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Abstract

Universal Information Extraction (UIE) has
been introduced as a unified framework for var-
ious Information Extraction (IE) tasks and has
achieved widespread success. Despite this, UIE
models have limitations. For example, they rely
heavily on span boundaries in the data during
training, which does not reflect the reality of
span annotation challenges. Slight adjustments
to positions can also meet requirements. Addi-
tionally, UIE models lack attention to the lim-
ited span length feature in IE. To address these
deficiencies, we propose the Fuzzy Span Uni-
versal Information Extraction (FSUIE) frame-
work. Specifically, our contribution consists of
two concepts: fuzzy span loss and fuzzy span
attention. Our experimental results on a series
of main IE tasks show significant improvement
compared to the baseline, especially in terms
of fast convergence and strong performance
with small amounts of data and training epochs.
These results demonstrate the effectiveness and
generalization of FSUIE in different tasks, set-
tings, and scenarios.

1 Introduction

Information Extraction (IE) is focused on extract-
ing predefined types of information from unstruc-
tured text sources, such as Named Entity Recog-
nition (NER), Relationship Extraction (RE), and
Sentiment Extraction (SE). To uniformly model
the various IE tasks under a unified framework, a
generative Universal Information Extraction (UIE)
was proposed in (Lu et al., 2022) and has achieved
widespread success on various IE datasets and
benchmarks. Due to the necessity of a powerful

∗Corresponding author. † Equal contribution. This work
was supported by the Fundamental Research Funds for the
Central Universities (No. 2042023kf0133), the Special Fund
of Hubei Luojia Laboratory under Grant 220100014 and the
National Science Fund for Distinguished Young Scholars un-
der Grant 62225113. Hai Zhao was funded by the Key Projects
of National Natural Science Foundation of China (U1836222
and 61733011).

Annotator #1:
VEHICLEOn the 3rd September evening, I saw a yellow sports  car                 ...

Annotator #2:
VEHICLEOn the 3rd September evening, I saw a yellow  sports car                 ... 

Annotator #3:
VEHICLEOn the 3rd September evening, I saw a  yellow sports car                 ... 

Figure 1: An example of annotation ambiguity for “ve-
hicle" entity in sentence “On the 3rd September evening,
I saw a yellow sports car drive past my house".

generative pre-training model for the generative
UIE, the time overhead is extensive and the effi-
ciency is not satisfactory. For this reason, this paper
examines span-based UIE to unify various IE tasks,
conceptualizing IE tasks as predictions of spans.

However, UIE models still have some limitations.
First, as it is the process of training machine learn-
ing models to extract specific information from
unstructured text sources, IE relies heavily on hu-
man annotation which involves labeling the data by
identifying the specific information to be extracted
and marking the corresponding span boundaries
in the text manually. However, due to the com-
plexity of natural language, determining the cor-
rect span boundaries can be challenging, leading
to the phenomenon of annotation ambiguity. As
shown in Figure 1, different annotated spans can
be considered reasonable. In the span learning of
UIE models, the method of teacher forcing is com-
monly used for loss calculation, making the model
dependent on the precise span boundaries given
in the training data. This can cause performance
bottlenecks due to annotation ambiguity.

When the model structure in UIE places too
much emphasis on the exact boundaries of IE tasks,
it leads to insufficient utilization of supervision in-
formation. In order to predict span boundaries, po-
sitions closer to the ground-truth should be more ac-
curate than those relatively farther away, as shown
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in Figure 1. For example, words close to the target
“car” are more likely to be correct than the word
“evening” which is farther away from the target.
Under the premise of positioning to the span where
"car" is located, both the "yellow car" and the "yel-
low sports car" can be regarded as vehicle entities.
This means that the span model learned should be
fuzzy rather than precise.

In addition, the use of pre-trained Trans-
former (Vaswani et al., 2017) in UIE to extract the
start and end position representations also poses a
problem. The Transformer model is designed to
focus on the global representation of the input text,
while UIE requires focusing on specific parts of the
text to determine the span boundaries. This mis-
match between the Transformer’s focus on global
representation and UIE’s focus on specific parts of
the text can negatively impact the performance of
the model.

When there is a mismatch between the Trans-
former architecture and the span representation
learning, the model may not make good use of
prior knowledge in IE. Specifically, given the start
boundary (end boundary) of the label span, the cor-
responding end boundary (start boundary) is more
likely to be found within a certain range before and
after, rather than throughout the entire sequence.
This is a prior hypotheses that span has limited
length, which is ignored in the vanilla UIE model.
To address this, a fuzzy span attention mechanism,
rather than fixed attention, should be applied.

In this paper, we propose the Fuzzy Span Uni-
versal Information Extraction (FSUIE) framework
that addresses the limitations of UIE models by
applying the fuzzy span feature, reducing over-
reliance on label span boundaries and adaptively
adjusting attention span length. Specifically, to
solve the issue of fuzzy boundaries, we design
the fuzzy span loss that quantitatively represents
the correctness information distributed on fuzzy
span. At the same time, we introduce fuzzy span
attention that sets the scope of attention to a fuzzy
range and adaptively adjusts the length of span ac-
cording to the encoding. We conduct experiments
on various main IE tasks (NER, RE, and ASTE).
The results show that our FSUIE has a significant
improvement compared to the strong UIE base-
line in different settings. Additionally, it achieves
new state-of-the-art performance on some NER,
RE, and ASTE benchmarks with only bert-base
architecture, outperforming models with stronger

pre-trained language models and complex neural
designs. Furthermore, our model shows extremely
fast convergence, and good generalization on low-
resource settings. These experiments demonstrate
the effectiveness and generalization of FSUIE in
different tasks, settings, and scenarios.

2 FSUIE

In FSUIE, incorporating fuzzy span into base UIE
model involves two aspects. Firstly, for the spans
carrying specific semantic types in the training data,
the boundary targets should be learned as fuzzy
boundaries to reduce over-reliance on span bound-
aries. To achieve this, we propose a novel fuzzy
span loss. Secondly, during the span representation
learning, the attention applied in span should be
dynamic and of limited length, rather than covering
the entire sequence. To achieve this, we propose a
novel fuzzy span attention.

2.1 Fuzzy Span Loss (FSL)
The introduction of FSL is a supplement to tradi-
tional teacher forcing loss (usually implemented
as Cross Entrophy), to guide the model in learn-
ing fuzzy boundaries. The challenge for FSL is
how to quantify the distribution of correctness in-
formation within the fuzzy boundary. Specifically,
for a given label span S, conventional target distri-
butions (one-hot) indicate the correct starting and
ending boundaries. This form actually follows the
Dirac delta distribution that only focuses on the
ground-truth positions, but cannot model the ambi-
guity phenomenon in boundaries.

To address the challenge discussed above,
we propose a fuzzy span distribution generator
(FSDG). In our method, we use a probability distri-
bution of span boundaries to represent the ground-
truth, which is more comprehensive in describing
the uncertainty of boundary localization. It consists
of two main steps: 1) determining the probability
density distribution function f ; 2) mapping from
the continuous distribution to a discrete probability
distribution based on f .

Specifically, let q ∈ S be a boundary of the
label span, then the total probability value of its
corresponding fuzzy boundary q̂ can be represented
as follows:

q̂ =

∫ Rmax

Rmin

xQ(x)dx, q ∈ S (1)

where x represents the coordinate of boundaries
within the fuzzy range [Rmin, Rmax], Rmin and
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Figure 2: Illustration of exact boundary and fuzzy
boundary.

Rmax are the start and end positions of the fuzzy
range, qgt represents the ground-truth position for
boundary q, and Q(x) represents the corresponding
coordinate probability.

The traditional Dirac delta distribution can be
viewed as a special case of Eq. (1), where Q(x) =
1 when x = qgt, and Q(x) = 0 otherwise. Through
a mapping function F , we can quantifying con-
tinuous fuzzy boundaries into a unified discrete
variable q̂ = [F (q1), F (q2), · · · , F (qn)] with n
subintervals. [q1, q2, · · · , qn] represent continuous
coordinates in fuzzy range where q1 = Rmin and
qn = Rmax, the probability distribution of each
given boundary of the label span can be represented
within the range via the softmax function.

Since the Dirac delta distribution only assigns
non-zero probability to a single point, it is not
suitable for modeling uncertainty or ambiguity in
real-world data. Thus in FSUIE, we choose the
Gaussian distribution N(µ, σ2) as the probability
density function f . Compared with other probabil-
ity distributions, the Gaussian distribution assigns
non-zero probability to an entire range of values
has the following advantages: (1) it is continuous,
symmetrical, and can well represent the distribu-
tion of correctness information within the fuzzy
boundary including the gold position; (2) it is a sta-
ble distribution with fewer peaks and offsets, and
can ensure that the correctness information is more
concentrated on the gold position while distributed
on the fuzzy boundary; (3) the integral of the Gaus-
sian distribution is 1, which can ensure that the
accuracy distribution after softmax is more gentle.

To get the discrete variable q̂ , Four parameters
are involved here: variance σ, mean µ, sampling

step s, and sampling threshold θ. These parameters
are used to control the range, peak position, and
density of the fuzzy boundary, respectively. Specifi-
cally, the parameter µ is set to qgt and the Gaussian
distribution is determined using a pre-determined
σ. Assuming qg ∈ [q1, q2, · · · , qn] = qgt, F can
represented as:

F (qi) =

{
ε, ε ≥ θ
0, ε < θ

,

ε = f(µ+ (i− g)s).

(2)

Given that values in the marginal regions of
Gaussian distribution are quite small, the sampling
threshold θ here acts as a filter to eliminate infor-
mation from unimportant locations. The specific
choice of parameters is discussed in the following
experimental section. We use q̂ as the distribution
of correctness information on the fuzzy boundaries.
The beginning and end fuzzy boundaries together
make up the fuzzy span. Then, we calculate the KL
divergence between the model’s predicted logits
and the gold fuzzy span distribution as the fuzzy
span loss. The exact boundary and fuzzy boundary
distribution is shown in Figure 2. This fuzzy span
loss is then incorporated into the original teacher-
forcing loss function with a coefficient:

LFS = DKL(q̂∥p) =
N∑

i=1

q̂ (xi)

(
log

q̂ (xi)

p (xi)

)
,

L = Lori + λLFS

where p represents the predicted distribution of
the model and q̂ represents the generated fuzzy
span distribution from FSDG according to the an-
notation in training data. Lori is the original Binary
Cross Entropy (BCE) loss of the model in UIE, and
λ is the coefficient of the fuzzy span loss.

2.2 Fuzzy Span Attention (FSA)
We construct a FSA based on a multi-head self-
attention mechanism with relative positional encod-
ing (RPE), since RPE is more suitable for span rep-
resentation learning with fuzzy bounds. In conven-
tional multi-head attention with RPE, for a token
at position t in the sequence, each head computes
the similarity matrix of this token and the tokens in
the sequence. The similarity between token t and
token r can be represented as:

str = y⊤t W
⊤
q (Wkyr + pt−r) (3)
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where Wk and Wq are the weight matrices for "key"
and "query" representations, yt and yr are the repre-
sentations of token t and r, and pt−r is the relative
position embedding, the corresponding attention
weight can be obtained through a softmax function

atr =
exp (str)∑t−1
q=0 exp (stq)

. (4)

Conventional self-attention focus on global rep-
resentations, mismatching the requirement of fuzzy
spans. To address this issue, we present a novel
attention mechanism, called Fuzzy Span Attention
(FSA), to control attention scores of each token,
aiming to learn a span-aware representation. The
fuzzy span mechanism of FSA consists of two as-
pects: (1) the length of the range applying full
attention is dynamically adjusted; and (2) the atten-
tion weights on the boundary of the full attention
span are attenuating rather than truncated. Specif-
ically, inspired by (Sukhbaatar et al., 2019), we
design a mask function gm to control the attention
score calculation. Assuming the maximum length
of the possible attention span is Lspan, the new
attention scores can be represented as:

atr =
gm(t− r) exp (str)∑t−1

q=t−Lspan
gm(t− r) exp (stq)

. (5)

The following process is divided into two stages:
(1) determining the attention changing function ga
on the fuzzy span, and (2) constructing the mask
function gm based on ga for span-aware represen-
tation learning. According to the characteristics of
fuzzy span, we set ga as a monotonically decreas-
ing linear function. To adjust the attention span
length, we define a learnable parameter δ ∈ [0, 1].
The ga(x) and corresponding gm(x) can be repre-
sented as follows:

ga(z) =
−z + l + d

d
,

l = δLspan.
(6)

gm(z) =





1, ga(z) > 1
0, ga(z) < 0
ga(z), otherwise

. (7)

where l controls the length of the full attention
range and d is a hyper-parameter that governs the
length of the attenuated attention range.

In Figure 3, an illustration of the gm function
is depicted. The dashed lines represent alternative

1

Full Attention Range Attenuated 
Attention 

Range

Non-
Attention 

Range

�� �

��(�)

Figure 3: Illustration of attention mask function gm.

choices of ga functions, such as

g′a(z) =
{

1, z ≤ l
0, z > l

,

g′′a(z) =





1, z ≤ l

1√
2π· d

3

exp

(
− (z−l)2

2( d
3
)2

)
, z > l

.

Through experimentation, we found that the linear
attenuated function performs best (refer to com-
parison in Appendix A). Iterative optimization of
δ allows the model to learn the optimal attention
span lengths for a specific task. It is important to
note that different heads learn the attention span
length independently and thus obtain different op-
timal fuzzy spans. In our implementation, instead
of using multiple layers of fuzzy span attention
layers, we construct the span-aware representation
with a single fuzzy span attention layer on top of
Transformer encoder, and it does not participate
in the encoding process. Therefore, although the
maximum range of fuzzy span attention is limited
by Lspan, it only affects span decisions and does
not have any impact on the representation of tokens
in the sequence.

3 Experiments

3.1 Setup

Tasks We conducted experiments on 4 datasets
for 3 common information extraction tasks: NER,
RE, and ASTE. The datasets we used include
ACE2004, ACE2005, ADE (Gurulingappa et al.,
2012) for NER and RE tasks, and ASTE-Data-
V2 (Xu et al., 2020) for ASTE task. We evaluate
our model using different metrics for the three IE
tasks. For NER, we use the Entity F1 score, in
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Models PLM ACE04 ACE05 ADE

P R F1 P R F1 P R F1

BENSC (Tan et al., 2020) BERT-base 85.80 84.80 85.30 83.80 83.90 83.90 - - -
(Ma et al., 2020) BERT-large - - - - - 88.60 - - -
SpERT (Eberts and Ulges, 2019) BERT-base - - - - - - 88.69 89.20 88.95
SpERT.PL (Santosh et al., 2021) Bio-BERT - - - - - - 90.05 91.69 90.86
BoningKnife (Jiang et al., 2021) BERT-base 85.98 86.86 86.41 84.77 86.16 85.46 - - -
JCBIE (He et al., 2022) Bio-BERT - - - - - - - - 87.80
GLOBAL POINTER (Su et al., 2022) BERT-base - - - - - - - - 90.10
BS (Zhu and Li, 2022) RoBERTa-base 88.43 87.53 87.98 86.25 88.07 87.15 - - -
Triaffine (Yuan et al., 2022) BERT-large 87.13 87.68 87.40 86.70 86.94 86.82 - - -
Triaffine (Yuan et al., 2022) ALBERT-xxlarge 88.88 88.24 88.56 87.39 90.31 88.83 - - -

(Yan et al., 2021) BERT-large 87.27 86.41 86.84 83.16 86.38 84.74 - - -
Generative UIE (SEL only) (Lu et al., 2022) T5-v1.1-large - - 86.52 - - 85.52 - - -
Generative UIE (Lu et al., 2022) T5-v1.1-large - - 86.89 - - 85.78 - - -

UIE-base BERT-base 88.25 80.31 84.09 86.19 83.12 84.63 87.85 91.56 89.67
FSUIE-base BERT-base 85.67 84.82 85.24 87.05 85.40 86.22 91.17 92.17 92.49
FSUIE-large BERT-large 86.15 86.17 86.16 88.06 85.79 86.91 93.82 92.21 93.08

Table 1: NER experimental results on ACE04, ACE05, and ADE datasets.

which an entity prediction is correct if its span and
type match a reference entity. For RE, we use the
Relation Strict F1 score, where a relation is con-
sidered correct only if its relation type and related
entity spans are all correct. For ASTE, we use the
Sentiment Triplet F1 score, where a triplet is con-
sidered correct if the aspect, opinion, and sentiment
polarity are all correctly identified.

Training Details We trained two variations of
FSUIE, FSUIE-base and FSUIE-large, which are
based on the BERT-base and BERT-large model ar-
chitecture and pre-training parameters respectively.
In addition, we also trained a UIE-base based on
BERT-base as a baseline without using FSL and
FSA layers. In FSUIE, we added the FSA layer
and the span boundary prediction layer to both
models. Specifically, FSUIE-base has 12 layers of
12-head Transformer layers, with a hidden size of
768, while FSUIE-large has 24 layers of 16-head
Transformer layers, with a hidden size of 1024.
During training, we set the parameters of the Gaus-
sian distribution in FSL as σ = 0.5, the distribution
value truncation threshold θ to 0.3, sampling step
s to 0.3, and the loss coefficient λ to 0.01. And
the parameter µ is set to the coordinate of annota-
tion boundary. The hyper-parameters Lspan and d
involved are determined based on the statistics of
the target length on the UIE training data. During
training, we set Lspan to 30 and d to 32, and ex-
perimentation results have shown that the model’s
performance is not significantly sensitive to the
choice of these hyper-parameters (refer to compari-
son in Appendix C).

We trained both models for 50 epochs
with a learning rate of 1e-5 on the datasets

of each task, and selected the final model
based on the performance on the devel-
opment set. The code is available at
https://github.com/pengts/FSUIE.

3.2 Results on NER tasks

We report the results of NER task in Table 1. By
comparing the results of our baseline UIE-base
with other methods, it can be seen that UIE-base
has achieved comparable results compared to other
methods that use the same BERT-base architecture.
It serves as a strong baseline to visually demon-
strate enhancements made by FSL and FSA. By in-
troducing FSL and FSA, our FSUIE-base achieves
significant performance improvements over the
UIE-base that does not have fuzzy span mechanism
(+1.15, +1.59, +1.99 F1 scores). Our proposed
FSUIE model shows the most significant improve-
ment on the ADE dataset. This is primarily due to
the smaller scale of training datasets in the ADE
dataset, which allows the model to easily learn gen-
eralized fuzzy span-aware representations. This
demonstrates the superiority of the FSUIE model.

FSL and FSA enable the model to reduce over-
dependence on label span boundaries and learn
span-aware representations. When compared to
existing NER models, FSUIE achieves new state-
of-the-art performance on the ADE dataset even
with the BERT-base backbone. FSUIE-large even
achieve significant improvement (+1.42) on FSUIE-
base. FSUIE-large also achieves comparable re-
sults on the ACE04 and ACE05 datasets, even when
compared to models using stronger pre-trained lan-
guage models such as ALBERT-xxlarge. Further-
more, our FSUIE demonstrates an advantage in
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Models PLM ACE04 ACE05 ADE

P R F1 P R F1 P R F1

SpERT (Eberts and Ulges, 2019) BERT-base - - - - - - 77.77 79.96 78.84
SpERT.PL (Santosh et al., 2021) Bio-BERT - - - - - - 80.11 84.18 82.03
JCBIE (He et al., 2022) Bio-BERT - - - - - - - - 74.18
(Ma et al., 2020) BERT-base - - - - - 66.10 - - -
(Ma et al., 2020) BERT-large - - - - - 68.10 - - -
Tabel-Sequence Encoder (Wang and Lu, 2020) ALBERT-xxlarge - - 63.30 - - 67.60 - - 80.10
PL-Marker (Ye et al., 2022) BERT-base - - 66.70 - - 69.00 - - -
PL-Marker (Ye et al., 2022) ALBERT-xxlarge - - 69.70 - - 73.00 - - -

Generative UIE (SEL only) (Lu et al., 2022) T5-v1.1-large - - - - - 64.68 - - -
Generative UIE (Lu et al., 2022) T5-v1.1-large - - - - - 66.06 - - -

UIE-base BERT-base 88.73 53.46 66.72 95.38 52.04 67.34 67.61 56.31 61.45
FSUIE-base BERT-base 91.78 58.99 71.82 96.79 57.69 72.29 91.10 75.87 82.79
FSUIE-large BERT-large 89.01 61.13 72.48 98.84 59.34 74.16 92.02 78.23 84.57

Table 2: RE experimental results on ACE04, ACE05, and ADE datasets.

terms of its structure prediction compared to the
generative UIE model. As it does not require the
generation of complex IE linearized sequences, our
FSUIE-base, which only uses BERT-base as its
backbone, outperforms the generative UIE model
that uses T5-v1.1-large on the ACE05 dataset.

3.3 Results on RE tasks

In Table 2, we present the results of the RE tasks.
Compared to the baseline, UIE-base, which does
not incorporate fuzzy span mechanism, our pro-
posed FSUIE-base, which incorporates FSL and
FSA, also achieves a significant improvement on
the RE task using same backtone. Furthermore,
when compared to the Table-Sequence Encoder ap-
proach (Wang and Lu, 2020), our method learns
label span boundary distribution and span-aware
representations, resulting in optimal or competitive
results on the RE task even with FSUIE-base, de-
spite using a simpler structure and smaller PLM
backbones.

Compared to span-based IE models, our method
outperforms the traditional joint extraction model
by performing a two stage span extraction and in-
troducing the fuzzy span mechanism. Specifically,
on the ADE dataset, our method performs bet-
ter than joint extraction methods using Bio-BERT,
a domain-specific pre-trained language model on
biomedical corpus, even using BERT-base as the
pre-trained language model. This demonstrates that
the fuzzy span mechanism we introduced can ex-
tract general information from the data, giving the
model stronger information extraction capabilities,
rather than simply fitting the data.

Compare to generative UIE models, our span-
based FSUIE reflects the reality of the structure of
IE task and does not require additional sequence

generation structures, achieving higher results with
less parameters even with FSUIE-base. Compared
to models that perform relation extraction using a
pipeline approach, like PL-Marker, our FSUIE im-
proves performance in both stages of the pipeline
by introducing FSL and FSA. As a result, it results
in an overall improvement in relation extraction.
Additionally, our model achieves new state-of-the-
art results on ACE04 and ADE datasets,even using
only BERT-base as the backbone, and on ACE05
dataset with FSUIE-large, compared to other mod-
els that use more complex structures. This demon-
strates the model’s ability to effectively extract in-
formation through our proposed method.

3.4 Results on ASTE tasks

In Table 3, we present the results of our experi-
ments on the ASTE task. Due to the small scale
of the ASTE-Data-V2, FSUIE-large is not needed
to achieve better results, and this section only uses
FSUIE-base for comparison. It can be seen that
by introducing the fuzzy span mechanism, our
FSUIE model significantly improves ASTE per-
formance compared to the baseline UIE-base. This
also demonstrates the effectiveness and general-
ization ability of FSUIE in IE tasks. Additionally,
our FSUIE-base model achieves state-of-the-art
results on three datasets (14lap, 15res, 16res) and
demonstrates competitive performance on the 14res
dataset. This indicates that the fuzzy span mecha-
nism is effective in improving the model’s ability
to exploit and extract information, as well as its
performance on specific tasks without increasing
model parameters.

Furthermore, our FSUIE model has a relatively
simple architecture, compared to other models,
which shows that FSUIE is able to improve per-
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Models PLM 14lap 14res 15res 16res

P R F1 P R F1 P R F1 P R F1

JET (Xu et al., 2020) BERT-base 55.39 47.33 51.04 70.56 55.94 62.40 64.45 51.96 57.53 70.42 58.37 63.83
Dual-MRC (Mao et al., 2021) BERT-base 57.39 53.88 55.58 71.55 69.14 70.32 63.78 51.87 57.21 68.60 66.24 67.40
ASTE-RL (Mao et al., 2021) BERT-base 64.80 54.99 59.50 70.60 68.65 69.61 65.45 60.29 62.72 67.21 69.69 68.41
GAS (Zhang et al., 2021) BERT-base - - 60.78 - - 72.16 - - 62.10 - - 70.10
Span-ASTE (Xu et al., 2021) BERT-base 63.44 55.84 59.38 72.89 70.89 71.85 62.18 64.45 63.27 69.45 71.17 70.26
SBN (Chen et al., 2022) BERT-base 65.68 59.88 62.65 76.36 72.43 74.34 69.93 60.41 64.82 71.59 72.57 72.08

Generative UIE (SEL only) (Lu et al., 2022) T5-v1.1-large - - 63.15 - - 73.78 - - 66.10 - - 73.87
Generative UIE (Lu et al., 2022) T5-v1.1-large - - 63.88 - - 74.52 - - 67.15 - - 75.07

UIE-base BERT-base 65.21 57.64 61.19 75.32 71.53 73.38 71.11 65.98 68.45 74.84 70.04 72.36
FSUIE-base BERT-base 69.49 62.06 65.56 76.22 72.23 74.17 72.71 68.66 70.63 77.98 73.74 75.80

Table 3: ASTE experimental results on ASTE-DATA-V2 datasets (14lap, 14res, 15res, and 16res).

formance without the need for complex structures.
The gap in performance between UIE models and
other models can be attributed, in part, to the advan-
tage of UIE pre-training, which is further enhanced
by our proposed fuzzy span mechanism. Compared
to models that decompose the ASTE task into two
subtasks of opinion recognition and sentiment clas-
sification, and use separate models to handle each,
our FSUIE model achieved better performance us-
ing a unified model architecture.

For ASTE, span-based UIE models, as opposed
to generative UIE models, can leverage the com-
plete semantic information of the predicted aspect
span to assist in extracting opinions and sentiments.
The fuzzy span mechanism enhances the model’s
ability to exploit the semantic information within
the fuzzy span, where possible opinions and senti-
ments reside, while ensuring span-aware represen-
tation learning, resulting in significant improve-
ments.Furthermore, FSUIE is a reaction to the
real structure of IEtask, avoiding the extra parame-
ters that sequence generation structures bring, and
therefore outperforms generative UIE models with
fewer parameters.

We notice that FSUIE improves relatively less
on the RE task compared to the ASTE task. In the
RE task, the model has to learn different entities,
different types of relationships, and binary match-
ing skills. In contrast, in ASTE tasks, the model
only needs to learn different entities, two relation-
ships that differ significantly in semantics (opinion
and sentiment), and ternary pairing tips. From this
perspective, RE tasks are more challenging than
ASTE tasks.

3.5 Results on Low-resource Settings

To demonstrate the robustness of our proposed
FSUIE method in low-resource scenarios, we con-
ducted experiments using a reduced amount of

Entity F1 1% 5% 25% 100%

UIE-base 63.47 72.98 83.08 84.63
FSUIE-base 70.09 77.20 83.49 85.22

Relation Strict F1 1% 5% 25% 100%

UIE-base 6.68 45.55 64.43 66.72
FSUIE-base 9.73 53.44 66.08 71.82

Sentiment Triplet F1 1% 5% 25% 100%

UIE-base 45.66 63.12 73.73 73.38
FSUIE-base 46.87 63.79 74.27 74.17

Table 4: Experimental results on low-resource settings.

training data on ACE04 for NER and RE tasks,
and 14res for ASTE task. Specifically, we created
three subsets of the original training data at 1%,
5%, and 25% of the original size. In each low-
resource experiment, we trained the model for 200
epochs instead of 50 epochs. The results of these
experiments were compared between FSUIE-base
and UIE-base and are presented in Table 4.

The results of the low-resource experiments fur-
ther confirm the superior performance of FSUIE
over UIE in handling low-resource scenarios. With
only a small fraction of the original training data,
FSUIE is still able to achieve competitive or even
better performance than UIE. This demonstrates
the robustness and generalization ability of FSUIE
in dealing with limited data. Overall, the results of
the low-resource experiments validate the ability of
FSUIE to effectively handle low-resource scenarios
and extract rich information through limited data.

We also found that the model both performed
better on NER and ASTE taks than on RE task
under low-resource settings. This is because NER
and ASTE tasks are simpler than RE, so less data
can bring better learning performance. Addition-
ally, we noticed a small performance decrease in
the ASTE task for the 100% set compared to the
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Figure 4: NER performance of different models on
ACE04 test set.

25% set. This change may be due to the fact that
the training data is unbalanced, and reducing the
training size can alleviate this phenomenon.

3.6 Ablation Study
Since FSUIE has been verified to make more ef-
fective use of the information in the training set,
in order to verify this, we verify it from the per-
spective of the model training process. Specifically,
we recorded the effects of baseline UIE-base, UIE-
base+FSL, UIE-base+FSA and full model FSUIE-
base on different training steps on the NER ACE04
test set, and the results are shown in Figure 4.

We noticed that the models with FSA have a
significantly faster convergence speed, indicating
that by learning span-aware representations, which
are closer to the span prediction goal, the span
learning process becomes more easy and efficient.
With FSA, the model can focus its attention on the
necessary positions and capture the possible span
within a given sequence. While for FSL, it have a
similar convergence trend with the baseline, thus
may not improve the convergence speed.

Models P R F1

UIE-base 87.85 91.56 89.67
UIE-base + FSL 89.61 90.58 90.09
UIE-base + FSA 89.21 90.09 89.65
FSUIE-base 91.17 92.17 92.49

Table 5: Ablation study of FSL and FSA on NER task
using ADE dataset.

To further investigate the contribution of FSL
and FSA to the improvement of model perfor-
mance, we conduct ablation experiments on the
NER task using the ADE dataset. The specific ex-
perimental results are shown in Table 5. It can be

Figure 5: Illustration of attention scores distribution in
FSA layer. The extracting target are "walter rodgers"
and "who".

seen that the introduction of FSL alone can improve
model performance individually. When using FSA
alone, the performance of the model drops slightly.
However, when both FSL and FSA are used to-
gether, the model is significantly enhanced.

From our perspectives, the separate introduction
of FSA makes the model focus on specific parts
of the sequence rather than global representation,
resulting in a loss of information from text outside
the span. This may explain the slight drop in perfor-
mance when using UIE+FSA. However, this also
demonstrates that in the IE task, sequence infor-
mation outside a specific span has a very limited
impact on the results. The introduction of FSL alle-
viates the model’s over-dependence on label span
boundaries, allowing the model to extract more in-
formation, resulting in an improvement in both set-
tings. When FSA and FSL operate simultaneously,
the model extracts more information from the text
and FSA guides the model to filter the more critical
information from the richer information, resulting
in the most substantial improvement.

3.7 Visualization of FSA

To further examine the effectiveness of the fuzzy
span mechanism, we visualized the attention distri-
bution of the FSA layer in FSUIE-large as shown
in Figure 5. It should be noted that FSA is only
placed at the top layer for constructing span-aware
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representation and does not participate in the encod-
ing process, thus only affects span decisions rather
than the representation of tokens in the sequence.

The attention distribution indicates that, for a
given input text, each token in the final encoding
sequence tends to focus on semantic information
within a limited range of preceding tokens rather
than on the global representation of the input text.
This aligns with our expectation for the design of
the fuzzy span mechanism and confirms that fuzzy
span mechanism does indeed guide the model for
appropriate attention distribution for IE tasks.

4 Related Work

Universal Model Building universal model struc-
tures for a wide range of NLP tasks has been a
hot research area in recent years. The focus is on
building model structures that can be adapted to
different sources of data, different types of labels,
different languages, and different tasks. Several
universal models have been proposed, such as mod-
els learning deep contextualized word representa-
tions (Peters et al., 2018; Devlin et al., 2019), event
extraction models that can predict different labels
universally (Lu et al., 2021), models that can handle
multiple languages (Arivazhagan et al., 2019; Aha-
roni et al., 2019; Conneau et al., 2020), a universal
fine-tuned approach to transfer learning (Howard
and Ruder, 2018), models that learning syntactic
dependency structure over many typologically dif-
ferent languages (Li et al., 2018; Sun et al., 2020)
and models that can universally model various IE
tasks in a unified text-to-structure framework (Lu
et al., 2022). This paper builds upon the UIE by in-
corporating the fuzzy span mechanism to improve
IE performance.

Information Extraction IE is the task of extract-
ing structured information from unstructured text
data. This includes NER, RE, ASTE, Event Ex-
traction (EE), Aspect-Based Sentiment Analysis
(ABSA), etc. Research has proposed numerous ap-
proaches for IE, such as rule-based (Appelt and
Onyshkevych, 1998), machine learning (Téllez-
Valero et al., 2005; Kolya et al., 2010), deep learn-
ing (Qin et al., 2018), active learning (Radmard
et al., 2021), and logic fusion (Wang and Pan,
2020). There are still many task-specific mod-
els being proposed, based on previous approaches
and structures, e.g., NER (Li et al., 2022; Zhu and
Li, 2022; Yang et al., 2022; Zhang et al., 2019);
RE (Nan et al., 2020; Lai et al., 2021), ABSA (Jing

et al., 2021); and ASTE (Xu et al., 2021, 2020).
More related work about sparse attention please

refer to Appendix B.

5 Conclusion

In this paper, we proposed the Fuzzy Span Univer-
sal Information Extraction (FSUIE) framework, an
improvement for Universal Information Extraction.
To make use of boundary information in the train-
ing data and learn a decision-closer span-aware
representation, we proposed a fuzzy span loss and
fuzzy span attention. Extensive experiments on
several main IE tasks show that our FSUIE has a
significant improvement compared to the UIE base-
line, and achieves state-of-the-art results on ADE
NER datasets, ACE04 RE, ACE05 RE and ADE
RE datasets and four ASTE datasets. The exper-
iments also reveal FSUIE’s fast convergence and
good generality in low-resource settings. All the
results demonstrate the effectiveness and generaliz-
ability of our FSUIE in information extraction.

6 Limitations

This paper are based on the assumption that Univer-
sal Information Extraction (UIE) models have lim-
itations, particularly with regards to over-reliance
on label span boundaries and inflexible attention
span length. Therefore, the proposed framework
may be computationally and spatially expensive as
it requires a more complex attention mechanism
and additional computing power for training. Nev-
ertheless, this limitation of the span-based UIE
model can be overlooked in comparison to that of
the generative UIE model, which uses a stronger
language model. Additionally, the probability den-
sity functions explored in FSL are limited; thus,
further research is needed to develop a more tar-
geted strategy for adjusting the correct information
distribution.
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7 Appendix

7.1 ga in FSA

P R F1

UIE-base 87.85 91.56 89.67
FSUIE-base (g′a) 89.84 90.69 90.26
FSUIE-base (g′′a ) 90.93 90.41 90.67
FSUIE-base (gla) 91.17 92.17 92.49

Table 6: Performance of models using different ga in
FSA

In Table 6, we present the performance of models
using various ga functions in the FSUIE technique
on the ADE NER test set, where gla denotes the lin-
ear attenuated function employed in FSUIE. Com-
pared to the UIE-base, which does not integrate
the fuzzy span mechanism, all FSUIE-based mod-
els employing different ga functions obtain better
results, thus illustrating the superiority of FSUIE.
Regarding the different ga strategies, FSUIE-base
(g′a) shows minimal enhancement. This is likely
because the fuzzy span of attention attenuation ade-
quately reflects the real reading context and enables
the model to take advantage of more abundant in-
formation within the boundary of the attention span.
The best performance is achieved by FSUIE-base
(gla), which indicates that the attention should not
decay too quickly at the boundary of the attention
span, as evidenced by the results of g′′a .

7.2 Related Work on Sparse Attention
The high time and space complexity of Transformer
(O(n2)) is due to the fact that it needs to calculate
the attention information between each step and
all previous contexts. This makes it difficult for
Transformer to scale in terms of sequence length.
To address this issue, sparse attention was pro-
posed (Child et al., 2019). This refers to attention
mechanisms that focus on a small subset of the
input elements, rather than processing the entire
input sequence. This method allows attention to
be more focused on the most contributing value
factors, thus reducing memory and computing ca-
pacity requirements.

Based on the idea of sparse attention, various
approaches have been proposed, such as an adap-
tive width-based attention learning mechanism and
a dynamic attention mechanism that allows dif-
ferent heads to learn only the region of atten-
tion (Sukhbaatar et al., 2019). Zaheer et al. (2020)
proposed an O(N) complexity model with three

different sparse attentions. Zhuang et al. (2022)
sought to make the sparse attention matrix pre-
dictable. This paper, however, based on adaptive
span attention (Sukhbaatar et al., 2019) to establish
a fuzzy span attention, which aims at learning a
span-aware representation with the actual needs
of information extraction tasks. Our approach dif-
fers from previous work in that we aim to obtain a
fuzzy span of attention in the process of locating
the target, rather than reducing computational and
memory overhead.

7.3 Lspan and d in FSA

d P R F1

16 91.45 93.45 92.44
32 92.58 92.40 92.49
48 92.32 92.50 92.41

Table 7: Performance of FSUIE-base models with dif-
ferent d

Lspan P R F1

16 91.65 93.83 92.73
30 92.58 92.40 92.49
48 92.25 92.69 92.47

Table 8: Performance of FSUIE-base models with dif-
ferent Lspan

In Table 7, we present the performance of
FSUIE-base models using various hyper-parameter
d on the ADE NER test set. In Table 8, we present
the performance of FSUIE-base models using vari-
ous hyper-parameter Lspan on the ADE NER test
set. The results demonstrate that the model’s per-
formance is not significantly affected by the choice
of these hyper-parameters.

7.4 Single-Side and Both-Side Ambiguity in
FSL

FSL strategies P R F1

both-side 92.58 92.40 92.49
single-side 91.99 92.69 92.34

Table 9: Performance of FSUIE-base models with dif-
ferent FSL strategies

Actually, there may be cases of single-side am-
biguity in the labeling of entity boundaries in the
text. Therefore, we demonstrate FSUIE-base mod-
els’ performance with different FSL strategies in
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Table 9, where "single-side" means applying FSL
only on start boundary and "both-side" means ap-
plying FSL on both start and end boundary. The
results suggests that the influence of single-sided
and both-sided fuzziness on the model’s perfor-
mance is limited, because not all head words are
at the end or start, and FSL only performs limited
left/right extrapolation on precise boundaries, with-
out affecting the important information provided by
the original boundary. For generalization purposes,
we utilized both-sides fuzzy span in FSUIE.
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