
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 9909–9926

July 9-14, 2023 ©2023 Association for Computational Linguistics

An Inner Table Retriever for Robust Table Question Answering

Weizhe Lin∗2, Rexhina Blloshmi1,
Bill Byrne1,2, Adrià de Gispert1, and Gonzalo Iglesias1

1Amazon Alexa AI
2University of Cambridge

wl356@cam.ac.uk {blloshmi, willbyrn, agispert, gjii}@amazon.com

Abstract
Recent years have witnessed the thriving of pre-
trained Transformer-based language models for
understanding semi-structured tables, with sev-
eral applications, such as Table Question An-
swering (TableQA). These models are typically
trained on joint tables and surrounding natural
language text, by linearizing table content into
sequences comprising special tokens and cell
information. This yields very long sequences
which increase system inefficiency, and more-
over, simply truncating long sequences results
in information loss for downstream tasks. We
propose Inner Table Retriever (ITR),1 a general-
purpose approach for handling long tables in
TableQA that extracts sub-tables to preserve
the most relevant information for a question.
We show that ITR can be easily integrated into
existing systems to improve their accuracy with
up to 1.3-4.8% and achieve state-of-the-art re-
sults in two benchmarks, i.e., 63.4% in Wik-
iTableQuestions and 92.1% in WikiSQL. Ad-
ditionally, we show that ITR makes TableQA
systems more robust to reduced model capacity
and to different ordering of columns and rows.

1 Introduction

Tables offer a systematic way of storing informa-
tion in the Web. Extracting information from Web
tables poses different challenges than extracting
information from relational databases with logi-
cal queries, especially when queried via Natural
Language (NL) user questions. Table Question
Answering (TableQA) is the task of answering
such questions with factoid answers extracted from
table content. This requires developing models
with the ability to reason over and understand ta-
bles. Following the success of the pre-training
paradigm for understanding NL text (Devlin et al.,
2019), some recent research has focused on pre-
training Transformer models (Vaswani et al., 2017)

∗Work done as an intern at Amazon Alexa AI.
1We make our code available at: https://github.com/

amazon-science/robust-tableqa

Rank Mountain
Peak

Mountain
Range Elevation

0 Mount
Whitney

Sierra
Nevada 14,505 ft

1 Mount
Williamson

Sierra
Nevada 14,379 ft

2 Red Slate
Mountain

Sierra
Nevada 13,162 ft

3 Mount
Ritter

Sierra
Nevada 13,149 ft

Question: which mountain peak is no higher than 13 , 149 ft ?

Table (a): [HEAD] rank | mountain peak | mountain range | elevation [ROW] 1 : 0 |
mount whit ney | s ierra ne v ada | 14 , 505 ft [ROW] 2 : 1 | mount will iam

Sub-table (b): [HEAD] mountain peak | elevation [ROW] 1 : red slate mountain |
13 , 162 ft [ROW] 2 : mount r itter | 13 , 149 ft

c1 c2 c3 c4

r1

r2

r3

r4

Mountain
Peak Elevation

Red Slate
Mountain 13,162 ft

Mount
Ritter 13,149 ft

c2 c4

r3

r4

(a) (b)

Answer: mount whitney

Answer: mount ritter

Figure 1: TableQA example with the model input length
budget set to 50 tokens using TaPEx tokenization and ta-
ble linearization format; (a) is an overflow table because
the linearized version must be truncated. Our method
can identify sub-tables like (b) within the length budget,
removing the information loss.

on large corpora of linearized tables in a self-
supervised fashion using encoder-only architec-
tures (Herzig et al., 2020; Yin et al., 2020; Yang
et al., 2022), or encoder-decoder architectures (Liu
et al., 2022; Jiang et al., 2022). These so-called Tab-
ular Language Models (Dong et al., 2022, TaLMs)
were fine-tuned on the TableQA downstream task—
among others—to achieve state-of-the-art perfor-
mance (Herzig et al., 2020; Liu et al., 2022). How-
ever, the self-attention mechanism in TaLMs has
a quadratic complexity on the dimensionality of
input tables, which might consist of tens or even
hundreds of rows and columns, thus yielding longer
sequences than TaLMs can easily handle. State-of-
the-art TableQA models handle this limitation by
truncating the linearized table to fit an input length
budget, e.g., of 512 and 1024 tokens for Herzig
et al. (2020, TaPas) and Liu et al. (2022, TaPEx),
respectively. In other applications, simple sequence
truncation might be reasonable, e.g., encoding only
the initial paragraphs of a Wikipedia document pre-

9909

https://github.com/amazon-science/robust-tableqa
https://github.com/amazon-science/robust-tableqa

suming it comprises a summary, or dropping earlier
turns in Conversational QA to focus on the recent
ones. However, in TableQA it is not realistic to as-
sume that relevance depends on the position within
the linearized sequence, especially because differ-
ent questions require various table regions to be
properly answered. For example, even for a stan-
dard dataset such as WikiTableQuestions, naive
truncation allows information loss affecting 18.1%-
44.9% of tables, which limits QA accuracy (see
§4.1 for more details). This is also an important
limitation in latency-constrained realistic use cases
that use big tables, while limiting Transformer mod-
els even down to 64 input tokens. To this end, a
content-driven strategy is needed to avoid informa-
tion loss. We refer to tables exceeding the input
length budget as overflow tables, as opposed to
compact tables, which fit within the budget. An ex-
ample of an overflow table is shown in Figure 1(a),
where naive truncation leads to the wrong answer.

In this work, we propose ITR to improve on this
problem by creating smaller sub-tables, i.e., within
a length budget, based on dense retrieval of table
rows and columns according to the relevance to the
question. An example is shown in Figure 1(b). Our
method is flexible and can be integrated off-the-
shelf into virtually any existing TableQA system.
To the best of our knowledge, our work is the first
to propose a neural-based sub-table selection in the
context of TableQA that improves denotation accu-
racy (Pasupat and Liang, 2015), especially for the
overflow tables, setting a new state of the art. Other
input selection strategies, mainly heuristics-based,
have also been proposed in the literature (Krichene
et al., 2021; Yin et al., 2020; Eisenschlos et al.,
2021), which we discuss further in Section 2.

To summarize, the contributions of this work are
the following:

1. We propose ITR, an efficient approach to
handling overflow tables for TableQA mod-
els, which produces sub-tables containing the
most relevant information for answering a
question while fitting within the budget.

2. We combine ITR with existing TableQA
systems such as TaPas, TaPEx, and Om-
niTab (Jiang et al., 2022), and achieve a new
state of the art for two standard benchmarks,
WikiSQL and WikiTableQuestions.

3. We evaluate the robustness of ITR against
current TableQA models on overflow tables,

when reducing the length budget, and when
repositioning relevant table information.

2 Related Work

The works most related to ours employed different
pruning strategies to handle large tables. Yin et al.
(2020, TaBERT) introduce the concept of content
snapshot as encoder input. This snapshot is com-
posed of a small number of rows which are chosen
based on the n-gram similarity between the ques-
tion and column headers and cell values. In a simi-
lar fashion, Eisenschlos et al. (2020) explore Jac-
card similarity to obtain the most similar columns.
In addition, they leverage model tokenizer to re-
duce cell tokens to their first token, when necessary,
and dropping entire rows that do not fit the length
budget. However, lexical similarity and naive trun-
cation are not flexible and lead to information loss,
which has a drastic effect on TableQA performance,
as we show in our experiments. Another line of
work focuses on balancing model efficiency and
accuracy when handling long tables. Krichene
et al. (2021, DOT) first uses a smaller pruning
transformer to selects top-K tokens from the in-
put table, and then a larger second task-specific
transformer takes into consideration only the se-
lected K tokens and their pruning scores; Eisen-
schlos et al. (2021, MATE) can accept more tokens
while not significantly increasing latency. Authors
apply sparse self-attention and use different atten-
tion heads for tokens in the same column and row.
However, their proposed mechanisms are deeply
integrated with the task-specific model and must
be jointly trained. In contrast, our ITR method, as
a flexible plug-in process, can work independently
of any underlying TableQA model. Moreover, our
approach is complementary to theirs since ITR can
drop irrelevant information in tables efficiently and
pass the trimmed compact table to the underlying
model. This can further exploit the potentials of
virtually any TableQA models and improves their
performance. Although not specific to TableQA,
works such as Wang et al. (2021) and Chen et al.
(2021) employ chunking strategies, i.e., encoding
table chunks separately and then aggregate them to-
gether. However chunking is not widely employed
in the literature (Dong et al., 2022), due to encod-
ing overhead requiring multiple inference calls for
each chunk.

9910

Algorithm 1 Creating N sub-tables from T for q.

1: def ITR(q, T , EQ, ET , N , b):
2: Z ← [], Tsub ← [], Taux ← [], L← []
3: eq ← EQ(q)
4: for each i ∈ Items(T) do
5: et ← ET (i)
6: Z ← Z ∪ {sim(eq, et), i}
7: for each i ∈ Sorted(Z) do ▷ ↓ sim
8: Taux ← Taux ∪ i
9: if CheckValid(Taux) then

10: Tsub ← Tsub ∪ Taux

11: for each t ∈ Tsub do
12: L← L ∪ {Length(t), t}
13: Tsub ← []
14: for each (l, t) ∈ Sorted(L) do ▷ ↓ length
15: if l > b then continue
16: Tsub ← Tsub ∪ t

17: return Tsub[: N]

3 Methodology

3.1 Task

Given a question q and a table T , TableQA systems
return an answer denotation a, either by perform-
ing table cell selection or as the result of opera-
tions (such as counting) carried out over an aggre-
gation of table cells. This work aims to find one
or more sub-tables Tsub containing the most rele-
vant information from T needed to answer q; Tsub

can replace T as the input to virtually any existing
TableQA system.

To this end, we map a table T into a set of items,
where an item is either a complete row or a com-
plete column. For an n × m table, this gives a
set of items {r1, . . . , rn, c1, . . . , cm}. Then, we
construct sub-tables by specifying subsets of these
rows and columns: a sub-table consists of the
cells at the intersection of the selected rows and
columns. We refer to each such set of rows and
columns as a mix, and note that a mix must contain
at least one row and one column to specify a valid
sub-table. The table in Figure 1(a) is defined as
{r1, r2, r3, r4, c1, c2, c3, c4}, and the sub-table in
Figure 1(b) is specified as the mix {r3, r4, c2, c4}.
{c2, c4} is not a valid sub-table, since no cells will
be intersected with only column-wise items.

3.2 Inner Table Retriever

ITR is a process of retrieving table rows and
columns, and combining them to form sub-tables

Tsub, with q as a query. We describe the steps
for creating sub-tables in Algorithm 1. Lines 2-6
compute item similarities to q, and the function
Items(T) in Line 4 maps T into its n+m items.
Following Karpukhin et al. (2020, DPR), we have
two fine-tuned encoders, one for questions (EQ)
and another for table items (ET).

We fine-tune DPR encoders using a question as
a query and the row/columns that contain the gold
answer cells as positive items. Then we sample the
negative items from the remaining row/columns
in the table. We leverage the standard DPR con-
trastive loss to fine-tune the two encoders so that
the similarities between question and positive item
embeddings are maximized.2 At inference time, we
compute the contextual embeddings for the ques-
tion (Line 3) and all the items in a table (Line 5) and
compute their similarity, sim(·), as the dot product
in Line 6. In practice, pre-computed embeddings
of table items can be cached offline.

Creating sub-tables. In Lines 7-10 we loop
through the table items ranked by highest similarity
and aggregate in Taux. CheckValid(Taux) veri-
fies that Taux is a valid sub-table, i.e., there exists
at least one column-row intersection (see §3.1).

Choosing the most appropriate sub-tables. In
Lines 11-16 we sort the sub-tables by their se-
quence length in descending order, and filter out
any sub-table which exceeds the length budget b.
Finally, in Line 17 we return top-N remaining
largest sub-tables that fit the budget length to be
used as input to the TableQA model. Each returned
sub-table is guaranteed to contain the most relevant
items, due to the sorting operation in Line 7.

3.3 TableQA with ITR

Through the ITR process, we obtain N sub-tables
Tsub as replacement for the original table T . Each
sub-table, together with the associated NL question
q, is linearized into a sequence of tokens prior to
encoding, using the corresponding TableQA tok-
enizer. We exemplify this in Figure 1, where both
table (a) and sub-table (b) are similarly processed.
Each linearized sequence is used as input to the
TableQA model, thus obtaining N predictions, out
of which we choose the most confident answer.
We empirically find that the model performance is
marginally better when N > 1, instead of only con-
sidering the largest sub-table (see §6; Appendix C).

2More details in Appendix A.1.

9911

WikiSQL WikiTQ

max tokens Dev Test Dev Test

1024 6.8 9.7 19.2 18.1
512 30.6 32.7 44.4 44.9
256 68.6 69.9 81.5 82.6
128 98.0 98.2 100 100
64 100 100 100 100

total samples 8,421 15,878 2,831 4,344

Table 1: Total number of samples and overflow rate (%)
for different length budgets in WikiSQL and WikiTQ.
Question-table pair sequence length is calculated based
on TaPEx’s tokenizer and linearization strategy.

4 Experimental Setup

4.1 Datasets and Evaluation
We use two popular datasets for TableQA which are
constructed from Wikipedia: WikiSQL3 (Zhong
et al., 2017) and WikiTableQuestions4 (Pasupat and
Liang, 2015, WikiTQ), with each posing different
challenges. WikiSQL is a simpler TableQA dataset
than WikiTQ as it requires mainly filtering and
simple operations of table cells to answer a ques-
tion. WikiTQ demands more complicated reason-
ing capabilities such as aggregations, comparisons,
superlatives, or arithmetic operations, e.g., SUM,
MAX. We measure Denotation Accuracy (DA) for
validation and test sets, to assess whether the pre-
dicted answer(s) is equal to the ground-truth an-
swer(s). Additionally, we introduce the distinction
between compact tables and overflow tables, which
is determined by the length of linearized question-
table pair. Statistics in Table 1 show that even
when using a relatively high number of tokens, i.e.,
1024 or 512—the allowed maximum supported by
most of Transformer-based encoders— the range
of overflow tables is very high, 7-33% in WikiSQL,
and 18-45% in WikiTQ. ITR is applied only for
overflow tables, as the compact ones already fit
in the token budget. Finally, we evaluate ITR re-
trieval ability on WikiSQL using Recall@K, which
measures whether all the gold rows/columns for an-
swering a question are among the top-K retrieved
items.

4.2 Training Setup
For both, the ITR retrieval component and the un-
derlying TableQA systems that we train in-house,

3https://huggingface.co/datasets/wikisql
4https://huggingface.co/datasets/

wikitablequestions

we choose the best checkpoint based on the per-
formance on the validation set. Otherwise, for
TableQA systems in the literature, we use the re-
leased checkpoints from huggingface.

Since WikiTQ does not provide SQL annota-
tions, which are needed to obtain gold answer cell
coordinates for supervising the ITR retriever (see
§3.2), we use the model trained on WikiSQL in
a zero-shot fashion to retrieve the relevant table
items for the WikiTQ TableQA task. We set the
number of sub-tables N=10 when using TaPEx and
OmniTab systems, and N=1 with TaPas (see Ap-
pendix C). We provide details and hyperparameters
for ITR and TableQA models in Appendix A.

4.3 Comparison Systems

We evaluate the effectiveness of ITR by comparing
our ITR-enhanced baselines with recent models
from literature that report performance on Wik-
iSQL or WikiTQ (Min et al., 2019; Herzig et al.,
2020; Yu et al., 2021; Liu et al., 2022; Jiang et al.,
2022). We provide detailed comparisons using
TaPEx, TaPas, and OmniTab, with ITR included in
inference alone, as well with ITR integrated into
TaPEx training. TaPEx leverages BART (Lewis
et al., 2020), an encoder-decoder model, and fine-
tunes it to act as a SQL executor. For the TableQA
downstream task, TaPEx takes as input a <ques-
tion, table> pair and autoregressively generates an
answer, implicitly performing any kind of aggre-
gations. OmniTab extends TaPEx and leverages
multi-tasking and data augmentation to establish a
new state of the art in WikiTQ. TaPas is an encoder
model built on top of BERT (Devlin et al., 2019)
which takes as input a <question, table> pair and
learns jointly to: i) select table cells by thresholding
the cell confidence, and ii) predict an explicit oper-
ator to aggregate results from the cell selection. We
use a recent version of TaPas proposed by Eisen-
schlos et al. (2020) which leverages intermediate
pretraining and table pruning, e.g., cell truncation
to the first token and dropping rows that exceed the
limit, improving significantly the initially released
model (TaPasv0). When applying ITR, we disable
TaPas table pruning and use the full sub-table(s)
(see Appendix D for a case study). Regarding their
capacity, TaPEx and OmniTab support up to 1024
tokens, while TaPas can take up to 512 tokens.

It is worth noting that we have not been able
to fully reproduce the reported results in the liter-
ature of TaPas, TaPEx and OmniTab with their

9912

https://huggingface.co/datasets/wikisql
https://huggingface.co/datasets/wikitablequestions
https://huggingface.co/datasets/wikitablequestions

Models Dev Test

Min et al. (2019) 84.4 83.9
TaPasv0 (Herzig et al., 2020) 85.1 83.6
TaPas (Eisenschlos et al., 2020) 89.8 -
Yu et al. (2021) 85.9 84.7
TaPEx (Liu et al., 2022) 89.2 89.5
OmniTab (Jiang et al., 2022) - 88.7

ITR → TaPEx (#6) 91.8 91.6
ITR → TaPas (#5) 92.1 92.1

Table 2: Results on WikiSQL. Bold denotes the best
DA for each split. # references a row in Table 4.

Models Dev Test

TaPasv0 (Herzig et al., 2020) 29.0 48.8
TaPas (Eisenschlos et al., 2020) 50.9 -
Yin et al. (2020) 53.0 52.3
Yu et al. (2021) 51.9 52.7
TaPEx (Liu et al., 2022) 57.0 57.5
OmniTab (Jiang et al., 2022) - 62.8

ITR → TaPEx (#9) 61.8 61.5
ITR → TaPas (#5) 50.5 50.8
ITR → OmniTab (#7) 62.1 63.4

Table 3: Results on WikiTQ. Bold denotes the best DA
for each split. # references a row in Table 4.

huggingface implementations, due to cross-
framework dependencies or any model-specific pre-
processing or evaluation scripts. To assess the re-
alistic contribution of ITR, we also report repro-
duced results using the same unified framework
across all models. We discuss reproducibility in
Appendix A.3.

5 Results

5.1 Main Results

We report the performance of our best ITR-
enhanced TableQA models for WikiSQL and Wik-
iTQ in Tables 2 and 3, respectively, and compare
with the state-of-the-art results as reported in the
literature. In WikiSQL, ITR-enhanced models con-
sistently outperform all previous baselines. ITR
improves TaPEx and TaPas performance with 2.6
and 2.3 DA points in the Dev set, respectively. ITR
→ TaPas sets a new state of the art for WikiSQL,
reaching a DA of 92.1% in the Test set. In WikiTQ,
results are mixed: ITR shows slight degradation
over TaPas in the Dev set. Combined with TaPEx,
ITR improves DA by 4 points. Further, combined
with OmniTab, ITR improves DA by 0.6%, reach-

ing a new state-of-the-art result on this task.
In Table 4 we compare ITR in a unified experi-

mentation setting using the released model check-
points in huggingface for inference-only eval-
uation, and the in-house fine-tuned TaPEx model
that enables both training and evaluation with ITR.
For OmniTab, only the WikiTQ model is made
available, thus we do not evaluate in WikiSQL. We
also break down the performance into compact and
overflow tables to better assess the contribution of
ITR. When evaluated using the same settings, ITR
consistently improves on top of baselines(#5-7 ver-
sus #1-3) on WikiSQL and WikiTQ, respectively:
TaPas (+2.6% and +0.2%), TaPEx (+2.9% and
+1.4%) and OmniTab (+1.3% on WikiTQ only).
This is also true for the in-house trained TaPEx (#4
versus #8). ITR reduces the compact/overflow per-
formance gap significantly: ITR increases overflow
DA with up to 30% (with TaPEx) and 9.4% (with
OmniTab) on WikiSQL and WikiTQ, respectively,
making the underlying model more robust to larger
tables. In fact, in WikiSQL we close the gap be-
tween compact and overflow tables (#5). These
results show that ITR can be applied at inference
time to always improve performance, by presenting
more complete and relevant information in state-
of-the-art model decision process, even without
interfering with the model training process. Ad-
ditionally, fine-tuning TaPEx with ITR sub-tables
(#9) is better than plugging ITR only at inference
time (#8). Training with ITR improves the over-
flow DA by 1.7% on WikiSQL and 3.7% on Wik-
iTQ. The Test performance increases by 0.8% and
2.7%, respectively. Not only does ITR improve
the decision process of underlying models at in-
ference time, but it further increases performance
if included in the model training process as well.
This demonstrates that ITR can be flexibly applied
to any TableQA model.

5.2 Repositioning Denotations

In Table 4 we notice that models that naively trun-
cate table sequences (#1-4) may observe the cor-
rect denotations within the length budget, achiev-
ing 58.2-63.2% DA in WikiSQL even for overflow
samples. This is because the original table happens
to present the answer early, e.g., in the first colum-
n/row. To fully investigate the potential and useful-
ness of ITR, we create an extreme case by moving
gold rows and columns altogether to the bottom
right of the table, thus reducing the chances of arbi-

9913

WikiSQL WikiTQ

Models Dev Test Compact Overflow Dev Test Compact Overflow

1 TaPas(hf) 90.4 89.5 92.1 76.3 50.2 50.6 55.4 37.6
2 TaPEx(hf) 89.5 88.7 91.9 59.1 57.2 55.5 60.5 32.7
3 OmniTab(hf) - - - - 61.0 62.1 66.5 35.9
4 TaPEx 88.4 87.7 90.8 58.2 58.7 57.8 62.8 35.3

5 ITR → TaPas(hf) 92.1 92.1 92.1 92.1 50.5 50.8 55.4 38.2
6 ITR → TaPEx(hf) 91.8 91.6 91.9 89.1 58.4 56.9 60.5 41.1
7 ITR → OmniTab(hf) - - - - 62.1 63.4 66.5 45.3
8 ITR → TaPEx 90.5 90.6 90.8 87.7 60.4 58.8 62.8 41.1

9 ITR → TaPEx (+train) 91.3 91.4 91.6 89.4 61.8 61.5 65.2 44.8

Table 4: DA on WikiSQL and WikiTQ when applying ITR at inference time only or also in training. TaPEx denotes
the in-house fine-tuned TaPEx (hf) model. Compact and Overflow are subsets of the Test split. Only Dev/Test DA
values are directly comparable across models. This is because the token limit is different for TaPEx and OmniTab
(1024) and TaPas (512), and overflow samples are of different sizes for these models, i.e., 9.7% for TaPEx and
OmniTab (see Table 1) and 16.6% for TaPas. Bold denotes the best accuracies for each dataset split.

Models Test Testext. Compact Compact ext. Overflow Overflowext.

TaPEx 87.7 82.8 90.8 89.1 58.2 23.6
ITR → TaPEx 91.4 90.0 91.6 90.5 89.4 85.3
ITR → TaPEx (+train shuffled) 91.5 90.8 91.8 91.2 89.0 87.1

Table 5: DA in WikiSQL when repositioning denotations to the bottom-right corner of the table, denoted as Dext.

where D is any of the dataset splits. Bold denotes the best DA for each dataset split in the extreme scenario.

trary success due to dataset design. For this analy-
sis, we use WikiSQL since it provides the gold cell
annotations. We evaluate TaPEx in combination
with ITR on both the original and extreme-case
set and report results in Table 5. Unsurprisingly,
the overall performance of TaPEx drops sharply
from 87.7% to 82.8%, with the overflow accuracy
dropping from 58.2% to only 23.6%. This suggests
that in extreme cases failure to address the long ta-
ble issue will harshly degrade model performance
and that the reported DA values can be optimistic
due to the convenient position of the relevant infor-
mation on top of the table. ITR-enhanced TaPEx
is less affected: the overall DA degrades by 1.4%
and overflow accuracy by only 4.1% as opposed
to 34.6% drop of TaPEx. The 4.1% drop is mainly
due to the positioning bias that the TableQA sys-
tem might have learned during training. In fact,
if we introduce row/column repositioning also at
training time (+train shuffled), i.e., making gold
answer denotations appear equally in any possi-
ble position of the input sub-table, we observe a
reduced impact of the extreme repositioning at in-
ference time: the performance drop is only 0.7%
overall and 1.9% in the overflow split. We discuss

row/column positioning effects in Appendix B.

5.3 Reducing the Input Length Budget

In production pipelines, latency is a crucial issue
and 1024 tokens can be unrealistic in achieving
a smooth user experience. We explore the input
length budget within 64 to 1024 tokens and com-
pare TaPEx and TaPas when combined with ITR
in WikiSQL and WikiTQ. We recall from Table 1
that overflow rate increases drastically with shorter
length budgets. TaPEx and TaPas use different
linearization and tokenization strategies, thus they
yield different overflow rates for the same budget.
However, for both models and datasets, 64 tokens
lead to an 100% overflow rate. We show the DA
values in WikiSQL and WikiTQ in Figure 2. In
WikiSQL, ITR helps the TableQA model remain in
the region of the best accuracy even when reducing
the budget to 256 and 128 tokens for TaPEx and
TaPas, respectively. Without the aid of ITR, both
models sharply degrade in performance. Interest-
ingly, TaPEx-based models are less robust when
reducing the number of tokens than TaPas-based
model. This is because TaPEx linearization uses up
tokens faster, therefore encoding less table informa-

9914

25.6

42.0

65.9

82.1
88.7

74.2

84.8
89.7 91.6 91.6

64 128 256 512 1024
0

20

40

60

80

100

48.3

71.4

84.5
89.5

86.4
90.7 91.9 92.1

64 128 256 512

16.9

24.9

38.4

51.2
55.5

24.4
31.4

42.3

53.9 56.9

64 128 256 512 1024

25.6

39.3

47.3
50.6

33.5

41.8
48.1 50.8

64 128 256 512
0

20

40

60

80

100

baseline
+ITR

D
en

ot
at

io
n

A
cc

ur
ac

y
(%

)

O
ve

rf
lo

w
 R

at
e

(%
)

WikiSQL WikiTQ

Maximum Length (tokens)

Figure 2: Impact of input length budget on Denotation Accuracy (line plots) and Overflow Rate (bar plots) for
WikiSQL (left) and WikiTQ (right) Test sets.

tion overall (see Appendix D for a case study). In
WikiTQ, while the trend remains unchanged, there
is a more noticeable drop for all the models. This is
due to the challenging nature of WikiTQ questions,
which generally require visibility of larger portion
of tables. However, ITR still improves over base-
lines, further widening the gap as we decrease the
length budget to 128 and 64 tokens. Similarly to re-
sults in WikiSQL, TaPas is more robust than TaPEx
in extreme scenarios in WikiTQ. Finally, while ITR
benefits models in standard benchmarks, it is even
more beneficial in extreme realistic scenarios.

6 Ablation Study

6.1 ITR Variants

In addition to our ITR, we investigate several vari-
ants: with varying number of sub-tables N , repre-
senting tables using columns or rows only, creating
sub-tables with different strategies, or scoring items
via a different measure of relevance.

Row/Column-only Items. Our ITR considers a
mix of both row and column items. We redefine
Algorithm 1 to consider only row or column items,
but not both, creating the following ITR variants:

1. ITRcol: Items(T) maps a table T into a set of
columns, e.g., {c1, c2, c3, c4} in Figure 1(a).
A sub-table is created by combining the re-
trieved columns, e.g., Figure 1(b) would be
represented as {c1, c3} but containing all 4
rows for the 2 columns.

2. ITRrow: similar to ITRcol, but only consider-
ing row-wise items.

Reduction versus Addition. ITR returns the
largest possible sub-tables by iteratively dropping

irrelevant items to fully leverage the length bud-
get (here referred to as Reduction, and models are
suffixed by ‘−’). As such, we do not consider the
smallest sub-tables that only contain the top-N
relevant items. To verify whether dropping the ir-
relevant items is a better approach, we contrast it
with an Addition strategy (models suffixed by ‘+’),
where we return the top-N sub-tables created by
successively appending the top-N items by their
similarity with q, i.e., after Line 10 in Algorithm 1.

Semantic versus lexical. Finally, inspired by ta-
ble input selection strategies in literature (Eisen-
schlos et al., 2020; Yin et al., 2020), we use n-
gram similarity instead of dense retrieval in Al-
gorithm 1 (Lines 5-6) and obtain ITRngram. We
use ITRngram to assess the importance of dense
retrieval for ITR and its benefits in TableQA.

6.2 Results

In Table 6 we compare the accuracy of ITR variants
on WikiSQL and WikiTQ. In WikiSQL, ITR{+,−}

row

variations (#4 & #6) perform better than the base-
line (#1) and the column-wise counterparts. In
WikiTQ we see the opposite: ITR{+,−}

col variations
(#3 & #5) perform better than baseline (#1) and the
row-wise counterparts. However, ITR (#2) demon-
strates superior performance across the board by
jointly ranking the most relevant rows and columns,
which strikes the right balance between the prefer-
ence for each dataset. Even with N=1, ITR signifi-
cantly improves the TaPEx baseline. Indeed, N=10
delivers only a slight improvement over N=1, by
0.3-0.4% in Test set depending on the dataset. As
such, N=1 is a more efficient solution for appli-
cations with limited computational resources. We

9915

WikiSQL WikiTQ

Models Dev Test Compact Overflow Dev Test Compact Overflow

1 TaPEx 88.4 87.7 90.8 58.2 58.7 57.8 62.8 35.3
2 ITR → TaPEx 91.3 91.4 91.6 89.4 61.8 61.5 65.2 44.8

with N=1 91.0 91.0 91.6 85.5 61.4 61.2 65.2 43.2

3 ITR−
col → TaPEx 89.8 89.5 91.3 72.9 60.9 60.8 64.7 43.4

4 ITR−
row → TaPEx 91.1 91.1 91.4 87.8 60.3 59.9 63.8 42.1

5 ITR+
col → TaPEx 89.9 89.6 91.2 74.4 60.2 58.8 62.1 43.6

6 ITR+
row → TaPEx 90.3 90.5 91.5 80.9 50.9 49.8 53.3 33.7

7 ITRngram → TaPEx 89.5 89.1 91.5 66.6 57.8 57.2 62.4 33.5

Table 6: Ablation study of ITR and its variants. Compact and Overflow are subsets of the Test split. ITR is applied
both in training and inference. Bold denotes the best accuracies for each dataset split.

1 2 3 4 5 10 20
0

20

40

60

80

100

ITR-col
ITR-ngram-col
ITR-row
ITR-ngram-row

K

R
ec
al
l@
K

Figure 3: Results on the test set of WikiSQL for ITR and
ITRngram item retrieval. For ITRngram we set n ≤ 3,
and plot n = 3 which shows always better performance.

further discuss varying N values in Appendix C.

Semantic versus lexical input selection. In Fig-
ure 3, we compare ITR and ITRngram when per-
forming both row-wise, and column-wise retrieval.
Neural-based ITR outperforms ITRngram for all
values of K and both item types. The retrieval per-
formance of ITR converges after K > 5 for ITRcol

and K > 10 for ITRrow. For ITRngram, higher
values of K are needed to achieve full Recall@K.

The lower performance of ITRngram is ex-
plained by poor lexical matching of the question
with cell values and column names, as compared to
the embedding similarities used by neural counter-
parts. For example, two viable questions that can be
answered with the ‘Rank" column in Figure 1 are
“which mountain peak is the highest?” and the less
natural “which is the mountain peak that has the
lowest value in the rank?”. While the latter matches
with the column name, the former is more natural

for human to ask and it does not match the column
names via n-gram similarity. It is worth mentioning
that WikiSQL is more canonicalized and ITRngram

results in Figure 3 might be positively affected by
the nature of WikiSQL. We expect the gap between
ITR and ITRngram to be even larger in challeng-
ing datasets where the reference question is more
human-like, e.g., WikiTQ. This is indeed evident
when these variations are integrated in TableQA.
Unsurprisingly, results in Table 6 (#7) show that, in
contrast to ITR, ITRngram variation is able to im-
prove the baseline performance (#1) in WikiSQL,
but degrades the performance in WikiTQ.

7 Conclusions

In this paper we presented ITR for TableQA, an
approach to create the most relevant sub-table(s)
to efficiently answer a given question via TableQA.
ITR is based on a dense retrieval component, which
selects relevant rows and columns and combines
them into a compact sub-table that satisfies length
budget constraints. We combined ITR with differ-
ent TableQA models from the literature, at training
and/or inference time, and showed that ITR indeed
captures the most relevant information, which en-
abled underlying models to perform better overall
and become more robust, thus attaining state-of-
the-art results on WikiSQL and WikiTQ bench-
marks. ITR is flexible, does not depend on the
underlying model and can be easily integrated in
future model developments to increase their robust-
ness. As future work we can combine ITR with
computational operations over different table ele-
ments (Zhou et al., 2022) to collapse its information
in a more compact format, to benefit also questions
that rely on table completeness.

9916

8 Limitations

First, in this work we limit the experimentation to
vertical relational web-tables only, following the
format of benchmarks used in TableQA, i.e., Wik-
iSQL and WikiTQ. While we believe that ITR can
easily be extended to horizontal entity web-tables,
e.g., tables from Wikipedia, we do not expect our
algorithm to transparently work on other types of
tables that we do not consider, e.g., matrix tables
from scientific papers and/or spreadsheets (Wang
et al., 2021), where table items can be represented
differently. However, this is not a limitation of the
algorithm itself and adjusting our assumptions to
certain scenarios and type of data can be feasible in
the future. Second, ITR selects the relevant table
elements by using a question as query. Therefore,
it can only be applied for tasks with table-text joint
input such as TableQA we showcase in the paper,
or also table entailment tasks, e.g., table fact verifi-
cation. Unfortunately, ITR cannot be used for tasks
where table is the only input, e.g., table-to-text task.
Finally, while ITR is beneficial for questions that
do not rely on table completeness, its effectiveness
is limited when, for example, all table cells are
required to be predicted. Consider a question that
requires cell counting, and the gold cells satisfy-
ing the query can be more than what we can feed
a model with, e.g., “how many championship did
Player A get?” and Player A has won 500 champi-
ons. However, this limitation does not arise from
our approach and is rather inherited by existing
TableQA models in the literature. Indeed, it can
be a potential future direction of our work, which
requires model innovation and table transformation
that focuses on representing the information in a
compact form.

References
Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles

Sutton, Hanjun Dai, Max Lin, and Denny Zhou. 2021.
Spreadsheetcoder: Formula prediction from semi-
structured context. In International Conference on
Machine Learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Haoyu Dong, Zhoujun Cheng, Xinyi He, Mengyu Zhou,
Anda Zhou, Fan Zhou, Ao Liu, Shi Han, and Dong-
mei Zhang. 2022. Table pre-training: A survey
on model architectures, pre-training objectives, and
downstream tasks. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intel-
ligence, IJCAI-22, pages 5426–5435. International
Joint Conferences on Artificial Intelligence Organi-
zation. Survey Track.

Julian Eisenschlos, Maharshi Gor, Thomas Müller, and
William Cohen. 2021. MATE: Multi-view attention
for table transformer efficiency. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7606–7619, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Julian Eisenschlos, Syrine Krichene, and Thomas
Müller. 2020. Understanding tables with interme-
diate pre-training. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
281–296, Online. Association for Computational Lin-
guistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. OmniTab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 932–942, Seattle,
United States. Association for Computational Lin-
guistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Syrine Krichene, Thomas Müller, and Julian Eisensch-
los. 2021. DoT: An efficient double transformer for
NLP tasks with tables. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3273–3283, Online. Association for Computa-
tional Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

9917

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.24963/ijcai.2022/761
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2021.emnlp-main.600
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.findings-emnlp.27
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2022.naacl-main.68
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2021.findings-acl.289
https://doi.org/10.18653/v1/2021.findings-acl.289
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2851–
2864, Hong Kong, China. Association for Computa-
tional Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu,
Shi Han, and Dongmei Zhang. 2021. Tuta: Tree-
based transformers for generally structured table pre-
training. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
KDD ’21, page 1780–1790, New York, NY, USA.
Association for Computing Machinery.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
TableFormer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528–537,
Dublin, Ireland. Association for Computational Lin-
guistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426, On-
line. Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, bailin
wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
richard socher, and Caiming Xiong. 2021. Gra{pp}a:
Grammar-augmented pre-training for table semantic
parsing. In International Conference on Learning
Representations.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

Fan Zhou, Mengkang Hu, Haoyu Dong, Zhoujun Cheng,
Shi Han, and Dongmei Zhang. 2022. TaCube: Pre-
computing Data Cubes for Answering Numerical-
Reasoning Questions over Tabular Data. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

A Implementation Details

A.1 ITR Retriever Configuration

For the ITR retrieval component, i.e., to ob-
tain question encoder (EQ) and item encoder
(ET) in Algorithm 1, we fine-tune DPR on
WikiSQL to retrieve the relevant table items
for a question. We initialize EQ and ET using
DPR weights released via huggingface,
i.e., facebook/dpr-question_encoder-
single-nq-base and facebook/dpr-
ctx_encoder-single-nq-base, respec-
tively. Before encoding via ET , we linearize
table items in a naive way with additional
special tokens interleaving table cell values. For
example, to encode row r3 in Figure 1(a) we use:
<HEADER> rank <HEADER_SEP> mountain peak
<HEADER_SEP> mountain range <HEADER_SEP>
elevation <HEADER_END> <ROW> 2 <ROW_SEP>
red slate mountain <ROW_SEP> sierra nevada
<ROW_SEP> 13 , 149 ft <ROW_END>.

We obtain annotations for gold cells by assessing
the SQL query associated with each question-
table-answer triple (q, T , a) in WikiSQL. For
example, we can evaluate the following SQL query
annotation “SELECT Header1 FROM table
WHERE Another Header = Some Entity” to
obtain cells that are selected as answers. In case of
other aggregation functions beyond cell selection
(e.g. COUNT, SUM, AVG), gold cells are those
selected as input to aggregation functions. Thus,
the table items containing any of these gold cells
are gathered into positive items I+(q, T) while the
remaining negative items are in I−(q, T).

In training ITR encoders, we leverage a con-
trastive loss to increase the output similarities be-
tween the question embeddings EQ(q) and the em-
beddings of positive items ET (i) (i ∈ I+(q, T)).
In contrast, the similarities with the embeddings of
negative items are reduced. Formally, the embed-

9918

https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.145/
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.145/
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.145/

Parameter Value

Negative samples 4 (per positive sample)
Total GPUs 8
Learning rate 0.0001
Optimizer Adam
Batch size 1 (per device)
Grad. accum. steps 4

Training steps
3,800 (ITRcol)
6,800 (ITRrow)
11,600 (ITRmix)

Table 7: Best hyperparameters chosen for ITR retriever
on the WikiSQL dataset.

dings of questions and items are:

eq = EQ(q) ∈ Rd; ei = ET (i) ∈ Rd, (1)

where i ∈ I | I = Items(T) and d is the hidden
size. We use inner dot product as our similarity
function:

r(q, i) = eqei
⊤ (2)

For each question, one positive item i∗ and a
few negative items are randomly sampled from
I+(q, T) and I−(q, T) respectively. The training
loss is therefore:

−
∑

(q,I)

log
exp (r(q, i∗))

exp (r(q, i∗)) +
∑

i∈I−(q,T)

exp (r(q, i))

(3)
In Table 7 we report other hyperparameters for

the ITR retrieval component, chosen based on the
Dev set of WikiSQL. We recall that we use the
same checkpoint trained on WikiSQL also for Wik-
iTQ in TableQA task. We train ITR retrieval com-
ponent on an V100 machine, and the total training
time for our main ITR variant is about 380 minutes.

A.2 Training with ITR Configuration
We use only TaPEx as a baseline for ITR at training
time. We initialize TableQA models with the re-
leased checkpoint from huggingface for TaPEx
pretraining, i.e., microsoft/tapex-large.
As previously shown in Table 6, we notice a
slight difference on the performance of the released
TaPEx checkpoints via huggingface and the in-
house fine-tuned TaPEx. Due to this, we report the
hyperparameters we use to fine-tune TaPEx on Wik-
iSQL and WikiTQ datasets in Table 8. We choose
the best hyperparameters based on the performance
on Dev set of each benchmark.

Parameter
Value

(WikiSQL)
Value

(WikiTQ)

Warmup steps 1000 0
Epochs 10 40
Learning rate 0.00003 0.00002
LR decay Linear
Optimizer AdamW
Total GPUs 8
Batch size 1 (per device)
Grad. accum. steps 4
Weight decay 0.01
Label smoothing 0.1

Table 8: Best hyperparameters chosen for the in-house
and ITR-enhanced TaPEx for WikiSQL and WikiTQ
datasets.

A.3 Inference with ITR Models

In Table 9 we report the model checkpoints from
huggingface that we used as baseline when
applying ITR at inference time only. As men-
tioned in § 5, there are some differences between
the performance obtained when evaluating the
huggingface implementation of the baselines
and the performance reported in each separate pa-
per, mainly due to data processing and evaluation
scripts. For example, OmniTab official reposi-
tory was firstly based on that of TaBERT, which
is based on encoder-only architecture. The au-
thors have adjusted the code to an encoder-decoder
architecture, however maintaining the tokenizer
of TaBERT rather than TaPEx.This detail has not
been transferred to the huggingface implemen-
tation. In addition, after the release of the original
TaPas (Herzig et al., 2020), authors have imple-
mented different variants on the same repository,
including the preprocessing of the data and/or eval-
uation scripts. For example, Herzig et al. (2020)
report that they drop examples if certain conditions
are not satisfied, such as there is no scalar answer
and the denotation cannot be found in the table.
It is not clear if this decision continues to be true
for the subsequent developments. Therefore, this
does not allow a straightforward assessment of ITR
contribution. To this end, we unify the implemen-
tations in a single evaluation framework, using the
dataset splits, checkpoints and evaluation methods
made available in the huggingface library for
all the baselines. We release our unified framework
upon acceptance.

9919

Baseline Checkpoints

WikiSQL
TaPEx microsoft/tapex-large-finetuned-wikisql
TaPas google/tapas-large-finetuned-wikisql-supervised

WikiTQ
TaPEx microsoft/tapex-large-finetuned-wtq
TaPas google/tapas-large-finetuned-wtq
OmniTab neulab/omnitab-large-finetuned-wtq

Table 9: Checkpoints released via the huggingface library for TaPEx, TaPas and OmniTab, that we use as
baselines for inference only experiments with ITR.

Training & Decoding
Approach

Training Speed ↑
(iter/sec)

Training
Batch Size

Training Time
(mins)

Inference Speed ↑
(iter/sec)

Inference
Batch Size

TaPEx 3.58 1 460 1.02 16
ITR→ TaPEx 3.32 1 480 1.30 4

Table 10: Training and inference speed for TaPEx and ITR-enhanced TaPEx. We train each model on an A100
machine. Batch size is shown per GPU.

A.4 Computational Cost
In Table 10 we report training and inference speed
for TaPEx and ITR-enhanced TaPEx. Especially in
mix and row-wise ITR variants, the number of sub-
tables is generally large (>100), which causes a sig-
nificant performance bottleneck when dynamically
tokenizing the sub-tables within the training/evalu-
ation loop. There are two solutions regarding this
problem. First, we can calculate the sub-tables at a
preprocessing step which does not have any impact
on the end-to-end training/inference speed. This
is possible as choosing sub-table is not affected by
the training updates. Second, to train and evalu-
ate end-to-end, we leverage binary search to locate
the valid sub-tables, i.e., sub-table(s) that first over-
flow, and stop processing the subsequent sub-tables
which are guaranteed to be overflow. This allows
to speed up the training by 3 times.

B Column and Row Order Effect

Despite the order of items returned by ITR, after
creating and choosing the sub-tables, we rearrange
their columns and rows in the same order as that in
the original table. We rely on the order of the origi-
nal training data, which can have its own biases in
data creation. In addition, we observe that:

1. Exposing the most relevant items first at train-
ing time, in which case we also have access to
gold items, leads to quick model over-fitting.
The model can be strongly biased to choose

cells that appear early in the linearized se-
quence, which is not desired for training a
generalizable and robust TableQA model.

2. Baseline models have been trained without a
strong bias on the column/row order, i.e., not
enforcing that most relevant items are shown
first. We show several experiments in which
we apply ITR at inference time only. As such,
introducing an ordering bias at inference time
only decreases the performance.

Furthermore, to investigate whether the positioning
of gold answers in the dataset can bias the trained
model, we shuffle sub-table rows and columns to
make the gold answers appear equally possible in
any position of the input table. Results in Table 5)
showed that shuffling at training time slightly in-
creases the robustness of the model by 0.2-0.5
denotation accuracy points in WikiSQL Test and
Dev sets respectively. Interestingly, shuffling has
a bigger impact in the extreme scenario (see § 5.2)
increasing the Overflowext. by 2 denotation accu-
racy points. In the literature different strategies
have been employed in the model design to avoid
positional biases. For example, TableFormer (Yang
et al., 2022) disposed of positional embedding to
make all token positions homogeneous. However,
such modifications of the baselines are out of the
scope of this paper, in which we show the contribu-
tion of ITR on the current settings of each baseline.

9920

N WikiSQL Dev WikiSQL Test

20 91.24 91.34
15 91.22 91.30
10 91.25 91.35

5 91.23 91.30
4 91.18 91.27
3 91.14 91.21
2 91.08 91.11
1 91.03 90.97

0 88.4 87.7

Table 11: DA of ITR → TaPEx for varying values of
N . Underlined values denote the performance at our
chosen N for the best model. N=0 indicates the baseline,
i.e., using the full table.

C Multiple Sub-tables Effect

For our main experiments we use N > 1 sub-tables
at inference time for generation baseline systems,
i.e., TaPEx and OmniTab. In particular, we use
N = 10 for our main ITR variant and ITRngram,
while for the column and row only ITR variants, we
set N = 5 and N = 10. In §5 (and Figure 3), we
showed that ITR retrieval performance converges
after K > 5 for columns and K > 10 for rows,
which justifies the values selected in TableQA for
N for each variant.

In §6 we showed the marginal impact of N=1
versus N=10. For completeness, in Table 11 we
report the effect of varying N sub-tables for ITR
→ TaPEx: on the WikiSQL Test set, we get an
improvement of 0.4 accuracy points for querying
TaPEx on N=10 sub-tables versus doing so only
on N=1 sub-table. Increasing N up to 20 yields
no further improvements. We realize that using a
large enough number of sub-tables, one might con-
sider even simpler methods that consider different
regions and combinations of the table each time,
delegating the selection of the most relevant sub-
table to the TableQA system, as per prediction con-
fidence. For this reason, we also compare a naive
baseline that uses up to N=10 randomly chopped
sub-tables from a given table, without a specific
notion of item relevance, combined with TaPEx.
For this baseline, we simply sample columns and
rows and combine them similar to ITR mix un-
til a sub-table exceeds the token budget. Results
show that N=10 random sub-tables might allow
TaPEx to improve its performance by +2.3% in
WikiSQL (versus +3.7% improvement from ITR).
In WikiTQ, randomly choosing the sub-tables de-
grades the performance by -3.4% (versus +3.7%

improvement from ITR). This is because in Wik-
iSQL questions require less interaction between
rows/columns and it might be enough for the sys-
tem to have visibility of the items containing the
gold answer. In WikiTQ, questions require aggre-
gations between different columns and rows, and
therefore a random combination of them leads to
performance degradation.

We recall that for TaPas, we use N=1 as, due to
joint tasks of cell selection and aggregation classi-
fication, it is not straightforward to determine the
probability of the output making it unfeasible to
compare N > 1 predictions.

D Case Study

In this Section we discuss two case studies. We
illustrate the relevance assigned by ITR on the orig-
inal table rows and columns as a heat-map where
the color scale reflects the relevance scores per each
column and row with respect to the question (green
→ yellow→ orange→ red). To obtain cell scores
in their intersection, we sum up their correspond-
ing column-wise and row-wise scores. As a result,
more relevant cells are more red.

In Table 12 we show a side-by-side comparison
of TaPas and TaPEx under the 64 token reduction
scenario, and the benefit of applying ITR. TaPEx
uses special tokens for encoding the table structure,
which make the linearized sequence longer. TaPas
instead, encodes the table structure via additional
embedding layers. In addition, TaPas applies cell
truncation to the first token for each cell, which
are reconstructed as a post-processing step, and
drops rows that exceed the token budget. This
allows TaPas to be fed a larger portion of the table
in the input, even if the cell information might be
lost, e.g., in Figure 4 ‘OF-8’ is squeezed into only
‘OF’ removing the distinction between ‘Equivalent
NATO Rank’ across rows. As such, under extreme
scenarios TaPas performs better than TaPEx, due
to the visibility of a larger portion of the table. ITR
proves beneficial and enables TaPEx to view only
the relevant information within the token budget
(Figure 6, left) to correctly answer the question.

In Table 13 we show a comparison of table prun-
ing strategies included in TaPas, such as cell and
row truncation, which might cause information loss.
We disable those when we apply ITR, and provide
TaPas with the full information contained on the
question-relevant cells, as determined by ITR. In
Figure 6 ‘New York’ and ‘New England Patriots’

9921

Question: What could a Spanish Coronel be addressed as in the commonwealth military?
Gold Answer: Group Captain.

Equivalent
NATO Rank

Rank in Spanish Rank in English Commonwealth
equivalent

US Air Force
equivalent

0 OF-8 General del Aire Lieutenant General Air Marshal Lieutenant General
1 OF-7 Brigadier General Major General Air Vice-Marshal Major General
2 OF-5 Coronel Colonel Group Captain Colonel
3 OF-4 Teniente Coronel Lieutenant Colonel Wing Commander Lieutenant Colonel
4 OF-3 Mayor Major Squadron Leader Major
5 OF-2 Capitán Captain Flight Lieutenant Captain
6 OF-1 Teniente Primero First Lieutenant Flying Officer First Lieutenant
7 OF-1 Teniente Segundo Second Lieutenant Pilot Officer Second Lieutenant

Figure 4: Original Table from WikiSQL with ITR relevance heat-map.

Model Input [question, table (serialized and tokenized)] Prediction Notes

TaPEx <s> what could a spanish coronel be addressed as
in the commonwealth military? col : equivalent
nato rank code | rank in spanish | rank in english |
commonwealth equivalent | us air force equivalent
row 1 : of-8 | general del aire | lieutenant general
| air marshal | lieutenant general</s> (truncated at
64 tokens)

Air Marshal TaPEx uses separation to-
kens interleaving cell val-
ues.

TaPas [CLS] what could a spanish coronel be addressed
as in the commonwealth military? [SEP] equivalent
rank rank commonwealth us of general lieutenant
air lieutenant of brigadier major air major of coronel
colonel group colonel of teniente lieutenant wing
lieutenant of mayor major squadron major of capi-
tan captain flight captain of teniente first flying first
(62 tokens, with only 1 token in each cell and trun-
cated at 7 rows)

Group Captain TaPas uses additional em-
bedding layers to encode
table structure. The
TaPas tokenizer by de-
fault squeezes the number
of tokens in each cell to
fit the table (e.g., ‘OF-8’
is squeezed into only OF),
during which process in-
formation may be lost.

Rank in
Spanish

Rank in
English

Commonwealth
equivalent

Rank in Spanish Rank in English Commonwealth
equivalent

US Air Force
equivalent

2 Coronel Colonel Group Captain 2 Coronel Colonel Group Captain Colonel
5 Capitán Captain Flight Lieutenant 3 Teniente Coronel Lieutenant Colonel Wing Commander Lieutenant Colonel

5 Capitán Captain Flight Lieutenant Captain

Figure 5: Largest sub-table obtained for TaPEx (left) and TaPas (right) with ITR relevance heat-map. The largest sub-table for
TaPas is bigger than that of TaPEx as the sequence length is calculated based on the tokenization of each TableQA model.

Model Input [question, sub-table (serialized and tok-
enized)]

Prediction Notes

ITR → TaPEx <s> what could a spanish coronel be addressed as in
the commonwealth military? col : rank in spanish
| rank in english | commonwealth equivalent row 1
: coronel | colonel | group captain row 2 : capitán
| captain | flight lieutenant</s> (52 tokens without
truncation)

Group Captain Now, the information be-
ing sought is within the
length budget, leading to
successful answering.

ITR → TaPas [CLS] what could a spanish coronel be addressed
as in the commonwealth military? [SEP] rank in
spanish rank in english commonwealth equivalent
us air force equivalent coronel colonel group captain
colonel teniente coronel lieutenant colonel wing
commander lieutenant colonel capitan captain flight
lieutenant captain (53 tokens without truncation)

Group Captain Now, the input sub-table
is fully presented without
harshly squeezing cell to-
kens.

Table 12: A case study with 64 token budget: comparing TaPEx and TaPas with or without ITR. ITR sub-table
enables TaPEx to view the relevant information for correctly answering the question.

9922

are both truncated as ‘New’ by TaPas. This in-
formation is crucial for correctly answering the
question. Indeed, TaPas fails to locate the right cell
after truncation, and predicts a wrong answer. The
sub-table created by ITR in Figure 7 presents the
full information of relevant cells to the model, thus
enabling TaPas to make the correct prediction.

9923

Question: Which winning team beat the New York Yankees?
Gold Answer: Arizona Diamondbacks.

Year Game or event Date contested League or governing body Sport Winning team Losing team Final score

0 2002 2001 World Series, game
seven November 4, 2001 Major League Baseball Baseball Arizona Diamondbacks New York

Yankees 3-2

1 2004 Super Bowl XXXVIII February 1, 2004 National Football League American football New England Patriots Carolina Panthers 32-29

2 2008 Super Bowl XLII February 3, 2008 National Football League American football New York Giants New England
Patriots 17-14

3 2009 Super Bowl XLIII February 1, 2009 National Football League American football Pittsburgh Steelers Arizona
Cardinals 27-23

4 2010 Winter Olympics men's
hockey gold-medal game February 28, 2010 International Olympic

Committee Ice hockey Canada United States 3-2
(overtime)

5 2011 NFL Week 15 game December 19, 2010 National Football League American football Philadelphia Eagles New York Giants 38–31

Figure 6: Original Table from WikiSQL with ITR relevance heat-map.

League or governing body Winning team Losing team
0 Major League Baseball Arizona Diamondbacks New York Yankees
1 National Football League New England Patriots Carolina Panthers
2 National Football League New York Giants New England Patriots
4 International Olympic Committee Canada United States

Figure 7: Largest sub-table obtained for TaPas with ITR relevance heat-map.

Model Input [question, sub-table (serialized and tok-
enized)]

Prediction Notes

TaPas [CLS] which winning team beat the new york yan-
kees? [SEP] year game date league sport winning
losing final 2002 2001 november major baseball
arizona new 3 2004 super february national ameri-
can new carolina 32 2008 super february national
american new new 17 2009 super february national
american pittsburgh arizona 27 2010 winter febru-
ary international ice canada united 3 (52 tokens,
with only 1 token in each cell and truncated at 5
rows)

New York Gi-
ants

TaPas tokenizer squeezes
cell tokens in order to
fit the table, which, how-
ever, confuses the model
by having only one token
“new” for both New York
Yankees and New Eng-
land Patriots. This pre-
vents TaPas from finding
the correct answer.

ITR → TaPas [CLS] which winning team beat the new york yan-
kees? [SEP] league or governing body winning
team losing team major league baseball arizona di-
amondbacks new york yankees national football
league new england patriots carolina panthers na-
tional football league new york giants new england
patriots national football league philadelphia eagles
new york giants (53 tokens without truncation)

Arizona Dia-
mondbacks

ITR successfully presents
most relevant information
to TaPas. New York Yan-
kees and New England
Patriots are now fully pre-
sented, making question
answering successful.

Table 13: A case study with 64 token budget: TaPas pruning strategies cause information loss, which confuses the
model decision. ITR disables such information loss to remediate the previously wrong decision of TaPas.

9924

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4 and Appendix A

�3 B1. Did you cite the creators of artifacts you used?
Section 4 and Appendix A

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. We do not release any artifact with this submission. We release code upon acceptance.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. We only use publicly available resources.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. We only use publicly available resources.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.1

C �3 Did you run computational experiments?
Left blank.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

9925

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

9926

