1, by comparing the top 5, 10, 15 (k)
nearest neighbours of each of the 36 seed lemmas
in the benchmark with the lemmas related to the
same seed in AGREE-task1. The nearest neigh-
bours extracted from the models were compared

4https://zenodo.org/record/8027490.
5https://figshare.com/articles/

dataset/Ancient_Greek_stop_words/9724613,
by A. Vatri.
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Treebank N. tokens Manual annotation Texts

Ancient Greek Dependency Treebank
(Perseus, Bamman and Crane, 2011)

ca. 550K* yes Literary, full list at http://
perseusdl.github.io/
treebank_data/

PROIEL Treebank (Haug and Jøhndal,
2008)

ca. 250.5K yes The Greek New Testament, Histories
(Herodotus), Chronicles (Sphrantzes)

Gorman Trees (Gorman, 2020) ca. 240K* yes Literary prose, full list at https:
//perseids-publications.
github.io/gorman-trees/

Pedalion Trees (Keersmaekers et al.,
2019)

ca. 300K yes Literary, full list at https://
perseids-publications.
github.io/pedalion-trees/

Harrington Treebanks (Harrington, 2018) ca. 18K* yes Nicene Creed; Book of Susanna (Sep-
tuaginta), Verae historiae (Lucian of
Samosata), Vita Aesopi

PapyGreek (Vierros and Henriksson,
2021)

ca. 44K syntactic layer only Papyri

Aphthonius (Yordanova, 2018) ca. 7K* yes Progymnasmata (Aphtonius)

GLAUx corpus (Keersmaekers, 2021) ca. 11,860K no Literary, papyrological, epigraphical.
A sample was released at https:
//perseids-publications.
github.io/glaux-trees/

Table 1: Some available treebanks for Ancient Greek. If the size of the treebank is followed by a *, it is taken from
Keersmaekers et al. (2019, 110). The size of the PapyGreek treebanks has been calculated by summing up all the
‘word’ elements in the XML files.

to: all the lemmas in AGREE-task1, the lemmas in
AGREE-task1 proposed by more than one expert,
and the lemmas in AGREE-task1 proposed by only
one expert. Precision and recall were adopted as
evaluation metrics and defined as follows:

Precision@K =
overlap model’s near. neighb. and benchmark

k

Recall@K =
near. neighb. model also in benchmark

n. related lemmas benchmark

5.2 Models

The models selected for evaluation are two
Word2Vec models, one SGNS and one CBOW, and
two count-based models. The matrices of the count-
based models were weighted with PPMI and one
one of the two dimensionality reduction was per-
formed with Singular Value Decomposition (SVD).
The two count-based models were built by using
the software provided by the LSCDetection repos-
itory (Schlechtweg et al., 2019) with window = 5
and the following other parameters: k = 1 and
alpha = 0.75 for PPMI, 300 dimensions and
gamma = 0.0 for SVD. The two Word2Vec mod-
els were trained with the Gensim library (Řehůřek

and Sojka, 2010) and the following parameters:
size = 30, window = 5, min_count = 5,
negative = 20.

5.3 Results

The average precision and recall are reported in
Table 2. We immediately see that recall is gener-
ally low. This can be explained by the fact that
there are on average 14 neighbours per lemma6 in
AGREE-task1, so that the denominator in recall@k
is generally larger than the numerator when k = 5
or k = 10. The recall consequently increases (on
average) if k also increases, while the opposite hap-
pens for precision, which increases if k decreases.
Taking into account recall for k < 15 makes thus
little sense, since it is never possible to achieve full
recall when the lemmas related to a certain seed
in the benchmark are more than the extracted k-
nearest neighbours. Conversely, it is theoretically
possible to achieve 100% precision if all the ex-
tracted k-nearest neighbours are also in the bench-
mark. The higher precision with smaller values of
k seems to confirm that the closest neighbours in
the semantic space are actually more strictly related

6Min. = 6, max. = 24, standard deviation = 4.43.
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k Precision Recall

5 0.20 0.06
10 0.16 0.09
15 0.13 0.11

Table 2: Average precision and recall calculated against
the whole AGREE-task1 benchmark and divided by k.

Model Precision Recall

SGNS 0.11 0.06
CBOW 0.15 0.08
SVD 0.16 0.09
PPMI 0.22 0.12

Table 3: Average precision and recall calculated against
the whole AGREE-task1 benchmark, divided by model.

to the seed lemma, while the strength of the seed-
neighbour relationship declines for neighbours that
are further away from the seed.

Model architecture also has an impact, with
count-based performing better than predictive mod-
els. This is in line with what is observed by Lenci
et al. (2022). Moreover, the model without dimen-
sionality reduction performs better than the one
to which SVD was applied, as shown in Table 3.
Further, Word2Vec CBOW seems to perform better
than Word2Vec SGNS. However, parameter op-
timization was not performed for this preliminary
study, and a limited number of model architectures
was tested. In future, larger evaluation will prob-
ably give a better picture of the differences between
count-based and predictive models.

For example, for the seed lemma εἰρήνη, ‘peace’,
there are 9 related lemmas in AGREE-task1:
πόλεμος, ‘war’, σπονδή, ‘drink-offering/treaty’,
ἥσυχος, ‘quiet’ (adj.), ἡσυχία, ‘quiet, silence’
(noun), σπένδω, ‘make a drink-offering’, μάχη,
‘battle’, γαληνός, ‘calm’, πολιτεία, ‘citizenship’,
συγγραφή, ‘writing’, ὁμολογέω, ‘agree’, νίκη,
‘victory’, ὄλβος, ‘happiness’, γαλήνη, ‘stillness’,
and φιλία, ‘friendship’. Both the CBOW and
the PPMI model have precision 0.2 with k = 5,
i.e. among the first 5 nearest neighbours returned
there is one that is also in AGREE-task1. The
recall is 0.07 (1/14). The overlapping lemma
is σπονδή, ‘drink-offering/treaty’ for the CBOW
model, (which also returns as the other four nearest

neighbours διάλυσις, ‘separating/ending’, συμ-
μαχία, ‘alliance’, Λακεδαιμόνιος, ‘Spartan’, and
πολεμέω, ‘fight’) and it is πόλεμος, ‘war’ for the
PPMI, which also returns συμμαχία, ‘alliance’,
Φίλιππος, ‘Philip’, πολεμέω, ‘fight’, and πρεσ-
βεία, ‘embassy’. We notice that both models re-
turn συμμαχία, ‘alliance’ among their first 5 neigh-
bours. This word was not proposed by the experts
in the first phase of data collection for the AGREE
benchmark, but is however semantically related to
εἰρήνη, ‘peace’. More in general, we deem all the
top 5 nearest neighbours returned by both mod-
els as acceptable results, since they all are related
to εἰρήνη, ‘peace’; the two models just differ in
results from one other, as well as from the bench-
mark. Of course, there are also cases in which
the overlapping lemma(s) are the same between
models. One example is μέγας, ‘big’, for which
there are 15 related lemmas in AGREE-task1.7

Both the CBOW and the PPMI model have pre-
cision 0.2 (1/5) and recall 0.07 (1/14) with k = 5,
and the lemma overlapping with the AGREE-task1
benchmark is the same for both models, μέγεθος,
‘greatness’. Again, the extracted nearest neigh-
bours that are not in the benchmark are not ne-
cessarily unrelated to the seed μέγας, ‘big’. The
CBOW model also returns τηλικοῦτος, ‘of such an
age/so large’, ἄξιος, ‘weighing as much/worthy’,
ῥοπή, ‘weight’, and ὑπερβάλλω, ‘surpass/exceed’,
while the PPMI model also returns ἐλάσσων, ‘smal-
ler’, ἴσος, ‘equal’, ἄρος, ‘use/profit’, and πολύς,
‘many’. Except from ἄρος, ‘use/profit’, they all
relate to μέγας, even if, intuitively,with a different
strength and with different types semantic relations.

The internal layering of the benchmark AGREE-
task1, which accounts for the number of experts
who proposed a specific lemma, allows for other
observations (Table 4). On average, the lemmas
returned by only one expert (AGREE-task1-only1
in 4) are more (13.02 per seed lemma) than those
returned by several experts (AGREE-task1-more1,
4.69 per seed). We could hypothesize that the re-
latedness among the latter may be stronger or more
evident, since more than one expert independently
had proposed the same lemmas as related to the rel-
evant seed word. When we evaluate against lemma

7They are μικρός, ‘small’, ὅρκος, ‘oath’, βασιλεύς,
‘king’, θαῦμα, ‘wonder’, θεός, ‘god’, μακρός, ‘long’, ὀλί-
γος, ‘little’, βραχύς, ‘short’, μέγεθος, ‘greatness’, αὐξάνω,
‘increase’, μεγαλοψυχία, ‘greatness of soul’, ἥρως, ‘hero’,
γίγας, ‘giant’, καλός, ‘beautiful’, and μεγαλοφροσύνη,
‘greatness of mind’.
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Benchmark subset Prec Rec

AGREE-task1 0.16 0.09
AGREE-task1-more1 0.09 0.05
AGREE-task1-only1 0.07 0.04

Table 4: Average precision and recall calculated against
different subsets of the AGREE-task1 benchmark. The
results with the three values of k were averaged.

pairs proposed by more than one expert higher pre-
cision and recall scores are observed, possibly sug-
gesting that pairs proposed by more experts are
more closely related to their seed lemma, and pos-
sibly more frequent. This is particularly true for
the PPMI model, which achieves an average of
0.22, 0.14, and 0.09 precision, and an average of
0.12, 0.07, and 0.05 recall against, respectively, the
whole AGREE-task1, the pairs proposed by more
than one expert, and the pairs proposed by only
one expert (the results are averaged across the three
values of k). This is observed when averaging the
results of all models, but it does not necessarily
hold for each model. The CBOW model, for ex-
ample, achieves a higher precision against the set
of pairs proposed by only one expert than against
those proposed by more experts. Both Word2Vec
models instead achieve the same precision and re-
call on both subsets of AGREE-task1. The results
discussed until now are summarised in Table 5.

Another dimension of the benchmark is the part-
of-speech (POS) of the seed lemmas. In Table 6 we
see that evaluating against pairs including an adject-
ive seed lemma the highest precision is achieved,
followed by noun seeds and verb seeds. The recall
is higher when evaluated against pairs including
adjective or noun seeds. However, the differences
in precision and recall are very small.

Finally, dividing the results by lemma reveals
a great variety in precision and recall among the
different lemmas. For example, with k = 5 the
highest precision is achieved. The average pre-
cision per lemma calculated against the whole
AGREE-task1 is 0.20, with standard deviation 0.16.
There is indeed a large variability between the av-
erage precision against the “best” and the “worst-
performing” lemmas. Those yielding the highest
precision are some nouns and adjectives: ἅρμα,
‘chariot’, average precision 0.6; ψευδής, ‘false’,
0.55; ἐλεύθερος, ‘free’, 0.45; πατήρ, ‘father’, 0.45;
and ἄγριος, ‘wild’, 0.45. However, they are im-

mediately followed by verbs, ἔρχομαι, ‘go’ and
ὁράω, ‘see’, both with average precision 0.4. The
lowest precision, 0, is achieved with the seed lem-
mas ἀκτή, ‘headland’, κλυτός, ‘renowned’, ναίω,
‘dwell’, ῥῆσις, ‘speech’, σῆμα, ‘sign/mark’, and
τεύχω, ‘make/build’, all with average precision 0.
Nevertheless, as we already observed, a low preci-
sion does not necessarily correspond to bad results
(i.e. unrelated lemmas), even if it is true that some
of the nearest neighbours returned by the models
to these are unrelated or intuitively less strictly
related to the seed lemmas. Moreover, a higher
precision seems to correspond to higher-frequency
words, while the lemmas yielding the lowest preci-
sion also have a low frequency in the corpus.8 In
Table 7 the average precision and recall for each
lemma are reported, calculated against the whole
AGREE-task1 and with k = 15. Note that changing
the value of k the order of the seed lemmas, ranked
by precision, also changes.

6 Road Map for Future Work

We plan a larger evaluation including more model
architectures, different parameters and different
evaluation metrics, with the aim of understand-
ing the differences between model types, rather
than finding the ‘best’ model (see also Lenci et al.,
2022), and evaluation adequacy. More investiga-
tion is needed to understand whether the difference
between count-based and predictive models trained
on Ancient Greek lies in the quality of results (i.e.,
if some architectures actually return less relevant
nearest neighbours), or only in the kind of relation-
ships they capture. Further experiments will also
concern dependency-based embeddings.

Moreover, this extended study will exploit the
full dataset produced for the AGREE benchmark,
including the second part of the dataset, not used
for the current evaluation. Since in the second
phase of the data collection the experts assigned re-
latedness scores to human- and machine- generated
lemma pairs, these items items allows ranking the
lemma pairs according to their degree of related-
ness, and thus for a more nuanced evaluation.

8The frequency in the subcorpus of the mentioned
“best performing” lemmas is: ἅρμα: 541, ψευδής: 1048,
ἐλεύθερος: 940, πατήρ: 5685, ἄγριος: 348, ἔρχομαι: 5251,
ὁράω: 4987, while the frequency of the mentioned “worst-
performing lemmas is: ἀκτή: 177, κλυτός: 142, ναίω: 283,
ῥῆσις: 48, σῆμα: 213, τεύχω: 255.
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Precision Recall

Bench. subset k PPMI SVD CBOW SGNS PPMI SVD CBOW SGNS Tot. prec. Tot. rec. Tot. pairs

AGREE-task1 all k 0.22 0.16 0.15 0.11 0.12 0.09 0.08 0.06 0.16 0.09 638

k = 5 0.28 0.19 0.19 0.14 0.08 0.06 0.05 0.04 0.20 0.06

k = 10 0.22 0.16 0.14 0.11 0.12 0.09 0.08 0.07 0.16 0.09

k = 15 0.17 0.13 0.11 0.09 0.15 0.11 0.10 0.08 0.13 0.11

AGREE-task1-more1 all k 0.14 0.09 0.07 0.06 0.07 0.05 0.04 0.03 0.09 0.05 169

k = 5 0.19 0.11 0.08 0.07 0.06 0.03 0.02 0.02 0.11 0.03

k = 10 0.13 0.10 0.06 0.05 0.08 0.06 0.04 0.03 0.09 0.05

k = 15 0.10 0.08 0.06 0.04 0.09 0.07 0.05 0.04 0.07 0.06

AGREE-task1-only1 all k 0.09 0.07 0.08 0.06 0.05 0.04 0.04 0.03 0.07 0.04 469

k = 5 0.09 0.08 0.11 0.07 0.03 0.02 0.03 0.02 0.09 0.02

k = 10 0.09 0.07 0.08 0.06 0.05 0.04 0.04 0.03 0.07 0.04

k = 15 0.07 0.06 0.06 0.04 0.06 0.05 0.05 0.04 0.06 0.05

Table 5: Average precision and recall calculated against different subsets of the AGREE-task1 benchmark, divided
by model type and by k. The recall for values of k lower than 15 has been reported for completeness, but it has
limited usefulness (see above). The column ’Tot. pairs’ contains the total number of pairs in the relevant subsets.

POS Precision Recall

A 0.18 0.09
N 0.15 0.09
V 0.15 0.08

Table 6: Average precision and recall calculated against
the whole AGREE-task1 benchmark and divided by
POS of the seed lemmas.

6.1 Models
We will test a selection of popular DSMs belonging
to the first two generations defined by Lenci et al.
(2022), i.e. count-based models (PPMI and GloVe)
and predictive models (Word2Vec and FastText).
In particular, we will test:

1. two count-based models trained by using Pos-
itive Pointwise Mutual Information (PPMI) as
association measure,9 with and without dimen-
sionality reduction with the Singular Value De-
composition (SVD);

2. GloVe (Pennington et al., 2014));

3. FastText (Bojanowski et al., 2017);

4. the two architectures of word2vec (Mikolov
et al., 2013), the Skip-gram with Negative
9About association measures, see Evert et al. (2008).

Sampling (SGNS) and the Continuous-Bag-of-
Words (CBOW);

5. two ‘syntax-filtered’ models (Padó and Lapata,
2007; Lapesa and Evert, 2017; Lenci et al.,
2022), a SGNS one but using direct dependency
between tokens to extract co-occurrences rather
than mere token windows and one trained using
the SuperGraph approach described in Al-Ghezi
and Kurimo (2020). The latter method consists
in using dependency relations between tokens
to generate graph structures for every sentence
in a treebank, before merging all graphs into
one SuperGraph. The SuperGraph then serves
as input to Node2Vec (Grover and Leskovec,
2016), a modification of the SGNS architecture
which enables the training of word representa-
tions starting from nodes in a graph.

Contextual models will not be included, instead.
Even if some work exists on the training of contex-
tual models of Ancient Greek (Singh et al., 2021;
Keersmaekers and Mercelis, 2021; Yamshchikov
et al., 2022; Riemenschneider and Frank, 2023)
(despite the fact that contextual models require
huge quantities of training data (Lenci et al., 2022,
1274)), the only existing evaluation datasets for
semantic models of Ancient Greek (Rodda et al.,
2019 and Stopponi et al., 2024b) were created
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Lemma Precision Recall Lemma Precision Recall

ἅρμα, ‘chariot’ 0.32 0.22 εἰρήνη, ‘peace’ 0.10 0.11

ὁράω 0.30 0.24 Ἀθηναῖος, ‘Athenian’ 0.08 0.08

ναῦς, ‘ship’ 0.27 0.25 νόστος, ‘return’ 0.08 0.07

χρυσός, ‘gold’ 0.27 0.27 παλαιός, ‘old’ 0.08 0.07

ἄγριος, ‘wild’ 0.23 0.17 ζεύγνυμι, ‘yoke’ 0.08 0.09

ἐλεύθερος, ‘free’ 0.23 0.17 μέγας, ‘big’ 0.08 0.08

ἔρχομαι, ‘go’ 0.23 0.19 μῦθος, ‘word/story’ 0.07 0.07

πατήρ, ‘father’ 0.22 0.30 ἀκτή, ‘headland’ 0.07 0.07

ψευδής, ‘false’ 0.20 0.18 μοχθέω, ‘labour’ 0.07 0.07

κακός, ‘bad’ 0.17 0.12 Σάμος, ‘Samos’ 0.07 0.06

οἰκέω, ‘inhabit’ 0.17 0.11 ἄλκιμος, ‘brave’ 0.05 0.04

αὐξάνω, ‘increase’ 0.17 0.14 ῥῆσις, ‘speech’ 0.05 0.04

ὀρφανός, ‘orphan’ 0.17 0.14 τέμνω, ‘cut’ 0.03 0.03

πόντος, ‘sea’ 0.15 0.12 κλυτός, ‘renowned’ 0.02 0.01

φιλέω, ‘love’ 0.15 0.15 λείπω, ‘leave/quit’ 0.02 0.01

αἴθω, ‘light up’ 0.13 0.10 τεύχω, ‘make/build’ 0.02 0.01

πρέσβυς, ‘old man, elder’ 0.13 0.11 ναίω, ‘dwell’ 0.00 0.00

ἑνδέκατος, ‘eleventh’ 0.13 0.11 σῆμα, ‘sign/mark’ 0.00 0.00

Table 7: Average precision and recall calculated against the whole AGREE-task1 benchmark and with k = 15,
divided by seed lemma. The lemmas are ranked by average precision.

for the evaluation of static (type-based) embed-
dings. Although type-based embeddings can be
obtained from contextualized token embeddings,
e.g. by averaging the model representations of
each word (see the discussion in Lenci et al., 2022,
1290–1291), their superiority over type embed-
dings obtained from static DSMs has been ques-
tioned (Lenci et al., 2022, 1289–1293). This evalu-
ation will thus be limited to the evaluation of static
embeddings, leaving the training and evaluation
of contextual embeddings for future work.10 All
the models will be trained with two different con-
text windows, e.g. 5 and 10. According to the
large-scale evaluation of Lenci et al. (2022), model
architecture and context window size are the two
parameters that significantly affect model perform-
ance (especially model architecture). We thus con-
centrate on testing of these two.

10It should be noted that the training corpus of Lenci et al.
(2022, 1279) are English texts from the Web. Their con-
clusions could thus not entirely apply to Ancient Greek, a
language with a different syntax and morphology.

6.2 Dependency-based embeddings

Ancient Greek syntactic embeddings obtained with
the SuperGraph method have already been com-
pared with window-based models by Stopponi et al.
(2024a), clearly suggesting that the former cap-
ture functional rather than topical similarity, as
had already been shown at least since Levy and
Goldberg (2014) on the basis of English mod-
els. Given this ontological difference between
the two, an open question, then, is whether syn-
tactic embeddings should be evaluated on a par
with traditional count-based and word2vec mod-
els, namely whether there are arguments for us-
ing the same benchmark to judge the quality of
models regardless of whether syntactic informa-
tion is integrated in their training or not. Previ-
ous large-scale comparisons of dependency-based
and window-based DSMs suggested that the latter,
when fine-tuned, generally outperform the former
in most downstream tasks (Kiela and Clark, 2014;
Lapesa and Evert, 2017). Given the generally
greater computational costs associated with de-
pendency parsing and the extraction of syntactic
collocates (i.e. tokens with a direct dependency

55



relation), it has been questioned whether the train-
ing of dependency-based embeddings is justifiable
after all. However, there is evidence, at least as
far as high-resource languages such as English are
concerned, that dependency-based embeddings out-
perform window-based models in a limited but co-
herent number of tasks. This has been shown to be
consistently the case, for instance, of categoriza-
tion tasks, namely grouping lexical items into se-
mantically coherent categories (Rothenhäusler and
Schütze, 2009; Lapesa and Evert, 2017; Lenci et al.,
2022), as well as thematic fit estimation, namely
evaluating the typicality of the argument of a verb
given a thematic role (e.g., agent or patient) (Baroni
and Lenci, 2010; Chersoni et al., 2017). Different
tasks such as categorization and synonymity tests
present, in many ways, the same ontological differ-
ences occurring between dependency- and window-
based models as a whole. This alone would seem
to warrant the training of different models (and, as
a result, the development of different evaluation
methods) depending on the task at hand. Classic
distributional semantic models (i.e. window-based)
are generally fined-tuned to capture attributional
similarity (Turney, 2006), namely the number of
attributes, or properties, shared by the referents of
two given words. As pointed out by Baroni and
Lenci (2010), words that share many collocates will
show a high attributional similarity since common
collocates can be seen as a proxy for some of the
attributes that the two words denote. Pairs such as
dog-puppy will then have a high attributional simil-
arity but not necessarily a high relational similarity
(Turney, 2006), which in turns refers to sharing
similar semantic relations to their nearest neigh-
bours. In Baroni and Lenci’s 2010 example, the
pair dog-tail will be more similar to car-wheel than
it is to dog-animal, even though attributionally that
is clearly not the case.

Building on the preliminary observation made in
Stopponi et al. (2024a) about the relational, rather
than attributional, similarity captured by Ancient
Greek dependency-based models, we thus plan to
test different Ancient Greek models on different
tasks depending on the kind of similarity the model
is trained to capture. Categorization and thematic
fit task, for example, can be set up with the help of
the richly annotated resources for the language (e.g.
the verbal semantic annotation in the PROIEL tree-
bank) for dependency-based models, in addition to
similarity judgement tasks, which may be instead

better suited to evaluate window-based DSMs.

6.3 Evaluation Metrics

We observed above how precision and recall only
provide an absolute evaluation against the bench-
mark, capturing whether the words in the bench-
mark are returned by the models or not, but they do
not allow us to take into account the strength of the
semantic relationship between lemmas. Moreover,
only the first k neighbours returned by the model
are evaluated, while there is no information about
how close to the seed lemma in a semantic space
the related lemmas in the benchmark are which
are not among the first k neighbours. Furthermore,
the use of recall in this kind of evaluation can be
problematic when the number of k is lower than
the number of pairs in the benchmark.

To overcome these limitations, we plan to in-
clude additional evaluation strategies. One option
is to use the evaluation items that were rated on a 0-
100 relatedness scale (AGREE-task2), to calculate
for each seed lemma the correlation between: (i)
the scores assigned to pairs including that lemma
in the benchmark; (ii) the cosine distances between
the same word pairs in a semantic space. The scores
can also be used to rank the items, and a correlation
can be calculated between ranks and cosine dis-
tances. Taking into account degrees of relatedness
may be a more adequate way to evaluate models
on a phenomenon such as semantic relatedness.

Another possibility is to exploit the information
about the number of raters who proposed the words
collected in the first phase (AGREE-task1), for ex-
ample by giving greater weight to pairs suggested
by multiple raters. However, this will first require a
deeper investigation on the nature of the pairs pro-
posed by one versus several experts, and the impact
this might have on evaluation. Relatedly, frequency
should also be considered to verify the ways and
extent to which precision and recall are impacted
by high-frequency items (both the human-elicited
ones and those returned by the models).

7 Conclusion

We presented and discussed the results of an eval-
uation of four Distributional Semantic Models of
Ancient Greek, two count-based and two predict-
ive models. The gold standard was a subset of
the AGREE benchmark, AGREE-task1, including
pairs of related lemmas proposed by experts of
Ancient Greek. The evaluation showed that count-
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based models achieved higher precision and recall
on AGREE-task1, and higher precision and recall
were also achieved on average when evaluating
against pairs of related lemmas proposed by more
than one expert. Another important finding was
the great difference in performance between dif-
ferent lemmas. We also presented a plan for a
more extended evaluation, including more model
architectures, parameters, and evaluation metrics.
This evaluation will take into account different de-
grees of relatedness between lemmas and allow for
a better understanding of the differences between
DSMs of Ancient Greek and of the possible im-
pact of such differences on computational studies
in Ancient Greek lexical semantics.
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