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Abstract

Recent advances in tabular question answer-
ing (QA) with large language models are con-
strained in their coverage and only answer ques-
tions over a single table. However, real-world
queries are complex in nature, often over multi-
ple tables in a relational database or web page.
Single table questions do not involve common
table operations such as set operations, Carte-
sian products (joins), or nested queries. Fur-
thermore, multi-table operations often result in
a tabular output, which necessitates table gen-
eration capabilities of tabular QA models. To
fill this gap, we propose a new task of answer-
ing questions over multiple tables. Our model,
MultiTabQA, not only answers questions over
multiple tables, but also generalizes to generate
tabular answers. To enable effective training,
we build a pre-training dataset comprising of
132,645 SQL queries and tabular answers. Fur-
ther, we evaluate the generated tables by intro-
ducing table-specific metrics of varying strict-
ness assessing various levels of granularity of
the table structure. MultiTabQA outperforms
state-of-the-art single table QA models adapted
to a multi-table QA setting by finetuning on
three datasets: Spider, Atis and GeoQuery.

1 Introduction

Question answering (QA) over multiple tables aims
to provide exact answers to natural language ques-
tions with evidence from one or more tables (Jin
et al., 2022). This is in contrast to single-table QA,
which has been the focus of tabular QA research to
date (Liu et al., 2021; Nan et al., 2021; Zhu et al.,
2021; Herzig et al., 2020). Even though groups
of related tables are ubiquitous in real-world cor-
pora, such as relational databases or tables in a web
page, multi-table QA remains a largely unexplored
area. To address this gap, we propose a new task
of answering questions over multiple tables. Our
multi-table QA model, MultiTabQA,' addresses
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SELECT zip_code FROM weather GROUP BY zip_code HAVING avg
( mean_humidity ) < 70 INTERSECT
SELECT zip_code FROM trip GROUP BY zip_code HAVING count ( * ) >= 200

What is the zip code of trips made which are above 200 with humidity
below 70

Weather

cloud_cover ‘minihumidily‘ zip_code

zip_code
Multi-Table 92231
trip QA 97010

duration | end_date | zip_code

Figure 1: Multi-table QA. The QA model generates a
tabular answer from either a natural language question
or an SQL query and one or more tables as input context.

novel challenges introduced by multi-table context.
These include complex queries involving chains of
reasoning, disambiguation of relevant table names
at each reasoning step, and generating a final table
as answer. It also leads to novel question-types
that are unnatural in a single-table setting. For in-
stance, questions involving operations specific to
multiple tables, such as Cartesian products (outer
joins, inner joins) and set operations (such as in-
tersect, union, in), are unique to and common in a
multi-table scenario. Furthermore, such multi-table
operations often result in a tabular answer and they
necessitate table generation capabilities of the QA
model.

Figure 1 depicts an example of a question in-
volving two tables, I would like to know the zip
code of trips taken above 200 with humidity be-
low 70, and its associated input tables, Weather
and frip. A multi-table QA model is expected
to disambiguate records from different tables (the
question phrase zip code of trips grounds the col-
umn zip_code of Table trip; the question phrase
humidity below 70 grounds column min_humidity
of Table Weather), learn associations among inter-
table columns (zip_code in both tables) and intra-
table columns (min_humidity and zip_code in the
Weather table), and finally compute the required op-
erations (intersect, count) and generate the tabular
answer.

Recent work on tabular QA can be catego-
rized into two major directions: (i) Semantic pars-
ing-based techniques (Pasupat and Liang, 2015;
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Zhong et al., 2017; Cai et al., 2022), which have
been the dominant approach to answering multi-
-table complex questions. Such methods transform
a natural question to a logical form, which is used
to query a relational database to extract the answer.
However, these techniques are restricted to rela-
tional databases and cannot be applied to tables
from other sources such over web tables, tables
in text documents, and any non-normalized tables.
Additionally, they require expensive and expert hu-
man annotations (Yu et al., 2018; Lee et al., 2021)
formulating SQL queries from natural questions.
(ii)) Modeling the problem as a sequence gener-
ation/classification task (Yin et al., 2020; Zhang
et al., 2020; Herzig et al., 2020; Zhu et al., 2021;
Liu et al., 2021; Cheng et al., 2021b; Nan et al.,
2021; Ma et al., 2022; Pal et al., 2022; Jin et al.,
2022), where an end-to-end trained neural model
is not only responsible for question/query under-
standing but also table reasoning. Existing end—
to-end neural models are either classification-based
(Herzig et al., 2020; Zhu et al., 2021), where the
model detects the answer span and classifies one
table operator associated with the span, or they
are sequence generation-based (Nan et al., 2021;
Zhang et al., 2020; Liu et al., 2021), where the
model generates the answer as a span of text in an
auto-regressive manner.

Our work focuses on the latter direction of re-
search. We train a neural model to mimic a seman-
tic parser and generate the answer. A clear distinc-
tion of our work compared to existing end-to-end
models is that our proposed model, MultiTabQA,
does not operate in the constrained setting of a sin-
gle input table, but can accommodate one or more
tables in the input and the associated multi-table
operators. Additionally, MultiTabQA performs the
task of structured table generation, which imposes
structure aspects to the generated output such as
table schemas, alignments of rows and columns,
relationships between column-headers and column
values. Generating structured tables as output re-
quires table-specific evaluation metrics which we
define and use to evaluate the generated tables.
To effectively train the model, we generate a pre-
training dataset with multi-table SQL queries and
tabular answers built over an existing semantic pars-
ing dataset, Spider (Yu et al., 2018). Our dataset
consists of 132, 645 samples comprising of SQL
queries, associated natural language questions, in-
put tables, and tabular answers. To the best of our

knowledge, this is the first work to address the task
of multi-table QA and generate tabular output.
Our main contributions can be summarized as:

(1) We fill-in the gap of existing tabular QA meth-
ods, which operate only on single tables, by
proposing a new task of answering questions
over multiple tables. Our work increases the
breadth of question types that can be handled
by single tabular QA methods.

(2) Our proposed multi-table QA model generates
structured tables imposed by multi-table opera-
tions. Table generation introduces generation
challenges such as maintaining row-column
alignment, table-header generation, etc.

(3) We release a multi-table pre-training dataset
comprising of 132,645 samples of SQL
queries and tabular answers.

(4) We introduce table generation metrics that cap-
ture different levels of granularity and strict-
ness to evaluate our proposed model.

2 Methodology

We frame multi-table question answering as a
sequence-to-sequence task and train an auto-
regressive transformer encoder-decoder model to
generate the tabular answer. Given a question )
consisting of a sequence of k tokens q1,q2, .. ., qx
and a set of NV tables, T = {t1,t2,...,t,}, the
goal of the multi-table QA model is to perform
chains of operations over T, constrained by @,
and generate a table 7,;. The model always gen-
erates a table, T, which can be single celled for
scalar answers, single rowed or columned for list-
based answers, and multiple rows and columns for
tabular answers. In all cases, the model also gener-
ates column headers revealing important semantics
associated with the generated values.

Training approach. We follow a curriculum
learning approach (Bengio et al., 2009) by sequen-
tially increasing the complexity of tasks to train
MultiTabQA. The first stage of training is a pre-
training step where the training objective is two-
fold: (i) learn to generate correct tabular answers
from SQL, and (ii) understand the associations be-
tween related input tables. The final training stage
is fine-tuning where the model learns to understand
natural language questions with their inherent ambi-
guity in addition to retaining its ability of reasoning
over tables and generating a tabular answer. We
discuss the training process in detail in Section 4.
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Figure 2: Architecture of MultiTabQA model. Given a natural language question/SQL query and the associated
tables as an input sequence, the seq2seq model performs tabular reasoning and generates a tabular answer. Start of
an input table is identified with keyword <table_name> which also indicates that the next tokens comprises the
table name. col: indicates that the next tokens are table headers. Rows in a table are identified with keyword row i:,

columns are separated by I.

Model input/output. The input to the model
is a sequence comprised of the query or the
natural language question, followed by a se-
quence of input tables, represented by the ta-
ble name and the corresponding flattened ta-
ble. Table names are important for disambiguat-
ing tables in multi-table QA setting. Specif-
ically, the input sequence is represented as
question [tabley rep] [tableg Tep] . .. [tabley, rep]
where [table; rep] is the representation of the i-th
table. As depicted in Figure 2, the ¢-th table is
flattened in row-major format and represented as

<table_name>: ny ny |col: hy | ha | ... | hg
row il | ... |77 rowksrl | ... |7,
where ny,...,ny is the sequence of table name

tokens, h; is j-th column header, rﬁn is the i-th
row and m-th column cell. The boldface words are
keywords specifying semantics of the next tokens.
The output of the model is also a flattened table in
row-major format, i.e., [tabley,s Tep|, but without
atable name. As depicted in Figure 2, the generated
table, [tableyy,s rep), is of the form:

col: hy | ho | ... | hgrow Lz 7y | ... |
row2:ry | ... |0 . rowk: | ... | T
3 Dataset

To effectively train a multi-table QA model, the
dataset needs to cover three aspects: (i) multi-table
context, (ii) tabular answers, and (iii) natural ques-
tions. Given the absence of large-scale datasets
covering all three aspects, we transform existing
semantic parsing and single-table QA datasets to fo-
cus on a single aspect before training with samples
covering all three aspects.

3.1 Single table pre-training dataset

One of the sub-tasks of pre-training is to gener-
ate tabular answers. We hypothesize that tuning
the model to generate tables may lead to a warm-
start and better convergence in a multi-table QA
setting. To enable such experiments, we modify
the large-scale single-table QA Tapex pre-training
dataset (Liu et al., 2021) to accommodate tabular
answers. The dataset contains 1, 834, 419 samples
of query, input table and factoid answers. The ta-
bles in the dataset are not named as there is no
need for table disambiguation in a single table set-
ting. The SQL queries are semi-formal (do not
contain the FROM clause with a table name) and
cannot be used to query a real SQL database. We
insert a placeholder table name in the queries and
the corresponding input tables to extract the tab-
ular answer from the database. Transforming the
factoid answers to tables leads to single-celled or
single-rowed tables. The modified dataset helps the
model to understand simple tables and reason over
semi-formal queries to generate simple tables.

3.2 Multi-table pre-training dataset

We develop a multi-table pre-training dataset over
the database of Spider (Yu et al., 2018). Spider is
a cross-domain complex semantic parsing dataset
for text-to-SQL translation. It consists of 10, 181
questions and 5, 693 SQL queries. The questions
are over 200 databases of multiple tables covering
138 different domains. The training, development
and test splits do not contain overlapping databases
to test a model’s generalizability to new databases.

We first adapt the existing samples of Spider for
our task. We use the ground-truth SQL queries of
Spider as input query for pre-training over multi-
ple tables. We automatically extract all input table
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names from the SQL query and retrieve the input
tables” from the relational database. The query, ex-
tracted table names, and retrieved tables are inputs
to our multi-table QA model. We extract the answer
table with the SQL query by querying the relational
database. Answer table headers reveal important
semantics of the associated column values such
as the numeric operation (average, sum, etc.), nu-
meric scales (million, thousand, kms, meters, etc.),
or entity facets (name, date, etc.). This process gen-
erates 3816 samples comprising of query, question,
table_names, tables and answer.

We further augment the modified Spider dataset
with 132, 645 samples of synthetic queries. This
leads to an augmented multi-table pre-training
dataset of 136,461 unique training samples com-
prising of 3816 Spider samples and 132, 645 syn-
thetic samples. The validation set comprises of
536 samples from the Spider validation set pre-
processed as described above to adapt to our task.

Existing work on semantic parsing (Shi et al.,
2020; Yu et al., 2021) have utilized hand-crafted
templates to generate large-scale corpora of syn-
thetic queries, but are constrained in their coverage
with no multi-table operations (Shi et al., 2020) or
limited coverage with no table joins and lacking di-
versity in set operations (Yu et al., 2021). This mo-
tivates us to generate our augmented pre-training
dataset for multi-table QA using multi-table SQL
templates.

Our synthetic queries are generated from 45 man-
ually crafted templates over the Spider database
and hand-crafted rules for operation types. The
query templates have placeholders for aggrega-
tion, relational operations, table name and head-
ers which are randomly assigned during query
generation process. For example, to generate
multi-table join queries, we instantiate the tem-
plates by randomly choosing tables from a database
with at least one common header. For set op-
erations, all tables participating in a multi-table
query requires all table headers to match. We de-
sign SQL templates in increasing order of com-
plexity starting with simple SQL templates and
progressively adding components which increases
its complexity. For example, for single-table
queries, we use the simplest template “SELECT *
FROM {table_name}” whereas for multi-table tem-
plates such as joins, the simplest template is “SE-
LECT T1.{tablel_cols}, T2.{table2_cols} FROM

>We use SQLite3 and pandas for extracting tables.

{table_namel} as T1 JOIN {table_name2} as T2
ON T1.{common_col} = T2.{common_col}”’. We
progressively add SQL components such as aggre-
gations, where conditions, group by and having
clauses to generate templates of increasing com-
plexity. This process results in 14 templates for
Jjoins, 4 templates for each set operation: intersect,
union and except. To avoid catastrophic forget-
ting for single table queries, we also instantiate 14
single-table queries with increasing complexity.

Quality control. We ensure correctness of the
synthetic samples by discarding SQL queries that
executes to an error or empty table. We also ap-
ply the process on the modified Spider, Atis and
GeoQuery data to discard SQL query and the corre-
sponding natural language question to ensure that
all questions are answerable.

3.3 Multi-table QA dataset

We fine-tune and evaluate our model on the natural
language questions of semantic parsing datasets:
Spider, GeoQuery (Zelle and Mooney, 1996), and
Atis (Price, 1990; Dahl et al., 1994). GeoQuery is
a semantic parsing dataset to query into a database
of United States geography.® Atis is a semantic
parsing dataset* with a collection of 4,379 ques-
tions, corresponding SQL queries and a relational
database to a flight booking system (Iyer et al.,
2017). Similar to the Spider dataset processing
described in Section 3.2, we first extract the input
table names from the available SQL queries and
query the relational database for the input tables.
We also extract the tabular answers using the SQL
queries. We discard any samples that executes to
an error or empty table. We use the corresponding
natural language question for each SQL query as
the user utterance for fine-tuning. This results in
6, 715 training samples and 985 validation samples
for Spider. We also process the 600 GeoQuery
samples provided in (Iyer et al., 2017) to create a
subset of 530 training samples, 49 validation sam-
ples and 253 test samples. We process and generate
an Atis subset of 384 training samples, 45 evalua-
tion samples and 86 test samples. We discard Atis
queries with very large input tables (with > 10, 000
rows). This restriction enables us to correctly eval-
uate question answering capabilities of a model by

3This data is made available under under GPL 2.0 license.

“This data is made available under MIT license.

SWe preprocess the Atis and GeoQuery data samples avail-
able athttps://github.com/sriniiyer/nl2sql/
tree/master/data.
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Figure 3: Four stage training procedure. The first three
stages are pre-training, followed by fine-tuning.

ignoring samples with truncated input sequences
including entire input tables from the second table
onward. Truncation of tables leads to incorrect an-
swers for any numeric operation such as average,
intersect and the evaluation scores would no longer
reflect reasoning capabilities of the model.

4 Training

We follow a curriculum learning approach by
sequentially training the model on sub-tasks of
increasing complexity as depicted in Figure 3.
Broadly, we first pre-train the seq2seq model to
mimic a SQL parser and further fine-tune it on
the downstream multi-table QA task. Pre-training
the model on unambiguous SQL queries leads to
better convergence and warm-start for the closely
related downstream multi-table QA task. We fur-
ther segregate the pre-training by first addressing
the simpler sub-task of generating tables from sin-
gle table queries. This is immediately followed by
pre-training on multi-table query answering where
complex SQL queries are utilized to train the model
to learn multi-table associations from unambiguous
complex queries, reason over the tables and gener-
ate tabular answer. The final stage of training is the
downstream multi-table QA from natural language
questions. Natural language introduces ambiguity,
ellipses and co-references which increases com-
plexity and is thus the final stage of training. For
each stage, we choose the model with the best table
exact match accuracy on the corresponding valida-
tion set, defined in Section 5, as the initialization
for training the next stage.

4.1 Pre-training

Pre-training of MultiTabQA is conducted in two
stages in a curriculum learning fashion: Stage 1 is
single table QA where the model learns to generate
tabular answers from relatively simple SQL queries.
Stage 2 is multi-table QA where the model trained
in Stage 1 is further tuned for multi-table SQL QA.

Stage 1. We first train MultiTabQA on the task
of generating tables from SQL queries over single
tables. The tabular answer to be generated is simple
and single-columned. For this stage, we use the
modified Tapex pre-training corpus described in
Section 3.1. We train the model on 1,834,419
samples for two epochs. This stage provides a
good initialization for multi-table QA in the next
stages.

Stage 2 + Stage 3. We further pre-train the model
on multi-table QA. For this, we tune our model on
SQL queries from the modified Spider and syn-
thetic dataset. We tune with only the modified Spi-
der SQL samples Stage 2, and tuning with only the
synthetic dataset Stage 3. We utilize the larger aug-
mented dataset comprising of the modified Spider
SQL (Stage 2) and our synthetic samples (Stage 3)
as described in Section 3.2 to train the final pre-
trained model for 30 epochs. We call this setting
Stage 2+3. We compare these three multi-table
pre-training settings in Section 6.

4.2 Fine-tuning

The final stage of training is fine-tuning the pre-
trained model on natural language questions. Nat-
ural questions are ambiguous compared to formal
SQL and used at the last stage of training. We fine-
tune the pre-trained model on the 6, 715 natural
questions, extracted input and output tables for Spi-
der as described in Section 3 and evaluate on 985
samples of the validation set. To observe the perfor-
mance of the pre-trained model on out-of-domain
database tables, we also fine-tune the pre-trained
model on Atis and GeoQuery datasets. For all the
fine-tuning datasets, we train for 60 epochs.

5 Evaluation metrics

While denotation accuracy has been widely used in
semantic parsing (Pasupat and Liang, 2015; Zhong
et al., 2017; Cai et al., 2022), it is not directly ap-
plicable for our task where tabular input encoding,
reasoning, and generation are performed by the
same model. Evaluating the answer table not only
requires matching the generated values but also the
table structure. Moreover, tables store factual in-
formation such as named entities, dates, numbers,
etc in an ordered manner. This makes lexical met-
rics measuring surface form overlap more suitable
than semantic metrics measuring the underlying
meaning of paraphrased sequences. Moreover, ta-
ble components such as rows, columns and cells
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Dataset Model Eﬁbl; Row EM (%) Column EM (%) Cell EM (%)
(%) p R F1 P R F1 P R F1
Soider  Fapex-base 1899 1728 1983 1827 1975 1939 1957 2315 2771 2503
P MultiTabQA  25.19% 22.88% 24.64* 23.70% 26.86* 26.76* 26.81* 28.07+ 31.23* 29.55*
Geog  CEPex-base 3984 2243 3074 2489 3948 3976 3962 2198 3088 2467
MultiTabQA  5222% 72.39% 46.90* 41.38* 52.10% 52.22* 52.16* 37.167 46.92% 41.33*
e tapex-base 7220  57.07t 57.69 55.08 72.20F 7220 7220 57.07% 57.69 54.48
MultiTabQA  73.88% 3829 92.19% 5436 69.55 75247 72.29 38.16 92.56* 54.16

Table 1: Average scores of models fine-tuned on 5 different seeds with Multitable-Natural Questions (NQ) datasets.
tapex-base is used as baseline while MultiTabQA is our fine-tuned model. Table EM indicates table exact
match accuracy. For all other table units (row, column, and cell), P is Precision, R is Recall, and F1 is F1 score for
exact match metric. An (*) denotes significance at p < 0.005 and an () denotes a significance at p < 0.05 for t-test.

are standalone units which capture different levels
of semantics and relationships with the surround-
ing table component. For example, rows capture
data records while columns capture the features
of each record. Cells capture the lowest level of
self-contained facts and requires complete match
with the target. For example, a cell with the entity
“United Kingdom” should not be partially matched
with the predictions “United Nation”, “United”
or “Kingdom”. Similarly, a numeric value such
as “123.45” should not be partially matched with
“12.45”, “23.45” or “12”. Numeracy pose a chal-
lenge to seq2seq models (Nogueira et al., 2021; Pal
and Baral, 2021), especially in the extrapolation
setting where semantic match of unseen numbers
may not be an ideal. Considering all these fac-
tors, we focus on lexical match to measure model
effectiveness.

Table exact match. We define table exact match
Accuracy (Table EM) as the percentage of pre-
dicted tables which exactly matches the target ta-
bles. Table exact match evaluates ordering of rows,
columns and table headers and exact lexical match-
ing of table values. It is a strict binary measure
which treats partial matches as incorrect. How-
ever, many queries do not impose ordering among
columns or rows, and strict table exact match may
not be the ideal indication of model efficacy. To
measure partial correctness, we treat rows, columns
and cells as units at varying levels of granularity
which have ordered associations among the values
within the unit. We evaluate partial correctness
with exact match of rows, columns and cells.

Row exact match. To relax the strict criterion
of table exact match, we first measure correctness
on table rows. Row exact match does not consider
ordering of rows in the generated table but requires
ordering of values within the row. We define a

correctly generated row to be a predicted row that
exactly matches any target rows in the target table.
Row exact match precision is the percentage of
correctly generated rows among all the predicted
rows in the evaluation dataset. Row exact match
recall is the percentage of correctly generated rows
among all the target rows in the evaluation dataset.

Column exact match. Unlike rows, which repre-
sent records in relational databases, columns rep-
resent attributes where column header provides se-
mantic meaning to the values. Hence, a correct
column is defined as a generated column that first
exactly matches a target column header and further
the column values. Column exact match measures
ordering of values within a column. Column exact
match precision is the percentage of correctly gen-
erated columns among all generated columns in the
evaluation set. Column exact match recall is the
percentage of correctly generated columns among
all target columns in the evaluation set.

Cell exact match. Cell exact match is the most
relaxed measure of model efficacy at the lowest
level of granularity (cells) where table structure is
not measured. A cell is correct if it matches any cell
in the corresponding target table. Cell exact match
precision is the percentage of correctly predicted
cells among all predicted cells in the dataset. Cell
exact match recall is the percentage of correctly
predicted cells among all target cells in the dataset.

6 Experimental setup and results

We use tapex-base (Liuetal.,2021) as the base
model for all our experiments. tapex-base is
a single table question answering model (140M
parameters) trained to approximate table reasoning
by pre-training to mimic an SQL parser. For both
the pre-training and fine-tuning process, we use a
batch size of 8 and gradient accumulation of 32 to
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Figure 4: Validation table exact match scores of
MultiTabQA vs. tapex-base on Spider evaluation
set natural language questions during fine-tuning. The
points are highest validation scores for each model.

emulate an effective batch size of 256, a learning
rate is 1le™®. The maximum sequence length of
both encoder and decoder is set to 1024. We run all
our pre-training experiments on four A6000 48GB
GPUs and fine-tuning on one A6000 GPU.

We observe from Figure 4 that the three stage
pre-training leads to a warm-start for fine-tuning
and better convergence compared to the base-
line tapex-base. For our experiments, we
compare the effectiveness of the MultiTabQA
model with fine-tuned t apex—base on the 6, 715
natural questions from Spider. The fine-tuned
tapex-base acts as baseline for studying the
adaptability of state-of-the-art single table model
to a multi-table setting. We report the mean scores
of 5 training runs initialized with different seeds
in Table 1. We conduct statistical significance test
(t-test) on the mean scores of the 5 runs and re-
port the significance with p < 0.05 and p < 0.005.
We observe that our multi-stage training process
leads to improvement in scores on all table exact
match accuracy across all datasets compared to
fine-tuned tapex—base. The difference in table
exact match is highest for GeoQuery where Mul-
tiTabQA outperforms tapex-base by 12.38%,
Spider by 6.20% and Atis by 1.68%. For F1 and
Recall scores on row, column and cell exact match,
a similar pattern is observed where MultiTabQA
outperforms t apex-base on all datasets. Multi-
TabQA outperforms tapex-base by 5.43% on
row F1, 7.24% on column F1, and 4.52% on cell
F1 for Spider. On GeoQuery, MultiTabQA outper-
forms by 16.49% on row F1, 12.54% on column
F1 and 16.66% on cell F1 scores. All results on
Spider and GeoQuery are significant with a p-value
less than a critical value of 0.05 indicating strong
evidence that MultiTabQA is a superior model. On
Atis, we observe that MultiTabQA underperforms

on precision but outperforms on recall by a large
margin. The difference in recall is larger than pre-
cision indicating that MultiTabQA generates more
target rows, columns and cells of Atis correctly
(higher recall) and hallucinates spurious rows and
cells (lower precision). However, the F1 scores are
better for MultiTabQA. t apex—-base is unable to
correctly generate target rows, cells and columns
(lower recall), but the few generated ones are cor-
rect (higher precision). The low number of test
samples (85) of Atis and variations in the halluci-
nations in different runs makes the precision scores
statistically non-significant. However, the recall
scores provide very strong evidence (p < 0.005)
of the superiority of MultiTabQA in generating
correct table units compared to tapex-base.

Qualitative analysis. Multi-table QA models
must perform numeric reasoning, understand multi-
table schemas and comprehend natural language. A
success case also depicts this. For the question how
many likes does kyle have? with 2 input tables:

highschooler likes

id name | grade student_id | like_id
1510 | jordan 9 1689 1709
1934 | kyle | 12 1501 1934
1661 | logan 12 1934 1501

with
% %

target: Cou?t( ) | and prediction: Cou?t( ) ,

MultiTabQA identifies inter-table association of
column id of table highschooler and column stu-
dent_id of table likes. It correctly disambiguates
the lexical occurrence of 1934 in columns like_id
and student_id and correctly performs count.

A failure case also illustrates the challenges: for
the question find the average weight for each pet

type with input table:
PetID | PetType | pet_age | weight
2001 cat 3 12.0
2002 dog 2 134
2003 dog 1 9.3
with
avg(weight) | PetType
target: 12.0 cat
11.35 dog
and
PetType | avg(weight)
prediction: cat 12.0
dog 13.4

MultiTabQA swaps the ordering of the 2 columns
and fails to compute average leading to an incorrect
measure by table exact match. The column, row
and cell metrics (precision, recall and F1) measure
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Pre-training Query Table Row (%) Column (%) Cell (%)
stages type EM(%) p R Fp P R F1 P R FI

2 21.46 18.60 18.88 18.74 21.98 21.90 21.94 24.19 25.89 25.01
1+2 SQL 20.52 14.13 20.06 16.58 18.87 20.87 19.82 19.24 25.83 22.05
1+2+3 29.10 23.15 25.62 24.32 31.66 31.50 31.58 29.95 3292 31.36
2 19.41 16.51 19.48 17.87 20.13 20.11 20.12 21.12 26.55 23.52
1+2 NL 20.12 11.67 21.09 15.03 19.54 19.97 19.76 16.26 29.22 20.90
1+2+3 24.49 2495 2487 2491 2680 2691 26.80 28.44 31.06 29.69

Table 2: Ablation on datasets in our multi-stage pre-training processes for 1 run of experiments. The two sections
show scores for different question types: SQL queries (top) and natural language (NL) questions (bottom). In a
section each row shows a training process with different stages: Pre-training on Stage 2, pre-training on Stages 142,
and all pre-training Stages 1+2+3. Table EM is table exact match accuracy; P is Precision; R is Recall; and F1 is F1

score for exact match of row, column, and cell.

36.15 .
— B MultiTabQA 33.1
27.34 27.39 5.67
O tapex 20.11
17.28 17.55
10.38
6.01
1.791.79
| I —
1table 2tables 3 tables 1table 2tables 3 tables
(a) Table EM Accuracy (b) Row EM F1
[[7740.18 39.457
1.
23.49 24.27
11.49
5
1.271.26
1table 2tables 3tables 1table 2tables 3 tables
(c) Column EM F1 (d) Cell EM F1

Figure 5: Evaluation results on Spider evaluation sam-
ples segregated by number of input tables.

correctness of individual table units without mea-
suring the ordering. Column metrics measure pre-
dicted column PetType as correct and avg(weight)
as incorrect without measuring ordering of the 2
columns. Row cat | 12.0 is measured as correct,
while dog | 13.4 is measured incorrect without mea-
suring the ordering among them. Out of the 4 target
cells, cat, dog, 12.0 are measured as correct.

Impact of the number of input tables. The num-
ber of input tables increases the complexity of the
questions and directly impacts the effectiveness of
the models. We segregate evaluation on Spider val-
idation set on the basis of number of input tables
and compare the results to study the impact of input
table number. We observe from Figure 5 that effec-
tiveness reduces as the number of tables increases
for both MultiTabQA and tapex-base. How-
ever, MultiTabQA fares better than tapex—-base

when the number of input tables increases. Mul-
tiTabQA generates whole tables, rows, columns
and cells better than tapex—base as observed in
Figure 5a, 5b, Sc and 5d. The gain of MultiTabQA
in table exact match for one-table context is around
8.81%, for two-tables context around 4.37%, and it
performs similar to tapex—-base for three-tables
context. It also has a significant higher score on
rows, columns and cells, on both single and multi-
tabular context.

We also observe that while the column and table
EM decreases dramatically when using several ta-
bles (Figure 5a and 5c), the row and cell EM does
not (Figure 5b and 5d). This indicates that Multi-
TabQA can generate rows and cells as effectively in
single and multiple input tables settings but fail to
do so for columns and consequently for the whole
table. This is due to the fact that certain columns in
the answer, particularly ones with numbers such as
floats, are challenging to generate. The error from
the incorrect columns propagates and are accumu-
lated in the table EM leading to a significant drop
in performance for multi-table queries.

Ablation on training stages. We perform abla-
tion on the pre-training stages to analyse the con-
tribution of each dataset. The simplest setting is
to pre-train with Spider SQL queries, i.e., Stage 2.
To evaluate the effectiveness of single table Tapex
pre-training samples, the next setting comprises
of stages 1 and 2, i.e., pre-train with Tapex pre-
training and Spider SQL dataset. The final compari-
son is with the three-stage pre-training as described
in Section 4.1. The results for one run of the exper-
iments are displayed in Table 2. We observe that
table exact match is highest for both pre-training
and fine-tuning for the three-stage training. Stage 2
fares better than Stage 1+2 on table exact match,
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and generally has better precision and F1 scores but
lower recall. The three-stage pre-training with our
synthetic data augmented with Spider outperforms
the other settings and confirms the effectiveness
of our synthetic data samples in boosting model
efficacy.

7 Related work

Tabular QA is a research direction in the broader
topic of table understanding (Jena et al., 2022; Shi-
garov, 2022) in natural language processing. Re-
cent advances in table representation (Eisenschlos
et al., 2021) and pre-training (Cheng et al., 2021a;
Liu et al., 2022; Cheng et al., 2021a), table fact
verficiation (Gu et al., 2022; Zhou et al., 2022b), ta-
ble numeric reasoning (Shankarampeta et al., 2022;
Zhou et al., 2022a), table-to-text generation (An-
drejczuk et al., 2022), text-to-table generation (Wu
et al., 2022), table summarization (Jain et al., 2018;
Chen et al., 2013; Zhang et al., 2020), and table
question answering (Yin et al., 2020; Zhang et al.,
2020; Herzig et al., 2020; Zhu et al., 2021; Liu
et al., 2021; Cheng et al., 2021b; Nan et al., 2021;
Ma et al., 2022; Pal et al., 2022; Jin et al., 2022;
Zhou et al., 2022a) have shown the adaptability of
language models to table processing.

8 Conclusion

In this work, we propose a new task of multi-table
question answering without intermediate logical
forms to fill the gap of existing end-to-end table
QA research which focused only on single-table
QA. We release a pre-training dataset of 132, 645
samples to effectively train a seq2seq model. We
fine-tune and evaluate our model, MultiTabQA, on
natural language questions of three datasets: Spider,
GeoQuery and Atis, to test the efficacy in a multi-
table setting. As many multi-table questions result
in tables, we train the model to generate tables.
This necessitates table-specific metrics at various
levels of granularity which we design to evaluate
the effectiveness of our model. We demonstrate
that such metrics is insightful in understanding
model behavior. MultiTabQA outperforms existing
state-of-the-art single table QA model fine-tuned
to adapt to a multi-table QA setting.

9 Limitations

Our synthetic pre-training dataset was automati-
cally generated from manual templates, which in-
spite of dataset creation scalability and low cost,

may limit the diversity of the generated SQL
queries. Our model, MultiTabQA, requires im-
provement in numeracy understanding and numeric
operations. Real numbers are especially challeng-
ing and the model may not be able to correctly
generate all the digits of the number correctly rend-
ing the generated cell incorrect. Furthermore, large
input tables pose a challenge as the input sequence
may get truncated beyond the model’s maximum
sequence length. This has practical limitation in the
size and number of input tables which the model
can accommodate before truncation which leads to
incorrect answers.

10 Ethical Considerations

The task and model proposed in the paper is aimed
at broadening the scope of TabularQA research.
All the datasets used in this research, apart from
our synthetic data, are publicly available in peer-
reviewed articles and referenced in this paper. The
synthetic SQL dataset we release was generated
over a standard benchmark database which has
been annotated by 11 Yale students as mentioned
in the original paper. Our synthetic samples use
templates annotated by the authors of this work
and do not use any user-specific data or informa-
tion. We will be providing open access to our
datasets for use in future research under the MIT
License. All datasets, including the synthetic pre-
training dataset and all datasets adapted for multi-
table QA will be released. Our model is built over
tapex—-base which in turn has been trained over
bart-base. Our work did not explicitly handle
any bias which exists in the aforementioned pre-
trained models.
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