@inproceedings{yu-etal-2023-cross,
title = "Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis",
author = "Yu, Jianfei and
Zhao, Qiankun and
Xia, Rui",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2023.acl-long.81/",
doi = "10.18653/v1/2023.acl-long.81",
pages = "1456--1470",
abstract = "Cross-domain Aspect-Based Sentiment Analysis (ABSA) aims to leverage the useful knowledge from a source domain to identify aspect-sentiment pairs in sentences from a target domain. To tackle the task, several recent works explore a new unsupervised domain adaptation framework, i.e., Cross-Domain Data Augmentation (CDDA), aiming to directly generate much labeled target-domain data based on the labeled source-domain data. However, these CDDA methods still suffer from several issues: 1) preserving many source-specific attributes such as syntactic structures; 2) lack of fluency and coherence; 3) limiting the diversity of generated data. To address these issues, we propose a new cross-domain Data Augmentation approach based on Domain-Adaptive Language Modeling named DA$^2$LM, which contains three stages: 1) assigning pseudo labels to unlabeled target-domain data; 2) unifying the process of token generation and labeling with a Domain-Adaptive Language Model (DALM) to learn the shared context and annotation across domains; 3) using the trained DALM to generate labeled target-domain data. Experiments show that DA$^2$LM consistently outperforms previous feature adaptation and CDDA methods on both ABSA and Aspect Extraction tasks. The source code is publicly released at \url{https://github.com/NUSTM/DALM}."
}
Markdown (Informal)
[Cross-Domain Data Augmentation with Domain-Adaptive Language Modeling for Aspect-Based Sentiment Analysis](https://preview.aclanthology.org/add-emnlp-2024-awards/2023.acl-long.81/) (Yu et al., ACL 2023)
ACL