
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 11802–11832

July 9-14, 2023 ©2023 Association for Computational Linguistics

Learning to Initialize: Can Meta Learning Improve
Cross-task Generalization in Prompt Tuning?

Chengwei Qin♣, Shafiq Joty♣♠, Qian Liq, Ruochen Zhao♣
♣ Nanyang Technological University

♠ Salesforce AI
q Northeastern University

{chengwei003@e.ntu, srjoty@ntu, ruochen002@e.ntu}.edu.sg
qianli@stumail.neu.edu.cn

Abstract

Prompt tuning (PT) which only tunes the em-
beddings of an additional sequence of tokens
per task, keeping the pre-trained language
model (PLM) frozen, has shown remarkable
performance in few-shot learning. Despite this,
PT has been shown to rely heavily on good
initialization of the prompt embeddings. In
this work, we study meta prompt tuning (MPT)
to systematically explore how meta-learning
can help improve (if it can) cross-task general-
ization in PT through learning to initialize the
prompt embeddings from other relevant tasks.
We empirically analyze a representative set of
meta learning algorithms in a wide range of
adaptation settings with different source/target
task configurations on a large set of few-shot
tasks. With extensive experiments and analysis,
we demonstrate the effectiveness of MPT. We
find the improvement to be significant particu-
larly on classification tasks. For other kinds of
tasks such as question answering, we observe
that while MPT can outperform PT in most
cases, it does not always outperform multi-task
learning. We further provide an in-depth analy-
sis from the perspective of task similarity.

1 Introduction

Humans can easily learn to perform new tasks with
only few data by leveraging previously acquired
knowledge from other relevant tasks. Such capa-
bility is a hallmark of human intelligence (Carey
and Bartlett, 1978). However, when it comes to
the models, they often face over-fitting issues when
they are tasked to learn from a few labeled exam-
ples (Lake et al., 2017; Linzen, 2020), a problem
commonly termed as few-shot learning (FSL).

With the recent advancements in developing
large-scale pre-trained language models (PLMs),
prompt-based methods have shown promising re-
sults in FSL. Brown et al. (2020) show that by
virtue of in-context (meta) learning, a frozen GPT-
3 model can achieve good results on a variety of
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Figure 1: Illustration of cross-task generalization, where
the model is expected to learn an unseen target task
given the knowledge acquired from previously learned
source tasks.

few-shot tasks through manually designed prompts,
which are task instructions along with a few exam-
ples expressed in natural language. However, the
performance of in-context learning has been shown
to be highly sensitive to the design of such “dis-
crete” prompts (Zhao et al., 2021). It is also limited
by the maximum sequence length supported by the
PLMs (Li and Liang, 2021). Down this line, efforts
have been made on automatically searching and
optimizing for discrete prompts (Shin et al., 2020;
Schick and Schütze, 2021; Gao et al., 2021).

As an alternative to discrete prompts, recent ef-
forts attempt to learn “soft” prompts that add ad-
ditional trainable parameters (Liu et al., 2021b; Li
and Liang, 2021; Lester et al., 2021), showing bet-
ter results than discrete prompts (Liu et al., 2021a).
Lester et al. (2021) introduce prompt tuning (PT)
that prepends a sequence of tunable tokens to the
input and optimize their embeddings keeping the
PLM frozen. Despite its strong few-shot perfor-
mance, PT has been shown to be sensitive to the
initialization of the embeddings, which might limit
its practical application (Qin and Joty, 2022b). To
address this, Gu et al. (2022) propose pre-trained
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prompt tuning (PPT) to pre-train soft prompts using
self-supervised tasks on unlabeled data. It relies
on carefully designed pre-training tasks tailored to
the downstream tasks, and the pre-training objec-
tives are only applicable to classification tasks. Vu
et al. (2022) introduce soft prompt transfer (SPoT),
which uses the soft prompts learned from a set
of source tasks through multi-task learning to ini-
tialize the prompt for a target task. Both PPT
and SPoT demonstrate cross-task generalization
(Fig. 1) – learning of a new task can benefit from
learning of other related tasks (Ye et al., 2021).

In a recent survey, Lee et al. (2022) claim that
meta learning (Schmidhuber, 1987) can play an im-
portant role for cross-task generalization in NLP.1

Different from multi-task learning which consid-
ers the performance on the source tasks to learn
the initial parameters, meta learning aims to find
initial parameters suitable for adapting to a target
few-shot task. Hence, it could outperform multi-
task learning in several scenarios with full-model
finetuning (Dou et al., 2019; Chen et al., 2020b).
However, to our knowledge, there is no systematic
study on the role of meta learning on PT. In a recent
work, Huang et al. (2022) adopt MAML (Finn et al.,
2017) for pre-training soft prompts. One major lim-
itation of their study is that it is limited to only one
type of meta learning algorithm and only sentiment
classification tasks, lacking comprehensive under-
standing of cross-task generalization. Min et al.
(2022) and Chen et al. (2022) show the effective-
ness of in-context learning for PLMs, whereas we
mainly focus on optimization-based meta learning.

To systematically study meta prompt tuning
(MPT) for cross-task generalization, we conduct
experiments on a large collection of few-shot tasks
involving different types of datasets with a unified
text-to-text format (Ye et al., 2021). We investigate
a wide range of adaptation settings with different
source/target task types, which helps better under-
stand the capability and limitation of meta learning
in PT. With extensive experiments, we aim to ad-
dress the following research questions:
• Q1. Can MPT improve cross-task generalization

in PT? Is it better than multi-task learning?
• Q2. What happens with more labelled data for

source/target tasks (beyond few-shot settings)?

1Unless otherwise specified, by meta learning in this paper
we generally refer to the optimization-based meta learning
algorithms, and use more specific names for the other kinds
such as in-context learning for black-box meta learning and
metric learning for non-parametric meta learning.

• Q3. Does it help with more diverse source tasks?
• Q4. Is the performance gain of MPT consistent

across different backbone models?
To answer these questions, we empirically an-

alyze MAML (Finn et al., 2017), FoMAML and
Reptile (Nichol et al., 2018), which constitute a
representative set of meta learning methods. Ex-
perimental results show that MPT can indeed help
cross-task generalization, e.g., MAML improves
the performance of PT by more than 20% on clas-
sification tasks. However, we also notice that MPT
does not always outperform multi-task learning, es-
pecially on non-classification tasks. We provide an
in-depth analysis from the perspective of task sim-
ilarity. As for Q2, we find that MPT does benefit
cross-task generalization beyond few-shot settings.
For Q3, we observe that increasing the diversity
of source tasks does not necessarily improve cross-
task generalization. Finally, the consistent gain of
MPT across different models shows its robustness
to model type and size. In summary, the two main
contributions of this work are:
• To the best of our knowledge, we are the first

to extensively explore how meta learning helps
cross-task generalization in prompt tuning.

• With extensive experiments and analysis, we
show the effectiveness and limitation of meta
prompt tuning in various source/target settings.

2 Related Work

Few-shot Learning (FSL) FSL aims to learn a
task with only a few labeled examples, which often
leads to the over-fitting problem. Existing meth-
ods to address this problem mainly focus on opti-
mizing the hypothesis space of the few-shot tasks
(Triantafillou et al., 2017; Finn et al., 2017; Hu
et al., 2018) or augmenting the few-shot data (Gao
et al., 2020; Qin and Joty, 2022a). Recently, large-
scale pre-trained language models (PLMs) have
demonstrated strong FSL ability through prompt-
based methods, including both discrete (Brown
et al., 2020; Ding et al., 2022) and soft prompts
(Lester et al., 2021).

Prompt-based Learning (PL) PL is a new
paradigm which prepends a task-specific template
or prompt to the input for learning new tasks (Liu
et al., 2021a). Initial PL methods mainly focus
on designing, searching or optimizing discrete
prompts (Brown et al., 2020; Shin et al., 2020;
Gao et al., 2021). However, discrete prompts are
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hard to optimize. To solve this, recent PL methods
attempt to optimize prompts in a continuous space,
i.e., learn soft prompts (Li and Liang, 2021; Liu
et al., 2021b; Lester et al., 2021), showing impres-
sive FSL performance (Qin and Joty, 2022b). In
addition to prompt design, several recent studies
have explored the applications (Zhu et al., 2022; Li
et al., 2022; Qin et al., 2023; Zhao et al., 2023) and
analysis (Zhong et al., 2021; Le Scao and Rush,
2021) of PL.

Meta Learning Meta Learning or learning to
learn, has been applied to boost few-shot perfor-
mance on various NLP tasks, e.g., relation extrac-
tion (Han et al., 2018) and machine translation
(Gu et al., 2018). Meta learning algorithms can
be divided into three main categories. First, black-
box methods adopt additional meta learners to help
adaptation (Santoro et al., 2016; Garnelo et al.,
2018; Mishra et al., 2018; Brown et al., 2020). Sec-
ond, non-parametric methods explore how to learn
metrics that can compare the distances between
different samples, i.e., learning to compare (Koch
et al., 2015; Vinyals et al., 2016; Snell et al., 2017).
Finally, optimization-based methods aim to learn
better parameter initialization to effectively and
efficiently adapt to unseen tasks, i.e., learning to
initialize (Finn et al., 2017; Nichol et al., 2018;
Kedia et al., 2021). Lee et al. (2022) claim that
meta learning can be effective for cross-task gener-
alization, especially the optimization-based meth-
ods. They can be applied to various problems in
a model-agnostic way to improve FSL on target
tasks with model fine-tuning (Ye et al., 2021).

Summary. Existing work shows that meta learn-
ing can improve cross-task few-shot generalization
with full model fine-tuning. However, there is no
systematic study on whether (and how) meta learn-
ing can do so with prompt tuning of PLMs. To
fill this research gap, our work provides a com-
prehensive understanding of the effectiveness and
limitation of meta learning in prompt tuning.

3 Preliminaries

In this section, we revisit the basics about prompt
tuning and optimization-based meta learning.

3.1 Prompt Tuning

Following Lester et al. (2021), we reframe all tasks
into a text-to-text format. Given a training dataset
D𝑡𝑟 = {(𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛)} for a task T , differ-

ent from traditional model fine-tuning, prompt tun-
ing (PT) is a parameter-efficient learning method
which freezes the PLM 𝜃 and prepends the input
text 𝑋𝑖 with a sequence of tunable soft tokens 𝑃, pa-
rameterized by prompt embeddings 𝜙. The prompt
embeddings 𝜙 are initialized from the vocabulary
of the PLM and optimized through gradient descent
with the following objective:

LT
𝜙 = L(𝜙,D𝑡𝑟 ) = −

𝑛∑︁
𝑖=1

log 𝑝(𝑌𝑖 | [𝑃, 𝑋𝑖], 𝜙, 𝜃) (1)

3.2 Optimization-based Meta Learning
The main goal of optimization-based meta learning
(or learning to initialize), is to learn better initial
parameters that can effectively and efficiently adapt
to a new task T new with limited data. We denote
the initial parameters (meta-parameters) as 𝜙∗.

To obtain 𝜙∗, the model needs to learn from a
series of meta-training tasks Tmeta = {T1, ...,T𝑛}.
The dataset D𝑖 of each task T𝑖 is divided into two
disjoint sets: a support set S𝑖 and a query set Q𝑖.
The objective for learning 𝜙∗ is

𝜙∗ = arg min
𝜙

∑︁
T𝑖∈Tmeta

L
(
𝜙 − 𝛼∇𝜙L(𝜙,S𝑖)︸                 ︷︷                 ︸

inner update

,Q𝑖

)
(2)

where L is the objective function defined in Eq. (1),
𝜙 is the set of parameters to meta-learn and 𝛼 is
the inner learning rate. Denoting the overall loss
as LTmeta

𝜙 =
∑

T𝑖∈Tmeta L(𝜙′,Q𝑖) with 𝜙′ being the
inner-updated value of 𝜙, we use gradient descent
to update 𝜙 further in the meta-training stage:

𝜙 = 𝜙 − 𝛽∇𝜙LTmeta

𝜙 (3)

where 𝛽 is the outer learning rate. This is actu-
ally the Model-Agnostic Meta-Learning or MAML
(Finn et al., 2017). Notice that optimizing Eq. (3)
requires calculating second-order gradients, which
can be quite memory-consuming. To alleviate
this, First-order MAML (FoMAML) and Reptile
(Nichol et al., 2018) are proposed to use first-order
approximations, allowing lower memory costs.

After the meta-training stage, 𝜙∗ serves as the ini-
tial parameters for learning an unseen meta-testing
task T new which is usually few-shot.

4 Approach

In this section, we first introduce the problem set-
ting and evaluation metric. Then, we illustrate the
key methods for meta prompt tuning (MPT).
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4.1 Problem Setting

To evaluate cross-task generalization in prompt tun-
ing, we select a large and diverse collection of few-
shot tasks from Ye et al. (2021), covering various
types including classification, question answering
and generation. We partition the set of all tasks
T all into two disjoint parts: source tasks T src and
target tasks T tgt. Details of the tasks and partitions
are provided later in our experiment setup (§5).

Following Min et al. (2022), we can divide the
whole learning process into two stages (Fig. 1):

• Upstream learning on source tasks In this
stage, the model has access to T src, which is re-
garded as meta-training tasks Tmeta in Eq. (2). We
divide the dataset D𝑖 of every source task T𝑖 into
training (or support) and validation (or query) sets,
and conduct optimization-based meta learning or
multi-task learning on these sets to obtain meta-
parameters 𝜙∗. Note that we use both support and
query sets for model training in multi-task learning
to ensure fair data access for both methods.

• Downstream learning on target tasks After
the upstream learning stage, we use the learned
meta-parameters 𝜙∗ as the initial point for learning
target tasks T tgt. Every target task T𝑘 has its own
training set Dtr

𝑘 , validation set Dval
𝑘 , and test set

Dtest
𝑘 . The model is required to learn from Dtr

𝑘 via
prompt tuning and will be evaluated on Dtest

𝑘 . The
performance on Dval

𝑘 is used for hyper-parameters
tuning and model selection.

This two-stage learning paradigm can naturally
reflect cross-task generalization where the model
needs to learn an unseen task given previously ac-
quired knowledge from other tasks.

4.2 Evaluation Metric

We evaluate the model performance on a set of
target tasks T tgt. As T tgt may cover various task
types, simply averaging the performance of differ-
ent target tasks is unreasonable. Following Ye et al.
(2021), we use average relative gain (ARG) as the
main evaluation metric. We first calculate relative
gain (RG) for each target task, i.e., relative per-
formance improvement before and after applying
the upstream (meta or multi-task) learning on the
source tasks. Then we average the relative gains
of all target tasks to obtain the final result which
indicates the overall performance improvement.

Meta-training
Source Tasks

...

... ...

... Soft prompts Optimization-based 
meta learning

Meta-testing
Target Tasks

...

Prompt 
initialization

...

...

...

Prompt tuning

Meta-parameters

Figure 2: Overview of Meta Prompt Tuning (MPT).
In the meta-training stage, we conduct optimization-
based meta learning on source tasks to obtain meta-
parameters (i.e., soft prompts). The meta-parameters
will then be used to initialize prompt embeddings for
learning unseen target tasks in the meta-testing stage.

4.3 Meta Prompt Tuning (MPT)

As shown in Fig. 2, the key idea of MPT is to ap-
ply optimization-based meta-training as upstream
learning to a set of source tasks in order to learn
meta parameters, which in this case are prompt em-
beddings. The learned prompt embeddings serve
as the initialization for learning unseen target tasks,
referred to as meta-testing or downstream learning.

4.3.1 Meta-training
We meta-train the prompt embeddings on source
tasks T src. Without loss of generality, we take
MAML (Finn et al., 2017) as an example. For
every iteration, we first sample one source task
T𝑖 which has a support set S𝑖 and a query set Q𝑖.
Then we sample a support batch B𝑠 from S𝑖 and
a query batch B𝑞 from Q𝑖. Denoting the trainable
prompt embeddings as 𝜙, B𝑠 and B𝑞 are used for
one gradient update with the following objective:

L𝑖
𝜙 = L(𝜙 − 𝛼∇𝜙L(𝜙,B𝑠),B𝑞)
𝜙 = 𝜙 − 𝛽∇𝜙L𝑖

𝜙

(4)

where L is the task loss defined in Eq. (1), and 𝛼
and 𝛽 are inner and outer learning rates, respec-
tively. During the meta-training stage, we iterate
over tasks in T src to update prompt embeddings
𝜙 for a fixed number of steps. The learned meta-
parameters 𝜙∗ is used in the meta-testing stage.

4.3.2 Meta-testing
In meta-testing, the model is expected to learn un-
seen target tasks T tgt. For each target task T𝑘 , we
use the learned meta-parameters 𝜙∗ to initialize the
prompt embeddings for the task. Denoting the train-
ing set of T𝑘 as Dtr

𝑘 , the learning objective during
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Source Target

Setting #tasks Setting #tasks

Random 114 Random 20

Classification (Cls) 45
Classification 10Both (Cls + Non-Cls) 23 + 22

Non-Classification 45

Classification 45
Non-Classification 12Both (Cls + Non-Cls) 23 + 22

Non-Classification 45

QA 22 QA 15Non-QA 33

Non-Paraphrase Cls 60 Paraphrase 4

Table 1: Statistics of ten distinct source/target task parti-
tions. Appendix A.1 for details about each partition.

meta testing is defined as:

L𝜙∗ (Dtr
𝑘 ) = −

𝑛∑︁
𝑖=1

log 𝑝(𝑌𝑖 | [𝑃∗, 𝑋𝑖], 𝜙∗, 𝜃) (5)

where 𝜃 is the frozen PLM, (𝑋𝑖 , 𝑌𝑖) ∼ Dtr
𝑘 is a

training sample and 𝑃∗ are the prompt tokens.
We evaluate the model with the best validation

performance on the test set and calculate average
relative gain on the test sets of T tgt.

5 Experimental Setup

We first describe the source/target task partitions,
and then introduce methods compared in our work.
Finally, we present the implementation details.

5.1 Task Partitions

We experiment with ten different source/target task
partitions as shown in Table 1. Depending on the
type of the target tasks, we can divide these ten
settings into several groups:

• R→R (Random→Random): We first experi-
ment with the R→R setting where both source
and target tasks are randomly selected, meaning
that they can cover any task type. This setting
mimics the learning paradigm of humans and re-
flects whether cross-task generalization can help
obtain a general-purpose few-shot learner.

• X→Cls (X=Cls, Both, Non-Cls): The target
tasks involve classification, while the source
tasks can be classification, non-classification
tasks or both. This setting helps us better under-
stand the influence of the source task distribution.

• X→Non-Cls (X=Cls, Both, Non-Cls): The only
difference between this and the previous setting
is the type of target tasks. We investigate how

meta learning improves cross-task generalization
when target tasks are non-classification tasks.

• X→QA (X=QA, Non-QA): Compared to the
previous one, this group is more fine-grained.
We only select target tasks from question answer-
ing (QA) instead of all non-classification tasks.
We conduct experiment on different source task
types, including QA and Non-QA tasks.

• NP→P (Non-Paraphrase Cls→Paraphrase):
This group has the finest granularity in our set-
ting. We choose paraphrase identification which
is a sub-category of classification as the target,
and non-paraphrase classification as the source.
The final two groups help understand how meta
learning performs in more fine-grained scenarios.

Note that we ensure that there is no overlap be-
tween the source and target tasks. Following Ye
et al. (2021), we use 16 samples per class in the
training (or support) and validation (or query) sets
for classification tasks, and 32 samples per set for
non-classification tasks. For every task, we sample
the training and validation sets 5 times with differ-
ent random seeds to reduce variance in few-shot
evaluation and cover more diverse samples in up-
stream learning. We provide full details of tasks
and partitions in Appendix A.1.

5.2 Methods Compared
We mainly use T5-Large (Raffel et al., 2019) as
the backbone language model and compare the
following methods in our work.

• Prompt Tuning (PT) on target tasks. It is our
baseline without the upstream learning. We di-
rectly apply PT (Lester et al., 2021) to target tasks
and use its performance as the basis for comput-
ing average relative gain for other methods.

• Model-Agnostic Meta-Learning (MAML). We
apply MAML (Finn et al., 2017) in the upstream
learning (meta-training) stage. The learned meta-
parameters are used to initialize prompt embed-
dings for learning target tasks.

• First-order MAML (FoMAML) and Reptile.
We also investigate two first-order meta learn-
ing algorithms: FoMAML (Finn et al., 2017)
and Reptile (Nichol et al., 2018). Compared to
MAML, they are more memory-efficient.

• Multi-task learning (MTL). We conduct multi-
task learning on source tasks instead of meta
learning to obtain initial parameters. This is a
straight-forward yet effective method as demon-
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strated by Vu et al. (2022).

• Fine-tuning on target tasks. Fine-tuning is the
dominant paradigm where the whole language
model is tuned for learning target tasks. We in-
clude it to verify whether cross-task generaliza-
tion can help PT outperform fine-tuning.

In addition, we conduct experiments with differ-
ent backbone models to verify MPT’s robustness.

5.3 Implementation Details

All our methods are implemented with Py-
Torch/Transformers library (Wolf et al., 2020). We
use higher library (Grefenstette et al., 2019) for
higher-order optimization in meta learning meth-
ods. The prompt length in PT is set to 100 tokens
following Lester et al. (2021). For meta-training,
we set the inner and outer learning rates to 3e−5
and 5e−1, respectively. We use 5000 for total train-
ing steps. We set the inner batch size to 2, 4 and 4,
and inner update steps to 1, 1 and 10 for MAML,
FoMAML and Reptile, respectively. For multi-task
learning, we set the learning rate, batch size and
number of epochs to 5e−1, 4 and 20, respectively.
For MAML, we select the inner learning rate from
{2e−5, 3e−5, 5e−5}, the outer learning rate from
{2e−1, 3e−1, 5e−1}, and total training steps from
{2500, 5000, 10000}. We adopt the same three hy-
perparameters for FoMAML and Reptile. The
search range for the inner update steps of Rep-
tile is {2, 4, 6, 8, 10}. For multi-task learning, we
select the learning rate from {2e−1, 3e−1, 5e−1},
the batch size from {2, 4, 6, 8}, and the number of
epochs from {5, 10, 20}.

For downstream learning, we mainly fol-
low the settings in Ye et al. (2021). For
prompt tuning, we select the learning rate from
{5e−1, 4e−1, 3e−1, 2e−1} based on the validation
performance. For fine-tuning, the search range for
the learning rate is {5e−4, 3e−4, 2e−4, 1e−4}. We
set the batch size, total training steps and evaluation
interval to 8, 3000 and 50, respectively.

Since it is infeasible to search for optimal hy-
perparameters for each of the meta- and multi-task
learning methods in each of the settings, we select
them based on the R→R setting. We randomly se-
lect 5 tasks that are not in the source and target sets
as validation tasks for hyperparameter search. The
hyperparameters with best validation performance
(ARG) are used for upstream learning. We select
the inner learning rate, the outer learning rate and
total training steps for MAML and adopt the same

three hyperparameters for FoMAML and Reptile.

6 Results and Analysis

We now address the four research questions asked
before in §1 with empirical results.

Q1. Can meta prompt tuning improve cross-task

generalization? Is it better than multi-task learning?

The ARG of different methods w.r.t. PT in var-
ious settings are shown in Table 2; more detailed
results on every target task are in Appendix A.2.

• MPT can indeed help cross-task generaliza-
tion. From the results in Table 2, we observe that
MPT outperforms the baseline PT in most cases
with +ve ARG scores. Out of 30 different runs for
three meta learning methods in ten different set-
tings (see the 1st block of results), MPT achieves
better performance than PT in 23 runs, demonstrat-
ing its effectiveness in cross-task generalization.

For the R→R setting, MAML achieves the best
performance, showing that it is a good general-
purpose few-shot learner. For adapting to classifi-
cation tasks, MAML outperforms PT by 20.16% if
the prompt embeddings are initialized from other
classification tasks. The results in a more fine-
grained setting (NP→P) also indicate the ability of
MAML to learn classification tasks. While Reptile
performs the best (20.44%) in this setting, MAML
still outperforms PT by a large margin (11.14%).

However, as shown in Table 2, MAML falls be-
hind FoMAML when adapting to non-classification
tasks. Among the three meta learning methods, Fo-
MAML achieves the best performance (9.81%) on
non-classification target tasks in the Both→Non-
Cls setting, showing effective knowledge transfer.
We observe similar results in more fine-grained
settings QA/Non-QA→QA, where FoMAML out-
performs MAML and Reptile significantly. While
Reptile is claimed empirically to be better than
MAML/FoMAML (Lee et al., 2022), it falls short
of MAML/FoMAML in many cases. This might
be because MAML and FoMAML are more similar
compared to Reptile from a gradient perspective
(Nichol et al., 2018). And since the hyperparame-
ter search is done based on MAML (§5.3), which
means Reptile’s method may be suboptimal.

In addition, we can see that meta learning helps
PT outperform fine-tuning in several settings in-
cluding Cls→Cls (MAML, FoMAML), Both→Cls
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Method R→R
Cls

→Cls
Both
→Cls

Non-Cls
→Cls

Cls
→Non-Cls

Both
→Non-Cls

Non-Cls
→Non-Cls

QA
→QA

Non-QA
→QA

NP
→P

MAML 8.78±0.69 20.16±0.84 10.57±1.03 6.34±0.48 0.32±0.04 7.54±0.73 6.71±0.39 −16.59±1.36 3.26±0.24 11.14±0.93
FoMAML 1.24±0.18 18.80±1.13 17.84±1.21 7.32±0.42 6.42±0.51 9.81±0.64 3.88±0.31 16.63±1.58 9.83±0.76 −0.68±0.07
Reptile 8.42±0.46 −5.17±0.71 −4.18±0.37 2.42±0.21 −1.54±0.18 −3.38±0.49 0.78±0.07 0.77±0.09 −0.09±0.01 20.44±1.34

Multi-task learning 7.14±0.62 −5.64±0.92 5.73±0.43 4.97±0.39 8.51±1.16 13.47±0.97 19.67±1.72 25.65±1.93 17.23±1.08 −5.19±0.86

Fine-tuning −12.61±1.57 16.02±1.44 16.02±1.44 16.02±1.44 −35.70±2.73 −35.70±2.73 −35.70±2.73 −47.37±2.97 −47.37±2.97 1.56±0.12

Table 2: Average relative gain (ARG %) of different methods with respect to prompt tuning (PT) in various
settings. Bold indicates the best ARG score. ‘Cls’, ‘QA’, ‘P’ and ‘NP’ respectively stand for ‘classification’,
‘question answering’, ‘paraphrase’ and ‘non-paraphrase classification’.

(FoMAML) and NP→P (MAML, Reptile), which
demonstrates the superiority of MPT.

• MPT does not always outperform multi-task
learning (MTL). While meta learning is specifi-
cally designed for quickly adapting to unseen target
tasks, it does not always outperform MTL in PT.
From Table 2, we can observe that MTL achieves
better performance than MPT in many cases, espe-
cially on non-classification target tasks. We analyze
the reasons as follows:

• Meta learning methods have been shown to be
highly sensitive to the hyperparameters (Anto-
niou et al., 2019), which we could not tune
exhaustively due to memory/time constraints
(see Appendix A.5 for hyperparameter sensitivity
analysis). As mentioned in §5.3, we select the
hyperparameters of MAML using the R→R set-
ting, and then use the same hyperparameters for
all meta learning methods in all settings, which
might limit the performance of MPT.

• There might be less shared structure (or features)
among non-classification tasks compared to clas-
sification. The classification tasks mostly involve
sentence-level classification and in some cases
the task labels correlate well (e.g., AG News and
DBpedia). Thus, they share some common se-
mantics in both source and target tasks. The
model can learn similar patterns (inferring the la-
bel of the entire input sentence) during both meta-
training and meta-testing stages, enabling better
knowledge transfer. The non-classification set
on the other hand can include different types of
tasks such as QA and summarization; modeling
them typically requires a Seq2Seq formulation.
These tasks typically lack shared task semantics.
For example, the structure of QA is context +
question + answer, requiring reasoning ability. In
contrast, the structure of summarization is long
document + short summary, requiring summa-
rizing ability. Although it has been shown that
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Figure 3: ARG (%) of MPT (MAML) and multi-task
learning w.r.t. prompt tuning (ARG = 0) for varying
data size of source tasks in the Cls→Cls setting.

QA can help summarization in content selection
(Arumae and Liu, 2019), it is more difficult for
MPT to capture transferable knowledge as suc-
cess of meta learning eventually depends on how
much the tasks share (Finn, 2022).
To provide an in-depth analysis of the differ-

ence between classification and non-classification
tasks, we consider from the perspective of task sim-
ilarity. We follow Lin et al. (2022) which shows
that the correlation between input subspaces (the
norm of projected subspace onto the other sub-
space) for two tasks can serve as the similarity
score between them. We randomly pick 5 (cls,cls)
task pairs as similar tasks. For dissimilar tasks, we
randomly pick 5 (QA, summarization) task pairs.
The average similarity score for similar task pairs
is 0.768 while for dissimilar task pairs the score is
only 0.306 (see Appendix A.6 for detailed results),
which verifies that classification tasks share more
structure than non-classification tasks.

Given the performance gap between MPT and
MTL in some settings, we believe that exploring
more advanced MPT methods could be a promising
research direction.

Q2. What happens with more labelled data for

source/target tasks (beyond few-shot settings)?
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Method Shot

16 32 64 128 all

MPT (MAML) 20.16 9.10 5.64 8.36 3.27
Multi-task learning −5.64 −14.17 1.96 −0.20 0.53

Table 3: ARG (%) of different methods when more
labelled data is used in target tasks.

Method Source task number

12 24 45

MPT (MAML) 8.44 12.89 20.16

Table 4: ARG (%) of MPT (MAML) when using dif-
ferent number of source tasks in the Cls→Cls setting.

As mentioned in §5.1, we mainly explore how MPT
improves cross-task generalization when both the
source and target tasks are few-shot, which cor-
responds to the way humans learn (Lake et al.,
2017). We used 16 samples per class for classi-
fication tasks, and 32 samples per dataset for non-
classification tasks. To validate whether more la-
belled data for source/target tasks can influence the
performance of MPT, we conduct controlled exper-
iments with {32, 64, 128, all} samples per class for
source/target tasks in the Cls→Cls setting.

• Source We report the results of MAML and
MTL with more labelled data for the source tasks
in Fig. 3. We can observe that: (i) MPT outper-
forms PT (ARG = 0) and MTL in all cases includ-
ing using the full dataset, showing its robustness
to data sizes. (ii) Increasing the number of sam-
ples in source tasks does not necessarily lead to
better cross-task generalization for MPT. The best
ARG is achieved for 16-shot rather than the full
dataset, which justifies using few-shot source tasks.
(iii) The performance of MTL improves with more
data for source tasks, showing a different learning
pattern from MPT.

• Target Table 3 shows the results for increasing
the number of examples in target tasks. We can see
that: (i) The performance gain of MPT is evident
even using the full dataset (3.27%), demonstrating
that it does help cross-task generalization beyond
few-shot. (ii) MPT outperforms MTL by a large
margin in all settings. (iii) MTL is unstable in terms
of ARG scores; while it outperforms PT in 64-shot
(1.96%) and all samples (0.53%), it falls behind PT
in all other settings, indicating that MPT is a better
choice when adapting to classification tasks.

Method MAML FoMAML Reptile MTL Fine-tuning

T5-Large 11.14 −0.68 20.44 −5.19 1.56
T5-Base 9.24 4.15 7.96 1.64 7.41
T5-XLarge 14.35 2.46 10.74 5.72 −9.61
BART-Large 7.63 1.16 8.94 −2.37 2.74
GPT2-Large 3.19 −2.68 4.62 −1.43 3.75

Table 5: Average relative gain (ARG %) of all methods
with different backbone models in the NP→P setting.
‘MTL’ stands for ‘multi-task learning’.

Q3. Does MPT help with more diverse source tasks?

MPT aims to learn to initialize the prompt embed-
dings from source tasks, which may cover different
types. We hypothesize that the diversity of source
tasks might influence its performance. To verify
this, we analyze the influence of different source
task selections on the same target tasks in two set-
tings: varying the type and number of tasks.

• Type of tasks. The results of learning from dif-
ferent types of source tasks are reported in Table 2.
The performance of MPT on non-classification
target tasks improves when using more diverse
source tasks, e.g., from Non-Cls/Cls→Non-Cls to
Both→Non-Cls. However, for adapting to classi-
fication task, the best ARG is achieved when all
source tasks are classification, i.e., the Cls→Cls
setting. Hence, we can conclude that increasing
the type diversity of source tasks does not neces-
sarily improve cross-task generalization, which is
consistent with the finding in Ye et al. (2021).

• Number of tasks. To investigate the impact of
the number of source tasks, we conduct controlled
experiments on {12, 24} source tasks sampled from
the original 45 source tasks in the Cls→Cls setting
(see Appendix A.4 for a full list). From Table 4,
we can observe that the performance of MPT keeps
improving as the number of source tasks increases,
showing better cross-task generalization.

It is worthwhile to note that while our work pro-
vides some insights on the choice of source tasks,
more systematic studies on how to select the most
suitable source tasks given a set of target tasks are
needed. We hope that future analysis can provide a
more comprehensive understanding of the relation-
ship between source and target tasks.

Q4. Is the performance gain of MPT consistent across

different backbone language models?
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Target Task Partition ΔMPT ΔMTL

Amazon_Polarity
R→R 3.10 2.25

Cls→Cls 7.40 10.45

AI2_ARC
R→R 12.54 5.55

Both→Non-Cls 8.17 6.69

Samsum
R→R 1.97 6.77

Both→Non-Cls 2.50 5.71

Superglue-Copa
Both→Non-Cls 1.20 10.00

QA→QA −3.20 4.80

Table 6: Relative gain in % for MPT and MTL when
the same target task appears in different patitions.

Our experiments and analysis so far use T5-Large
as the backbone model. To verify whether the per-
formance gain of MPT is consistent across different
backbone models, we extend the experiments to T5-
Base, T5-XLarge, BART-Large and GPT2-Large
in the NP→P setting. From the results shown in Ta-
ble 5, we can see that MPT still outperforms PT and
MTL by a large margin when using other PLMs
as the backbone model, showing its robustness to
model size and type. In addition, the consistent
gain of MPT with T5-XLarge could also verify the
effectiveness of MPT for huge PLMs which have
been shown to perform better in prompt tuning
(Lester et al., 2021).

6.1 Further Analysis

Prompt tuning (PT) vs. Fine-tuning (FT).
While PT shows strong few-shot learning ability,
FT remains the dominant paradigm. As shown in
Table 2, FT outperforms PT when adapting to clas-
sification tasks even in few-shot settings, which
might be because PT has only a few tunable param-
eters. Though MPT is based on PT, its performance
gain over FT in all cases suggests that it can learn
to initialize the prompt embeddings from source
tasks, enabling effective knowledge transfer.

Case Study To take a closer look at the influence
of different source task types on a particular target
task, we further conduct a case study where we
ensure that the task under consideration appears
in the target task partitions.2 Results are shown in
Table 6; for example, the first block indicates that
Amazon_Polarity appears as a target task in both
R→R and Cls→Cls settings. We can observe that
there is no consistent conclusion on how we should
choose the source tasks for a specific target task,

2As before, we ensure it does not appear in the source.

which is consistent with our view in Q3.

7 Conclusion

In this paper, we have introduced meta prompt tun-
ing (MPT), which learns to initialize the prompt
embeddings for adapting to a target task. We have
identified key research questions and systematically
studied where and how meta learning can improve
cross-task generalization in prompt tuning. We
have empirically analyzed a representative set of
meta learning methods in a variety of adaptation
settings on a large, diverse collection of few-shot
tasks. Extensive experimental results and analysis
verify the effectiveness of MPT. Given the find-
ings, in the future, we would like to explore more
advanced meta learning algorithms which can con-
sistently outperform multi-task learning.

Limitations

Although comprehensive, our study of MPT in this
work has couple of limitations:
• As mentioned in §5.3, because of infeasiblity

to search for optimal hyperparameters for each
of the meta learning methods in each of the ten
settings, we choose to use the R→R setting as our
main representative setting. This could be one of
the reasons for MPT underperforming MTL in
some non-classification tasks (noted in §6-Q1).

• We mainly focus on how upstream meta learn-
ing can improve the performance on target tasks.
However, meta learning also enables faster con-
vergence. We leave how it could help reduce the
convergence time of PT as future work.
Aside from that, meta prompt tuning (MPT) as a

method has a limitation that it is Memory-intensive.
Optimization-based meta learning methods, espe-
cially MAML, are memory-intensive, which limits
the tuning of the inner batch size and inner update
steps (§5.3). One potential solution is to build more
memory-efficient meta learning libraries.
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A Appendix

A.1 Task List

We report the full list of tasks used in ten differ-
ent settings in Table 9. All tasks are taken from
CROSSFIT (Ye et al., 2021).

A.2 Relative gain of Every Target Task

We mainly report average relative gain (ARG) in
our experiments (§6). In this section, we show
detailed relative gain of each target task in Fig. 4 ∼
Fig. 13.

A.3 Absolute Scores for Every Target Task

We show detailed absolute scores for each target
task in Fig. 14 ∼ Fig. 23.

A.4 Details of Sampled Tasks

We sample {12, 24} tasks from the original 45
source tasks in the Cls→Cls setting to investigate
the influence of the number of source tasks. The
details of sampled tasks are shown in Table 10.

A.5 Hyperparameter Sensitivity Analysis

As mentioned in §5.3, for MAML, we select
the inner learning rate from {2e−5, 3e−5, 5e−5},
the outer learning rate from {2e−1, 3e−1, 5e−1},
and total training steps from {2500, 5000, 10000}
in the R→R setting. The best validation
performance (10.14% ARG) is achieved with
{3e−5, 5e−1, 5000}, while the worst validation
ARG is −16.21% when using {5e−5, 2e−1, 2500}.
We can see that MPT is quite sensitive to hyper-
parameters. It performs even worse than PT with
inappropriate hyperparameters.

A.6 Task Similarity Analysis

As discussed in §6, we use the correlation between
input subspaces for two tasks as the similarity score
between them. Detailed results of randomly picked
similar and dissimilar task pairs are shown in Ta-
ble 7.

Task Pair Index
Average

1 2 3 4 5

Similar 0.772 0.695 0.754 0.819 0.802 0.768

Dissimilar 0.326 0.311 0.283 0.315 0.297 0.306

Table 7: Similarity scores of randomly picked similar
and dissimilar task pairs.

A.7 Pilot Experiments on Prompt Transfer
We conduct some pilot experiments to explore the
soft prompt transferability between different source
tasks and a given single target task. We randomly
pick 3 target tasks in the R→R setting and con-
duct prompt tuning on these tasks to obtain their
corresponding prompt embeddings {𝑃1

𝑡 , 𝑃
2
𝑡 , 𝑃

3
𝑡 }.

We then conduct prompt tuning on 30 randomly
selected source tasks to obtain the soft prompts
{𝑃1

𝑠 , ..., 𝑃
30
𝑠 }.

As shown in Lin et al. (2022), the correlation
between input subspaces (the norm of projected
subspace onto the other subspace) for two tasks
could serve as the similarity score between them,
which may also indicate the transferability. For
each source/target task, we regard the soft prompt
as the task embedding (Zhou et al., 2022) and ob-
tain its subspace by Singular Value Decomposition
(SVD) following Saha et al. (2021). We then cal-
culate the correlation scores between a given target
task and all source tasks following Lin et al. (2022).

Finally, for each target task, we apply MPT with
3 different sets of source tasks: (i) 5 source tasks
with the highest correlation scores, (ii) 5 randomly
picked source tasks, and (iii) 5 source tasks with the
lowest correlation scores. The relative gain of every
target task is shown in Table 8. We can observe that
using 5 source tasks with the highest correlation
scores achieves better performance than the other
two settings, indicating that input subspaces could
be used to measure the soft prompt transferability
between different source tasks and a given single
target task.

Note that current experiments and analysis are
for a single target task. For the average perfor-
mance of many target tasks, we need more explo-
ration.
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Target Source

highest random lowest

Quoref 7.28 3.61 0.95

Glue-Qnli 9.53 4.36 4.87

Samsum 5.94 4.07 -1.42

Table 8: Relative gain in % for MPT when using differ-
ent sets of source tasks.
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Partition: Random Source
glue-mrpc, math_qa, quarel, e2e_nlg_cleaned, tweet_eval-stance_atheism, lama-squad, tab_fact, aqua_rat, tweet_eval-emoji, glue-wnli, codah, tweet_eval-offensive,
wiki_qa, blimp-ellipsis_n_bar_1, openbookqa, sms_spam, acronym_identification, blimp-determiner_noun_agreement_with_adj_irregular_1, ethos-national_origin,
spider, hellaswag, superglue-wsc, numer_sense, ade_corpus_v2-dosage, blimp-ellipsis_n_bar_2, kilt_ay2, squad-no_context, google_wellformed_query, xsum,
wiqa, tweet_eval-stance_abortion, reddit_tifu-tldr, ade_corpus_v2-effect, qa_srl, ethos-religion, commonsense_qa, biomrc, superglue-multirc, ethos-race, eli5-askh,
glue-qqp, paws, ethos-directed_vs_generalized, glue-sst2, tweet_eval-hate, glue-rte, blimp-anaphor_number_agreement, lama-conceptnet, hate_speech_offensive,
superglue-wic, boolq, kilt_hotpotqa, quartz-no_knowledge, aslg_pc12, sick, tweet_eval-stance_climate, tweet_eval-sentiment, crows_pairs, glue-mnli, medi-
cal_questions_pairs, break-QDMR-high-level, qasc, imdb, ethos-gender, trec-finegrained, adversarialqa, onestop_english, web_questions, duorc, swag, proto_qa,
scitail, tweet_eval-stance_feminist, limit, common_gen, scicite, blimp-irregular_past_participle_adjectives, social_i_qa, anli, kilt_zsre, cosmos_qa, superglue-record,
squad-with_context, emotion, blimp-existential_there_quantifiers_1, race-middle, kilt_wow, sciq, wino_grande, rotten_tomatoes, superglue-cb, poem_sentiment,
ropes, reddit_tifu-title, piqa, climate_fever, lama-google_re, search_qa, mc_taco, blimp-wh_questions_object_gap, hotpot_qa, emo, kilt_nq, kilt_trex, quartz-
with_knowledge, dbpedia_14, yahoo_answers_topics, superglue-copa, blimp-anaphor_gender_agreement, hate_speech18, gigaword, multi_news, aeslc, quail

Partition: Random Target
quoref, wiki_split, ethos-disability, yelp_polarity, superglue-rte, glue-cola, ethos-sexual_orientation, blimp-sentential_negation_npi_scope, ai2_arc, amazon_polarity,
race-high, blimp-sentential_negation_npi_licensor_present, tweet_eval-irony, crawl_domain, freebase_qa, glue-qnli, hatexplain, ag_news, circa, samsum

Partition: Classification Source
superglue-rte, tweet_eval-sentiment, discovery, glue-rte, superglue-wsc, scicite, glue-mrpc, tweet_eval-stance_hillary, tweet_eval-offensive, emotion, hatexplain, glue-
cola, sick, paws, ethos-sexual_orientation, glue-qqp, tweet_eval-emotion, sms_spam, health_fact, glue-mnli, imdb, ethos-disability, glue-wnli, scitail, trec-finegrained,
yahoo_answers_topics, liar, glue-sst2, tweet_eval-stance_abortion, circa, tweet_eval-stance_climate, glue-qnli, tweet_eval-emoji, ethos-directed_vs_generalized,
ade_corpus_v2-classification, ag_news, hate_speech_offensive, superglue-wic, google_wellformed_query, tweet_eval-irony, ethos-gender, onestop_english, trec,
rotten_tomatoes, kilt_fever

Partition: Non-Classification Source
ade_corpus_v2-dosage, art, biomrc, blimp-anaphor_number_agreement, blimp-ellipsis_n_bar_2, blimp-sentential_negation_npi_licensor_present, blimp-
sentential_negation_npi_scope, break-QDMR-high-level, commonsense_qa, crows_pairs, dream, duorc, eli5-asks, eli5-eli5, freebase_qa, gigaword, hellaswag,
hotpot_qa, kilt_ay2, kilt_hotpotqa, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, math_qa, numer_sense, openbookqa, piqa, proto_qa, qa_srl,
quarel, quartz-no_knowledge, race-high, reddit_tifu-title, reddit_tifu-tldr, ropes, sciq, social_i_qa, spider, superglue-multirc, wiki_bio, wikisql, xsum, yelp_review_full

Partition: Both (Classification + Non-Classification) Source
ade_corpus_v2-dosage, biomrc, blimp-ellipsis_n_bar_2, blimp-sentential_negation_npi_scope, commonsense_qa, crows_pairs, duorc, hellaswag, kilt_zsre, lama-
google_re, lama-squad, math_qa, numer_sense, openbookqa, piqa, proto_qa, quartz-no_knowledge, race-high, reddit_tifu-tldr, ropes, sciq, wiki_bio, discovery,
emotion, ethos-disability, ethos-sexual_orientation, glue-cola, glue-mnli, glue-mrpc, glue-qqp, glue-rte, glue-wnli, hatexplain, health_fact, imdb, paws, scicite, sick,
sms_spam, superglue-rte, superglue-wsc, tweet_eval-emotion, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_hillary

Partition: Classification Target
superglue-cb,dbpedia_14,wiki_qa,emo,yelp_polarity,ethos-religion,amazon_polarity,tab_fact,anli,ethos-race

Partition: Non-Classification Target
multi_news, superglue-copa, quail, blimp-anaphor_gender_agreement, common_gen, acronym_identification, quoref, wiki_split, ai2_arc, break-QDMR,
crawl_domain, samsum

Partition: QA Source
biomrc, boolq, freebase_qa, hotpot_qa, kilt_hotpotqa, kilt_nq, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, lama-trex, mc_taco, numer_sense,
quoref, ropes, search_qa, squad-no_context, superglue-multirc, superglue-record, tweet_qa, web_questions

Partition: Non-QA Source
hate_speech_offensive, google_wellformed_query, circa, glue-sst2, scitail, emo, ag_news, art, paws, kilt_ay2, glue-qnli, ade_corpus_v2-classification, hatexplain,
emotion, glue-qqp, kilt_fever, dbpedia_14, glue-mnli, discovery, gigaword, amazon_polarity, tab_fact, tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment,
imdb, liar, anli, wikisql, xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Partition: QA Target
ai2_arc, codah, cosmos_qa, dream, hellaswag, qasc, quail, quarel, quartz-no_knowledge, quartz-with_knowledge, sciq, superglue-copa, swag, wino_grande, wiqa

Partition: Non-Paraphrase Classification Source
ade_corpus_v2-classification, ag_news, amazon_polarity, anli, circa, climate_fever, dbpedia_14, discovery, emo, emotion, ethos-directed_vs_generalized, ethos-
disability, ethos-gender, ethos-national_origin, ethos-race, ethos-religion, ethos-sexual_orientation, financial_phrasebank, glue-cola, glue-mnli, glue-qnli, glue-
rte, glue-sst2, glue-wnli, google_wellformed_query, hate_speech18, hate_speech_offensive, hatexplain, health_fact, imdb, kilt_fever, liar, onestop_english,
poem_sentiment, rotten_tomatoes, scicite, scitail, sick, sms_spam, superglue-cb, superglue-rte, superglue-wic, superglue-wsc, tab_fact, trec, trec-finegrained,
tweet_eval-emoji, tweet_eval-emotion, tweet_eval-hate, tweet_eval-irony, tweet_eval-offensive, tweet_eval-sentiment, tweet_eval-stance_abortion, tweet_eval-
stance_atheism, tweet_eval-stance_climate, tweet_eval-stance_feminist, tweet_eval-stance_hillary, wiki_qa, yahoo_answers_topics, yelp_polarity

Partition: Paraphrase Target
glue-mrpc, glue-qqp, medical_questions_pairs, paws

Table 9: Full datasets for all settings described in Section 5.1. We provide references for all datasets in Table 11.

12 source tasks
superglue-rte, tweet_eval-sentiment, discovery, glue-rte, hatexplain, glue-cola, health_fact, glue-mnli, imdb, ethos-disability, glue-wnli, scitail

24 source tasks
superglue-rte, tweet_eval-sentiment, discovery, glue-rte, superglue-wsc, scicite, hatexplain, glue-cola, tweet_eval-emotion, sms_spam, health_fact, glue-mnli, imdb,
ethos-disability, glue-wnli, scitail, glue-sst2, tweet_eval-stance_abortion, glue-qnli, ethos-directed_vs_generalized, ag_news, hate_speech_offensive, ethos-gender,
kilt_fever

Table 10: Details of sampled {12, 24} tasks for investigating the impact of the number of source tasks.

11822



Task Name Reference

eli5-eli5 Fan et al. 2019
ethos-race Mollas et al. 2020
tweet_qa Xiong et al. 2019
tweet_eval-stance_hillary Barbieri et al. 2020
piqa Bisk et al. 2020
acronym_identification Pouran Ben Veyseh et al. 2020
wiki_split Botha et al. 2018
scitail Khot et al. 2018
emotion Saravia et al. 2018
medical_questions_pairs McCreery et al. 2020
blimp-anaphor_gender_agreement Warstadt et al. 2020
sciq Welbl et al. 2017
paws Zhang et al. 2019
yelp_review_full Zhang et al. 2015; (link)
freebase_qa Jiang et al. 2019
anli Nie et al. 2020
quartz-with_knowledge Tafjord et al. 2019b
hatexplain Mathew et al. 2020
yahoo_answers_topics (link)
search_qa Dunn et al. 2017
tweet_eval-stance_feminist Barbieri et al. 2020
codah Chen et al. 2019
lama-squad Petroni et al. 2019, 2020
superglue-record Zhang et al. 2018
spider Yu et al. 2018
mc_taco Zhou et al. 2019
glue-mrpc Dolan and Brockett 2005
kilt_fever Thorne et al. 2018
eli5-asks qa Fan et al. 2019
imdb Maas et al. 2011
tweet_eval-stance_abortion Barbieri et al. 2020
aqua_rat Ling et al. 2017
duorc Saha et al. 2018
lama-trex Petroni et al. 2019, 2020
tweet_eval-stance_atheism Barbieri et al. 2020
ropes Lin et al. 2019
squad-no_context Rajpurkar et al. 2016
superglue-rte Dagan et al. 2005
qasc Khot et al. 2020
hate_speech_offensive Davidson et al. 2017
trec-finegrained Li and Roth 2002; Hovy et al. 2001
glue-wnli Levesque et al. 2012
yelp_polarity Zhang et al. 2015; (link)
kilt_hotpotqa Yang et al. 2018
glue-sst2 Socher et al. 2013
xsum Narayan et al. 2018
tweet_eval-offensive Barbieri et al. 2020
aeslc Zhang and Tetreault 2019
emo Chatterjee et al. 2019
hellaswag Zellers et al. 2019
social_i_qa Sap et al. 2019
kilt_wow Dinan et al. 2019
scicite Cohan et al. 2019
superglue-wsc Levesque et al. 2012
hate_speech18 de Gibert et al. 2018
adversarialqa Bartolo et al. 2020
break-QDMR Wolfson et al. 2020
dream Sun et al. 2019
circa Louis et al. 2020
wiki_qa Yang et al. 2015
ethos-directed_vs_generalized Mollas et al. 2020
wiqa Tandon et al. 2019
poem_sentiment Sheng and Uthus 2020
kilt_ay2 Hoffart et al. 2011
cosmos_qa Huang et al. 2019
reddit_tifu-title Kim et al. 2019
superglue-cb de Marneffe et al. 2019
kilt_nq Kwiatkowski et al. 2019
quarel Tafjord et al. 2019a
race-high Lai et al. 2017
wino_grande Sakaguchi et al. 2020
break-QDMR-high-level Wolfson et al. 2020
tweet_eval-irony Barbieri et al. 2020
liar Wang 2017
openbookqa Mihaylov et al. 2018
superglue-multirc Khashabi et al. 2018
race-middle Lai et al. 2017
quoref Dasigi et al. 2019
cos_e Rajani et al. 2019
reddit_tifu-tldr Kim et al. 2019
ai2_arc Clark et al. 2018
quail Rogers et al. 2020
crawl_domain Zhang et al. 2020
glue-cola Warstadt et al. 2019
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Task Name Reference

art Bhagavatula et al. 2020
rotten_tomatoes Pang and Lee 2005
tweet_eval-emoji Barbieri et al. 2020
numer_sense Lin et al. 2020a
blimp-existential_there_quantifiers_1 Warstadt et al. 2020
eli5-askh qa Fan et al. 2019
ethos-national_origin Mollas et al. 2020
boolq Clark et al. 2019
qa_srl He et al. 2015
sms_spam Almeida et al. 2011
samsum Gliwa et al. 2019
ade_corpus_v2-classification Gurulingappa et al. 2012
superglue-wic Pilehvar and Camacho-Collados 2019
ade_corpus_v2-dosage Gurulingappa et al. 2012
tweet_eval-stance_climate Barbieri et al. 2020
e2e_nlg_cleaned Dušek et al. 2020, 2019
aslg_pc12 Othman and Jemni 2012
ag_news Gulli (link)
math_qa Amini et al. 2019
commonsense_qa Talmor et al. 2019
web_questions Berant et al. 2013
biomrc Pappas et al. 2020
swag Zellers et al. 2018
blimp-determiner_noun_agreement_with_adj_irregular_1 Warstadt et al. 2020
glue-mnli Williams et al. 2018
squad-with_context Rajpurkar et al. 2016
blimp-ellipsis_n_bar_2 Warstadt et al. 2020
financial_phrasebank Malo et al. 2014
sick Marelli et al. 2014
ethos-religion Mollas et al. 2020
hotpot_qa Yang et al. 2018
tweet_eval-emotion Barbieri et al. 2020
dbpedia_14 Lehmann et al. 2015
ethos-gender Mollas et al. 2020
tweet_eval-hate Barbieri et al. 2020
ethos-sexual_orientation Mollas et al. 2020
health_fact Kotonya and Toni 2020
common_gen Lin et al. 2020b
crows_pairs Nangia et al. 2020
ade_corpus_v2-effect Gurulingappa et al. 2012
blimp-sentential_negation_npi_scope Warstadt et al. 2020
lama-conceptnet Petroni et al. 2019, 2020
glue-qnli Rajpurkar et al. 2016
quartz-no_knowledge Tafjord et al. 2019b
google_wellformed_query Faruqui and Das 2018
kilt_trex Elsahar et al. 2018
blimp-ellipsis_n_bar_1 Warstadt et al. 2020
trec Li and Roth 2002; Hovy et al. 2001
superglue-copa Gordon et al. 2012
ethos-disability Mollas et al. 2020
lama-google_re Petroni et al. 2019, 2020
discovery Sileo et al. 2019
blimp-anaphor_number_agreement Warstadt et al. 2020
climate_fever Diggelmann et al. 2020
blimp-irregular_past_participle_adjectives Warstadt et al. 2020
tab_fact Chen et al. 2020a
gigaword Napoles et al. 2012
glue-rte Dagan et al. 2005
tweet_eval-sentiment Barbieri et al. 2020
limit Manotas et al. 2020
wikisql Zhong et al. 2017
glue-qqp (link)
onestop_english Vajjala and Lučić 2018
amazon_polarity McAuley and Leskovec 2013
blimp-wh_questions_object_gap Warstadt et al. 2020
multi_news Fabbri et al. 2019
proto_qa Boratko et al. 2020
wiki_bio Lebret et al. 2016
kilt_zsre Levy et al. 2017
blimp-sentential_negation_npi_licensor_present Warstadt et al. 2020

Table 11: References for all datasets.
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Figure 4: Random to Random (Relative Gain)
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Figure 5: Classification to Classification (Relative Gain)
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Figure 6: Non-Classification to Classification (Relative
Gain)
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Figure 7: Both (Classification + Non-Classification) to
Classification (Relative Gain)
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Figure 8: Non-Classification to Non-Classification (Rel-
ative Gain)
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Figure 9: Classification to Non-Classification (Relative
Gain)
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Figure 10: Both (Classification + Non-Classification) to
Non-Classification (Relative Gain)
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Figure 11: Non-Paraphrase Classification to Paraphrase
(Relative Gain)
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Figure 12: QA to QA (Relative Gain)
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Figure 13: Non-QA to QA (Relative Gain)
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Figure 14: Random to Random (Absolute Scores)
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Figure 15: Classification to Classification (Absolute
Scores)
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Figure 16: Non-Classification to Classification (Abso-
lute Scores)
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Figure 17: Both (Classification + Non-Classification) to
Classification (Absolute Scores)
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Figure 18: Non-Classification to Non-Classification
(Absolute Scores)
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Figure 19: Classification to Non-Classification (Abso-
lute Scores)
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Figure 20: Both (Classification + Non-Classification) to
Non-Classification (Absolute Scores)
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Figure 21: Non-Paraphrase Classification to Paraphrase
(Absolute Scores)
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Figure 22: QA to QA (Absolute Scores)
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Figure 23: Non-QA to QA (Absolute Scores)
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