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Abstract

Adaptive inference is a simple method for re-
ducing inference costs. The method works
by maintaining multiple classifiers of differ-
ent capacities, and allocating resources to each
test instance according to its difficulty. In this
work, we compare the two main approaches
for adaptive inference, Early-Exit and Multi-
Model, when training data is limited. First, we
observe that for models with the same archi-
tecture and size, individual Multi-Model classi-
fiers outperform their Early-Exit counterparts
by an average of 2.3%. We show that this gap is
caused by Early-Exit classifiers sharing model
parameters during training, resulting in con-
flicting gradient updates of model weights. We
find that despite this gap, Early-Exit still pro-
vides a better speed-accuracy trade-off due to
the overhead of the Multi-Model approach. To
address these issues, we propose SWEET,1 an
Early-Exit fine-tuning method that assigns each
classifier its own set of unique model weights,
not updated by other classifiers. We compare
SWEET’s speed-accuracy curve to standard
Early-Exit and Multi-Model baselines and find
that it outperforms both methods at fast speeds
while maintaining comparable scores to Early-
Exit at slow speeds. Moreover, SWEET indi-
vidual classifiers outperform Early-Exit ones
by 1.1% on average. SWEET enjoys the bene-
fits of both methods, paving the way for further
reduction of inference costs in NLP. We pub-
licly release our code.2

1 Introduction

Pre-trained Transformer-based language models
such as BERT (Devlin et al., 2019), DeBERTa (He
et al., 2020), and GPT3 (Brown et al., 2020) have
become the go-to tool in NLP . Although powerful,
the growing size of these models has been a major
drawback (Thompson et al., 2020; Schwartz et al.,

1Separating Weights in Early Exit Transformers.
2https://github.com/schwartz-lab-NLP/SWEET
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Figure 1: Illustration of the adaptive inference ap-
proaches compared in this work. In both methods, mul-
tiple classifiers of increasing sizes are run serially, until
a confident prediction is made. In Early-Exit (left), a
single model with multiple classifiers is used, such that
early computations are reused by later classifiers. In
Multi-Model (right), a sequence of independent models
is used, allowing each classifier to decouple its parame-
ters from other classifiers.

2020a), making them costly to run. Various at-
tempts to reduce inference cost have been proposed,
including distillation (Hinton et al., 2015), prun-
ing (LeCun et al., 1989) and quantization (Cour-
bariaux et al., 2014). This work focuses on adaptive
inference (Graves, 2016; Liu et al., 2020), a recent
approach in which the variability of sample diffi-
culty is leveraged toward a smarter allocation of
computational resources. An appealing property
of adaptive inference is that it enables dynamic
control of the speed-accuracy trade-off.

There are two main approaches to adaptive in-
ference, both using a set of classifiers of different
sizes. In Early-Exit (Schwartz et al., 2020b; Xin
et al., 2020), multiple classification heads are added
to the same model at different layers, allowing for
early exit during inference (Fig. 1, left). Another
approach (henceforth Multi-Model) is to apply mul-
tiple independent classifiers of varying capacities
serially until a prediction is made (Varshney and
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Baral, 2022a; Li et al., 2020, Fig. 1, right). These
approaches have complementary benefits; Multi-
Model allows for easier batching at inference time,
and potentially larger savings due to using very ef-
ficient models (Mamou et al., 2023). Early-Exit on
the other hand is more memory efficient, faster to
train, and enables re-use of early computation if an
early exit was not taken.

In this work, we compare the speed-accuracy
behavior of the two approaches when training data
is limited.3 We first observe that Early-Exit model
weights are updated by multiple conflicting gradi-
ent signals throughout the training process (Fig. 2,
left). We show that this leads to a decrease in per-
formance of individual Early-Exit classifiers com-
pared to Multi-Model ones (2.3% gap on average).
We find that this gap is higher for the earliest classi-
fiers (5.2% on average) than for later ones (1.4%).

We also find that while each Multi-Model classi-
fier outperforms its Early-Exit counterpart, it does
not translate to an overall better speed-accuracy
trade-off. Instead, we find that each method dom-
inates performance in a different region: Multi-
Model outperforms Early-Exit at fast inference
speeds, while Early-Exit is better at slow speeds.
Multi-Model downgraded scores at slow speeds are
likely caused by the overhead of running models
sequentially to predict hard samples.

Inspired by our findings, we present SWEET,4

an Early-Exit method for bridging the performance
gap between standard Early-Exit and Multi-Model.
In SWEET, each Early-Exit classifier only updates
the parameters of layers preceding it up to the pre-
vious classifier. This way, each model parameter
is updated by a single classifier, thus avoiding con-
flicting gradients during the training of Early-Exit
models (Fig. 2, right).

We experiment with two established pre-
trained models: BERT (Devlin et al., 2019) and
DeBERTa (He et al., 2020). We fine-tune Early-
Exit models using SWEET on seven text classifi-
cation tasks from GLUE (Wang et al., 2018) and
compare them to Early-Exit and Multi-Model base-
lines. The speed-accuracy curve of SWEET dom-
inates both baselines at fast speeds for 21 out of
28 experiments conducted. As for individual clas-

3Reducing inference costs is particularly helpful when
computational resources are limited. Such conditions are often
paired with restricted access to labeled data or a low budget
for data annotation. To evaluate the effectiveness of adaptive
inference methods in such scenarios, we limit training data
size to a few thousand examples in all our experiments.

4Separating Weights for Early-Exit Transformers.
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Figure 2: Left: standard Early-Exit fine-tuning, where
lower layers get gradient updates from multiple classi-
fiers. Right: our SWEET method, in which each layer
parameters are updated only by the next classifier.

sifiers, SWEET performs 1.1% better on average
than Early-Exit, mostly improving earlier classi-
fiers, where conflicting gradients are more domi-
nant.

We summarise our main contributions: (1) We
propose a way of measuring conflicting gradients,
and show that they exist in Early-Exit training pro-
cess; (2) We empirically compare Early-Exit and
Multi-Model classifiers and show that conflicting
gradients lead to individual Early-Exit classifiers
being less accurate; (3) We propose a novel fine-
tuning method, SWEET, which alleviates the con-
flicting gradients problem in Early-Exit, and leads
to improved results at fast inference speeds; (4) We
publicly release our code.5

2 Background: Adaptive Inference

Adaptive inference aims to reduce inference costs
of deep neural nets by matching model and sam-
ple complexities. Sample difficulty usually varies
in real-world data, meaning not all instances re-
quire processing by the most powerful classifier.
Therefore, we can allocate fewer resources to eas-
ier instances, and reduce the average inference cost,
potentially at the cost of performance degradation.

5https://github.com/schwartz-lab-NLP/SWEET
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Several exit strategies have been developed to
control the speed-accuracy trade-off of a model by
deciding when to make an early prediction and halt
computation (Xin et al., 2020; Zhou et al., 2020;
Xin et al., 2021; Schuster et al., 2021; Zhang et al.,
2022). In this work, we mainly experiment with
confidence-based exiting (Schwartz et al., 2020b),
in which computation halts if the softmax proba-
bility assigned to a given label exceeds a prede-
termined threshold. Dynamic control of model’s
inference speed is gained through setting different
threshold values. There are two main adaptive in-
ference approaches, Early-Exit and Multi-Model,
which we describe below.

Early-Exit Early-Exit models are deep neural
nets with multiple output points, following inter-
mediate layers. In this work, we focus on Early-
Exit implementation as presented in Schwartz et al.
(2020b). During fine-tuning,6 instances are passed
through the model, and a loss is calculated based
on predictions made by all classifiers. This leads
to some model weights being updated by gradient
signals from multiple classifiers (Fig. 2, left).

At inference time, an instance is passed through
the model and its label is predicted sequentially un-
til a decision to exit early is taken, and computation
is halted. An appealing property of Early-Exit is
that it allows for efficient re-use of previous compu-
tation from lower layers in higher classifiers. How-
ever, this means that some model parameters are
updated by multiple classifiers, which may lead to
sub-optimal performance of individual classifiers
due to conflicting gradients. In this work, we study
the effect of this property on Early-Exit models.

Multi-Model In Multi-Model adaptive inference,
a set of independent models of increasing capacity
are fine-tuned separately for the same task. At in-
ference time, the models are used sequentially from
smallest to largest until a prediction meets some
predetermined criterion or until the largest model
has been used. This method is more robust than
Early-Exit, being easier to extend and enabling the
use of different architectures. Additionally, Multi-
Model potentially allows for further computational
savings by using models smaller than the smallest
Early-Exit model (a single layer of the backbone

6Some works have pre-trained Early-Exit Models from
scratch (Liu et al., 2021b) but due to budgetary constraints, it
is common practice to fine-tune pre-trained models with the
added classifiers on the downstream task (Liu et al., 2020; Xin
et al., 2020; Schwartz et al., 2020b).

model, Mamou et al., 2023). However, it may add
overhead to the prediction time of hard instances,
as those pass through multiple models with early
computations being discarded, bringing the total
runtime to exceed that of using the largest model.

3 Early-Exit vs. Multi-Model

3.1 Conflicting Gradients in Early-Exit

Unlike Multi-Model, when fine-tuning Early-Exit
models, model weights are updated by multiple gra-
dient signals, originating in different classification
layers (Fig. 2, left). We hypothesize that this leads
to sub-optimal performance for all classifiers in-
volved, as gradient signals might conflict with one
another and derail the classifiers from their goal.
To test this hypothesis, we compare the gradient
similarity of different Early-Exit classifiers.

We fine-tune a BERTBASE model with four exit
points (following layers [1, 4, 6, 12]) for 400 train-
ing steps on the MNLI dataset (Williams et al.,
2018), using a batch size of 16 with a learning rate
of 2e-5. We pass a new training batch through the
model,7 and inspect the gradients with respect to
the last feed-forward matrix in each layer preceding
a classifier.8 To measure the degree of alignment
between gradient updates of different classifiers,
we average the cosine similarity between the rows
of gradient matrices for every pair of classifiers.
High similarity indicates that the classifiers are
updating the weights in a similar direction, while
low similarity (in absolute values) suggests that
the updates are close to orthogonal and potentially
detrimental to both classifiers.

This section studies the strengths and weak-
nesses of both adaptive inference approaches. We
start by describing a limitation of Early-Exit ap-
proaches: lower model layers are updated by con-
flicting gradient signals during training. We show
that this leads to inferior performance of individ-
ual Early-Exit classifiers compared to correspond-
ing Multi-Model classifiers. We then compare the
effects of these performance drops on the speed-
accuracy curve of Early-Exit models compared
Multi-Model ones.

Fig. 3 shows that the gradients of future classi-
fiers are generally orthogonal to those of the current
classifier for each examined Transformer block.
This indicates that model weights indeed suffer

7We repeat this experiment with an additional batch. Re-
sults (Appendix B) show a very similar trend.

8Except for the last layer, updated by a single classifier.
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Figure 3: Average cosine similarity between classi-
fiers’ gradient updates of model layers. C-i stands for
Classifier i. Layer 1 (preceding C-1) is updated by 3
classifiers, while layers 4 (preceding C-2), and 6 (C-
3) are updated by 3 & 2 classifiers respectively. For
each layer, the gradient update of the following classi-
fier is roughly orthogonal to those of future classifiers,
whereas gradient updates of higher classifiers tend to
better align with one another.

from conflicting gradient updates during the train-
ing process, which might affect the performance
of each individual classifier. Interestingly, when
multiple future classifiers are present, they tend to
align with each other, as indicated by the relatively
high similarity between layer 1’s gradient updates
originating in classifiers 2, 3, and 4, and between
layer 4’s gradient updates from classifiers 3 and 4.

3.2 Effects of Conflicting Gradients

To evaluate the effect of conflicting gradients on
individual Early-Exit classifiers, we compare the
different classifiers of an Early-Exit model and a
Multi-Model model. For a clean comparison, we
use the same backbone model, exit points, hyper-
parameters,9 and random seeds. As an example,
for a given 12-layer Transformer model, an Early-
Exit model with exit points following layers [4, 12]
would be compared to a Multi-Model one consist-
ing of two classifiers: the first four layers fit with
a classification head, and a full (12 layer) model.
The models differ only in the fact that for the Early-
Exit model, model weights are updated by multi-
ple future classifiers during the fine-tuning process,
while each Multi-Model classifier is an independent
model. To isolate the effect of conflicting gradients

9Except for the learning rate, which was tuned for each
task and model individually.

Size Method Exit Layer

1 4 6 12

BASE
MM 60.90.6 71.40.1 74.71.2 79.90.9
EE 57.30.3 70.30.3 74.40.7 78.70.5

SWEET 60.90.5 71.60.5 74.00.4 77.40.6

1 6 12 24

LARGE
MM 60.10.1 66.90.4 74.40.9 81.60.3
EE 56.60.3 65.60.9 74.00.6 79.91.9

SWEET 59.80.3 66.50.7 74.50.3 81.31.0

Table 1: Results of individual classification layers
averaged across all tasks using BERT as a backbone
model. Multi-Model (MM) classifiers outperform their
Early-Exit (EE) counterparts, with the gap being the
largest for early classifiers. SWEET closes much of this
gap, especially for early classifiers. Standard deviation
(across random seeds) is reported in subscript. Results
for DeBERTa are presented in Table 3.

on the classifiers, we evaluate each one separately
on the entire validation set. The performance gap
between each individual Multi-Model classifier and
its corresponding Early-Exit classifier, allows us to
directly measure the latter’s downgrade in perfor-
mance caused by conflicting gradients.

We experiment with BERT and DeBERTa
{BASE (∼110M parameters), and LARGE
(∼350M parameters)}. For BASE versions, we
install classifiers following layers [1, 4, 6, 12]. For
LARGE versions, we use layers [1, 6, 12, 24]. We
fine-tune an Early-Exit model and a correspond-
ing Multi-Model model on seven NLP tasks from
the GLUE benchmark (Wang et al., 2019): SST-
2 (Socher et al., 2013), MRPC (Dolan and Brockett,
2005), RTE (Dagan et al., 2006; Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
CoLA (Warstadt et al., 2019), MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016), and
QQP (Iyer et al., 2016). We report accuracy for all
tasks except for CoLA (Matthews corr.). We fine-
tune the models for two epochs on all tasks. As our
goal is to test Adaptive inference in a low resource
setting, we limit the training set size for each task
to 6K.10 We report the mean validation scores
and standard deviation across three random seeds.
Other hyper-parameters are listed in Appendix A.

10For datasets smaller than 6K, we use the entire dataset.
The training sets are randomly sampled for each random seed,
and are shared across methods with the same seed.
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Table 1 shows results for BERT classifiers,11 av-
eraged across all tasks. Our results show that mul-
tiple classifiers updating the same weights during
fine-tuning diminishes the performance of Early
Exit classifiers by 2.3% on average (1.7% for
BERT, 3.0% for DeBERTa), with earliest classi-
fiers affected the most (3.5% for BERT, 7.0% for
DeBERTa). The increased effect on early classi-
fiers supports our hypothesis regarding conflicting
gradients: parameters used by early classifiers re-
ceive updates from the largest number of classifiers,
thus increasing the chance for conflicting gradients
and leading to a larger decrease in performance.

3.3 Speed-Accuracy Trad-eoff

So far we observed that Multi-Model classifiers
outperform Early-Exit ones. On the other hand, we
also note that there is considerable overhead when
using a Multi-Model model. For Multi-Model, an
instance that makes an exit on classifier Ci, runs
all classifiers up to (including) Ci, each being an
independent model, while Early-Exit early layer
computations are reused by later classifiers. We
turn to evaluate the trade-off between these two
factors and compare the overall speed-accuracy
curve of each adaptive inference method.

We evaluate model scores across different in-
ference speeds using 11 threshold values, evenly
spaced in the range

(
1

# of labels , 1
)

. We note that

t = 1
# of labels corresponds to the earliest classifier

predicting all labels, while for t = 1, the final
classifier is used on the entire validation set.

We compute the speedup ratio for each instance
as the number of layers it passes through divided
by the number of layers of the full backbone model
(12 for BASE models, 24 for LARGE models), and
average across all instances. As an example, for
classifiers following layers [1, 4, 6, 12], an instance
that exits on the third classifier (i.e., after layer 6),
will have a speedup ratio of 6

12 for Early-Exit and
11
12 for Multi-Model ( 6

12 + 4
12 + 1

12 ).12

We evaluate models on the seven tasks listed in
Section 3.2, and report the average scores across
all tasks. BERTBASE results are presented in Fig. 4,
while the results for all other models can be found
in Fig. 5. The speed-accuracy curves reveal two
important observations. First, as expected, Multi-
Model achieves better scores at fast speeds (when
most instances are predicted by early classifiers).

11See Appendix C, Table 3 for DeBERTa results.
12Further experimental details can be found in Appendix A.
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Figure 4: Speed-accuracy trade-off comparison of
Multi-Model and Early-Exit. Multi-Model performs
better only at fast inference times (up to 1/4 of original
run time), while Early-Exit dominates the remainder
of the range. The graph shows the average task scores
(y-axis) as a function of the speedup ratio (x-axis).

Second, although each Multi-Model classifier out-
performs its corresponding Early-Exit one, the
Multi-Model overhead leads to this approach being
outperformed by Early-Exit at slow speeds (when
more instances are predicted by later classifiers).

4 SWEET: Separating Weights for
Early-Exit Transformers

Based on our findings, we aim to design an Early-
Exit method that takes advantage of the benefits
of both Multi-Model and Early-Exit approaches:
making the lower Early-Exit classifiers as accurate
as the Multi-Model ones, without the additional
overhead of the Multi-Model approach.

4.1 SWEET

We present SWEET—a method for fine-tuning
Early-Exit models that avoids the harmful impact
of conflicting gradients. SWEET grants each clas-
sifier exclusive control over part of the model’s
parameters, such that each model parameter is only
updated by a single classifier. This is done by
truncating the loss signal from classifier Ci when
reaching the Transformer layer corresponding to
classifier Ci−1 (Fig. 2, right).

In SWEET, each classification head receives
complete control over a portion of the Model’s pa-
rameters and can alter them in a way that optimizes
its own goals. Truncating future loss signals makes
the very first classifier an independent model, as
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Figure 5: Speed-accuracy tradeoff averaged across tasks. SWEET matches the performance of Multi-Model at fast
speeds, while maintaining results comparable to Early-Exit at slow speeds.

opposed to a model that shares its parameters with
future classifiers. The following classifiers update
only a subset of the model’s parameters but are
affected by early model parameters, allowing them
to still make use of earlier computations when pro-
cessing an instance. We clarify that all model
weights are updated simultaneously, as opposed
to training the classifiers (and their corresponding
layers) sequentially, which would have led to sig-
nificantly longer fine-tuning, matching that of a
Multi-Model model.

4.2 A Better Speeds-Accuracy Curve

We turn to evaluate the speed-accuracy curve of
SWEET. We use the same experimental setup
as in Section 3.2; we fine-tune two pre-trained
LMs (BERT and DeBERTa) in two sizes (BASE,
LARGE) over the same seven text classification
tasks. We use the same exit points and evaluate over
the entire validation set using confidence-based
exiting. We compare SWEET to two baselines:
a standard Early-Exit model and a Multi-Model
model. We compute the speedup ratio using the
same method as described in Section 3.3. For fur-
ther implementation details, see Appendix A.

Fig. 5 presents the speed-accuracy curves of all
models, averaged across all tasks. The figure shows
that at the fastest speeds, SWEET outperforms
Early-Exit for all models and is comparable to, or
outperforms, Multi-Model. However, for 3 out of
the 4 models (all but BERTLARGE), Early-Exit sur-
passes the performance of SWEET at slow speeds.
SWEET’s reduced scores at slow inference speeds
are likely due to the lower capacity of the later clas-
sifiers, stemming from their restricted influence on
early model parameters during fine-tuning.

Fig. 6 presents results on individual tasks for

BERTBASE.13 On five out of seven tasks, SWEET
outperforms both baselines at fast speeds (up to a
speedup ratio of 1/2), suggesting that SWEET im-
proves the performance of lower Early-Exit classi-
fiers by avoiding conflicting gradients during train-
ing. For two tasks (MRPC and CoLA), SWEET suf-
fers a considerable decrease in performance at slow
inference speeds. For the other five tasks SWEET
maintains comparable results to Early-Exit.

It is also interesting to examine how SWEET
affects individual Early-Exit classifiers. Table 1
shows the results of BERT’s individual classifiers
trained with SWEET compared to Early-Exit and
Multi-Model.14 SWEET classifiers close much of
the gap between Early-Exit and Multi-Model: they
outperform those of Early-Exit by 1.1% on average
(1.2% for BERT, 1.0% for DeBERTa), with the
margin being larger for the earliest classifier (3.4%
for BERT, 6.2% for DeBERTa). The final two clas-
sifiers trained with SWEET achieve lower scores
than those of Early-Exit (0.9% on average), proba-
bly due to the restricted influence those classifiers
have on early model parameters. Our results hint
that SWEET is able to effectively bridge the gap
between Early-Exit and Multi-Model early classi-
fiers, leading to a speed-accuracy curve favoring
fast inference speeds.

We note that during our experiments with Early-
Exit and Multi-Model models, some models did
not converge. In order to ensure the validity of
our results, we repeated these experiments with
different random seeds, which led to convergence.
We emphasize that this did not occur during the
training of models using SWEET.

13Fig. 10 in Appendix D shows individual results for the
other models.

14See Table 3 in Appendix C for DeBERTa results.
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Figure 7: Speed-Accuracy curves with the learning-
to-exit strategy. As with confidence-based methods,
SWEET outperforms both baselines at fast speeds, while
maintaining comparable results at slow speeds.

5 Further Analysis

We turn to evaluate the robustness of our approach.
We start with evaluating SWEET using a different
exit strategy. We then test how our results general-
ize when using varying amounts of training data.

A different exit strategy: Learning to Exit Our
experiments so far have used a confidence-based
exit strategy (Section 2). Here we consider a dif-
ferent strategy—learning to exit (Xin et al., 2021),
in which a separate module is trained for each clas-
sifier, learning whether the classifier’s prediction
should be trusted, and an exit should be made. This
method also allows for a natural extension to regres-
sion problems, unlike confidence-based methods
that are limited to classification tasks.

We use BERT {BASE, LARGE} as a backbone

model and fine-tune in the same procedure de-
scribed in Section 3.3. Our results (Fig. 7) reveal
that the methods behave similarly to the confidence-
based setup; SWEET outperforms both baselines
at the early stage of the curve (fast speeds), while
performing on par with Early-Exit at slow speeds.
We also measure the performance of individual
exit layers, as in Section 3.2, for models fine-tuned
using learning-to-exit. Our results (Table 4 in Ap-
pendix E) reveal a similar behavior to that of mod-
els fine-tuned using confidence based early exiting:
Multi-Model classifiers surpass the performance of
Early-Exit classifiers. Moreover, SWEET’s early
classifiers outperform those of Early-Exit, while
later ones show a slight decrease in performance.

Varying data sizes Our experiments so far have
focused on low-resource setups (a training set of
several thousand examples). We now evaluate how
SWEET performs as we vary the amount of training
data. We fine-tune a BERTBASE model on different
portions of the MNLI dataset using the same exper-
imental setup as in Section 3.2. Our results, shown
in Fig. 8, indicate that SWEET is mostly benefi-
cial when training data is limited to a few thousand
examples, but still somewhat useful even with as
many as 60K training instances. Nonetheless, the
effects of conflicting gradients on the earliest Early-
Exit classifier tend to disappear when training on
the full dataset (400K instances), making it as good
as the smallest Multi-Model classifier. Moreover,
in that setup, the use of SWEET seems to substan-
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Figure 8: Speed-accuracy curves of BERTBASE models trained on varying sizes of the MNLI dataset. The title of
each plot describes the amount of training data used in the fine-tuning phase. The benefits of using SWEET vanish
with large amounts of training data.

tially decrease the performance of later classifiers,
suggesting that the harm caused by limiting the
influence of classifiers on model parameters may
grow with the amount of training data.

6 Related Work

Several approaches have been proposed for reduc-
ing the inference time of large models (Treviso
et al., 2022). These include knowledge distilla-
tion (Ba and Caruana, 2014; Hinton et al., 2015),
in which the knowledge of a large teacher model
is transferred to a smaller student model; prun-
ing (LeCun et al., 1989; Frankle and Carbin, 2018),
which removes unnecessary model parameters; and
weight quantization (Jacob et al., 2018; Zafrir et al.,
2019), which reduces the floating point precision
of model weights. See (Treviso et al., 2023, Sec-
tion 6), for a recent survey. Adaptive inference
methods studied in this work are an orthogonal
approach, which can be used in combination with
these methods (Schwartz et al., 2020b).

The use of Adaptive inference in deep neural
networks has been extensively studied, with suc-
cessful implementations in various types of net-
works including recurrent neural networks (Graves,
2016) and convolutional neural networks (Teerapit-
tayanon et al., 2016; Huang and Chen, 2018). In the
context of this work, it has also been applied to ex-
isting backbone pre-trained language models: Xin
et al. (2020) implemented early exit strategies on
top of classification tasks. Zhou et al. (2020) Intro-
duced a patience-based exiting, requiring sequen-
tial classifiers to agree on a label for a prediction
to be made. Xin et al. (2021) extended the use of
Early-Exit in Transformers to regression tasks, as
well as addressed the issue of reduced performance
of the final classifier through the use of an alter-

nating training algorithm. Schuster et al. (2021)
proposed a confidence-based early exit model with
guarantees on the agreement between early exit
predictions and the final classifier.

Liu et al. (2022) presented a strong baseline for
efficient NLP by adding multiple classifiers to a
BERT model during pre-training. Recently, Schus-
ter et al. (2022) adjusted the Early-Exit method
to language modeling for text generation, making
dynamic computation at the single token level.

Multi-Model approaches to adaptive inference
have been proposed for vision tasks (Enomoro and
Eda, 2021) as well as for NLP (Li et al., 2020;
Varshney and Baral, 2022b). Mamou et al. (2023)
introduced a two-tier design with a highly efficient
model serving as the first model and a powerful
model serving as the second, enabling the possibil-
ity of achieving extremely fast inference speed.

Finally, the concept of conflicting gradients has
been mainly studied in the context of multi-task
learning, where a single model is faced with solving
different tasks (Yu et al., 2020; Liu et al., 2021a).
To the best of our knowledge, no previous work
examined this in the context of Early-Exit.

7 Conclusion

In this work, we analyzed the performance of two
common adaptive inference methods–Early-Exit
and Multi-Model. We found evidence that model
weights are updated by conflicting gradients in
the training process of Early-Exit models, caus-
ing classifiers to perform at a sub-optimal level.
Despite this, we showed that regarding the entire
speed-accuracy curve, Early-Exit is still favorable
to Multi-Model due to the overhead of using inde-
pendent model runs in a Multi-Model setup.

To address these findings, we proposed SWEET,
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a novel Early-Exit method, which avoids conflict-
ing gradients by allocating each Early-Exit classi-
fier a subset of model weights which are updated
solely by it. We found that for Early-Exit models
trained with SWEET, early classifiers perform bet-
ter than those of standard Early-Exit, but later clas-
sifiers of SWEET are not as good. These measures
lead to SWEET outperforming both Early-Exit and
Multi-Model in fast speeds, with slightly worse
results than Early-Exit at slow speeds.

Overall, our results demonstrate that Early-Exit
models can benefit from fine-tuning algorithms that
are tailored to their architecture, and that SWEET
is a promising approach for improving the speed-
accuracy trade-off of Early-Exit models in the con-
text of adaptive inference.

8 Limitations

This work focuses on the effects of adaptive infer-
ence in a low-resource setting, specifically when
training data is limited. Our experiments (Sec-
tion 5) suggest that the negative impact of conflict-
ing gradients may be less prominent when larger
amount of training data is available.

Our experiments were conducted using relatively
small pre-trained language models (≤ 350M pa-
rameters) due to computational constraints, and we
defer the replication of our findings with larger,
more powerful models to future work. Nonethe-
less, our results have important implications for the
growing trend of increasingly large language mod-
els. We hope this work inspires further research on
methods to reduce the computational cost of NLP.

This work concentrates on evaluating the speed-
accuracy trade-off of Multi-Model and Early-Exit
at inference time. We recognize that there are ad-
ditional factors, such as memory usage, batch pro-
cessing, and training duration, that could be con-
sidered when comparing these methods.

Finally, we experimented with seven text classi-
fication tasks in English. We recognize that results
may vary for other tasks and languages.
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A Implementation Details

Further implementation details For fine-tuning
BERT models, we use a batch size of 16. For fine-
tuning DeBERTa, due to GPU memory constraints,
we use a batch size of 16 for BASE and 8 for
LARGE. We fine tune the models for two epochs
with a maximal sequence length of 256. We use
β = 0.9, 0.999 for the AdamW optimizer with lin-
ear LR-decay. We optimize the initial learning rate
for each method, model size & task by performing
a search over five values {1e-5, 2e-5, 3e-5, 4e-5,
5e-5} and choose the value leading to the largest
area under the speed-accuracy curve. Chosen LRs
are presented in table Table 2

All experiments were run on a single NVIDIA
A5000 GPU. The overall computational budget was
∼1000 GPU hours. We implement all methods
using the HuggingFace Transformer library (Wolf
et al., 2020).

Speedup evaluation The speed-up ratio of the
model when using exit threshold t is calculated
using the formula:

speedupt =
∑M

i=1 S
t
i · Li

LM ·∑M
i=1 S

t
i

(1)

where M is the number of classifiers used for the
model, Li denotes the number of the layer preced-
ing the i-th classification head and St

i denotes the
number of samples classified by the i-th classifier
when using threshold t.

The same exit threshold can lead to different
speedup ratios amongst models trained with dif-
ferent random seeds. We use linear interpolation
to approximate the accuracy score at set speedup
ratios. We evaluate at (1/12, 1/4, 1/2, 3/4, 1)15 and re-
port the average across three random seeds as well
as a 95% confidence interval.16 We use tempera-
ture scaling (Guo et al., 2017) to make classifiers
confidence, and therefore early-exiting decisions,
more reliable. Note that this scaling is monotonic
and therefore does not influence predictions.

B Conflicting Gradients

We replicate the experiment done in Section 3.1
with another batch of size 16 to examine if our find-
ings generalize. results presented in Fig. 9 show

15For LARGE models we evaluate at 1/24 as the fastest
speedup ratio.

16For Multi-Model we also use (13/8, 13/4) as overhead
causes the model to perform at such "speedup" ratios.

a similar trend to Fig. 3: Gradient updates of cur-
rent classifiers are roughly orthogonal to those of
future classifiers, whereas future classifier updates
are more aligned.
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Figure 9: Average cosine similarity between classi-
fiers’ gradient updates of model layers. C-i stands for
Classifier i. Layer 1 (preceding C-1) is updated by 3
classifiers, while layers 4 (preceding C-2), and 6 (C-
3) are updated by 3 & 2 classifiers respectively. For
each layer, the gradient update of the following classi-
fier is roughly orthogonal to those of future classifiers,
whereas gradient updates of higher classifiers tend to
better align with one another.

C DeBERTa Individual Layer
Comparison

Table 3 Shows individual classifier results for
DeBERTa models. As with the BERT results,
Multi-Model classifiers outperform corresponding
Early-Exit classifiers. SWEET early classifiers are
better than Early-Exit ones, while later classifiers
tend to downgrade in performance.

D Individual Task Results

Fig. 10 shows results on individual tasks for
BERTLARGE and DeBERTa (BASE & LARGE).
For BERTLARGE, SWEET outperforms both base-
lines throughout the entire speed-accuracy curve
over all tasks examined. For DeBERTa models,
results are similar to those of BERTBASE, where
SWEET performs better at high speeds (small
speedup ratio) and is dominated at low speeds
(where later classifiers do most of the heavy lift-
ing).
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Model Size Task

SST-2 MRPC CoLA MNLI QQP QNLI RTE

BERT
BASE 5\5\5 5\3\4 4\4\5 5\5\5 5\5\5 5\4\5 5\5\4

LARGE 4\2\2 4\5\4 4\3\4 4\3\4 5\3\4 4\4\3 3\3\3

DeBERTa
BASE 3\3\3 4\5\5 4\5\4 2\4\3 4\5\5 3\4\3 2\1\4

LARGE 2\4\3 3\2\1 3\3\2 2\2\2 2\2\3 3\2\1 1\2\2

Table 2: Chosen initial learning rate to optimize area under the speed-accuracy curve of each model, size, task.
All numbers should be multiplied by 1e-5. x\y\z represent the initial learning rate of Early-Exit \ Multi-Model \
SWEET respectively.

Size Method Exit Layer

1 4 6 12

BASE
MM 60.10.4 74.60.6 78.31.1 82.20.7
EE 52.30.4 70.90.6 77.90.8 81.70.1

SWEET 59.11.5 72.40.2 75.11.1 79.50.5

1 6 12 24

LARGE
MM 61.90.1 76.20.4 80.20.9 86.80.2
EE 55.80.9 74.71.1 79.20.8 83.61.9

SWEET 61.30.7 76.00.5 77.80.4 82.70.4

Table 3: Results of individual classification layers av-
eraged over all tasks using DeBERTa as a backbone
model. Best scores are highlighted in bold, standard
deviation (across random seeds) is reported in subscript.
The results for BERT models presented in Table 1.

E Learning-to-exit Individual Layer
Comparison

Table 4 Shows individual classifier results for
BERT models fine tuned with the learning to exit
strategy. As with the confidence-based results,
Multi-Model classifiers outperform corresponding
Early-Exit classifiers. SWEET early classifiers are
better than Early-Exit ones, while later classifiers
tend to downgrade in performance.

Size Method Exit Layer

1 4 6 12

BASE
MM 53.70.5 66.10.4 71.10.3 75.42.7
EE 49.51.1 63.00.2 70.00.6 75.30.4

SWEET 53.50.4 64.90.9 68.51.4 74.10.4

1 6 12 24

LARGE
MM 51.60.3 59.90.4 67.62.6 77.90.8
EE 50.50.8 59.30.9 68.81.3 76.61.6

SWEET 53.90.5 60.60.2 69.50.4 75.811.0

Table 4: Results of individual classification layers
averaged over all tasks using BERT as a backbone
model, fine-tuned using learning-to-exit. Best scores are
highlighted in bold, standard deviation (across random
seeds) is reported in subscript.
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Figure 10: Speed-accuracy curves for individual tasks. For BERTLARGE, SWEET outperforms both baselines across
the entire curve. For DeBERTa, SWEET performs better than Early-Exit at high speeds on 9 out of 14 experiments.
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