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Abstract

Pre-trained language models (LMs) are used
for knowledge intensive tasks like question an-
swering, but their knowledge gets continuously
outdated as the world changes. Prior work has
studied targeted updates to LMs, injecting indi-
vidual facts and evaluating whether the model
learns these facts while not changing predic-
tions on other contexts. We take a step forward
and study LMs’ abilities to make inferences
based on injected facts (or propagate those
facts): for example, after learning that some-
thing is a TV show, does an LM predict that
you can watch it? We study this with two cloze-
style tasks: an existing dataset of real-world
sentences about novel entities (ECBD) as well
as a new controlled benchmark with manually
designed templates requiring varying levels of
inference about injected knowledge. Surpris-
ingly, we find that existing methods for updat-
ing knowledge (gradient-based fine-tuning and
modifications of this approach) show little prop-
agation of injected knowledge. These methods
improve performance on cloze instances only
when there is lexical overlap between injected
facts and target inferences. Yet, prepending
entity definitions in an LM’s context improves
performance across all settings, suggesting that
there is substantial headroom for parameter-
updating approaches for knowledge injection.

1 Introduction

Pre-trained language models (LMs) acquire com-
prehensive real-world knowledge from massive
amounts of pre-training data, allowing them to use
this knowledge effectively in downstream tasks.
However, without continual updating, the knowl-
edge contained within these backend LMs will
eventually become outdated. This temporal mis-
match affects model performance on downstream
tasks (Zhang and Choi, 2021; Dhingra et al., 2022a;
Lazaridou et al., 2021; Jang et al., 2022b). As LMs
become more widely deployed, their knowledge
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Figure 1: Knowledge editing tasks. We study a challeng-
ing entity knowledge propagation task where language
models should make inferences after learning entities
from their definitions. This differs from past knowledge
editing which evaluates paraphrases of injected facts.

should be synced with the current state of the world
while maintaining reasonable deployment costs.

Prior work has investigated knowledge editing
in pre-trained LMs, updating model parameters to
alter outputs to match what users want (Zhu et al.,
2020; Sinitsin et al., 2020; De Cao et al., 2021;
Mitchell et al., 2022; Meng et al., 2022; Hase et al.,
2023). In these studies, the original fact and the
altered fact are provided (e.g., changing “X was
born in Y.” to “X was born in Z.”), and models are
evaluated after a single update on each instance;
see Figure 1 for an example. These model editing
methods successfully provide targeted updates, fix-
ing incorrect or outdated individual facts. Yet, can
LMs make inferences based on updated knowl-
edge? Past evaluation has largely focused on two
aspects of knowledge editing, whether the edits
were successfully injected and whether other irrel-
evant sentences were impacted, but do not capture
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whether the LMs now can reason based on the new
fact that has been injected.

We take a step further and evaluate whether LMs
can propagate updated knowledge about new en-
tities. We first inject definitions about the entity
into LMs using various knowledge editing meth-
ods (Mitchell et al., 2022; Meng et al., 2022), then
evaluate LMs’ performance on cloze tasks on a
wide range of sentences about the entity (see Fig-
ure 1 for an example). We refer to this task as
entity knowledge propagation and introduce two
cloze datasets to evaluate this challenging task.

Our first evaluation benchmark is the Entity
Cloze By Date (ECBD) dataset (Onoe et al., 2022),
which presents novel entities tagged with orig-
ination dates (e.g., Hurricane Ian, 2022), their
definition and probe sentences taken from their
Wikipedia page. The task is to fill a masked span
in probe sentences. Because Wikipedia contains
a wide range of information, much of it not in-
ferable from an entity’s definition, injecting entity
knowledge via its definition has an unclear impact
on the probe sentences; filling in the masked span
is nontrivial even after the entity definition is pro-
vided. For more controlled study, we introduce
a new benchmark (ENTITY INFERENCES) with
manually designed probe sentences with multiple-
choice answer options. Once one learns about the
definition of an emerging entity, finding the correct
answer for these probe sentences is easy.

We find that existing parameter updating meth-
ods can handle simpler inferences in ENTITY IN-
FERENCES, but fail to improve performances in
ECBD, revealing a limitation in these methods.
We further analyze the impact of fine-tuning. Dis-
tressingly, we find that simply prepending infor-
mation in-context works very well, and match-
ing the performance of this via parameter up-
dates is challenging. A deeper analysis finds that
model editing shows promising results only when
the injected definition sentence and the cloze in-
ference have lexical overlap. Our work estab-
lishes an evaluation paradigm and opens doors
for work on editing methods that can propagate
entity knowledge. The code and data are avail-
able at https://github.com/yasumasaonoe/
entity_knowledge_propagation.

2 Entity Knowledge Propagation

We propose Entity Knowledge Propagation (EKP),
a new task where we want to update model param-

eters to reflect an emerging entity that is unseen in
the LMs’ pre-training corpus. For example, BERT
was trained in 2018, so COVID-19 is an emerg-
ing entity to BERT. We explore various ways of
editing model parameters based on definition sen-
tences to inject new knowledge. Once we inject the
knowledge of the emerging entity into the model
parameters, we evaluate the updated model’s ability
to reason about the emerging entity.

2.1 Task Definition

Formally, we have a language model fθ with pa-
rameters θ. An input to the model consists of a
(partial) sentence or chunk of text xe that contains
at least one explicit reference to an emerging entity
e (i.e., invoking e by name). We use fθ(ye ∣ xe) to
denote placing a probability distribution over a text
sequence ye given the text xe.1

Our data instances have the property that ye
represents an inference we make about the entity:
ye must be related to the entity e such that an
LM should give higher probability to it if the LM
“knows” e well. We do not expect the raw model fθ
to perform well without any updates, since the en-
tity e is completely unseen during the pre-training
stage. We assume that the emerging entity comes
with a short definition sentence de that provides
basic information about the entity. This provides
the basis for the update to fθ.

To summarize, each example ⟨e, de, xe, ye⟩ ∈ D
consists of an emerging entity e, a definition sen-
tence de, a probe sentence xe, and a gold com-
pletion ye. Knowledge editing methods will com-
pute θ

′ ← update(θ, e, de), updating parameters
θ regarding e and its definition de, to give higher
probability for future inferences about e like those
expressed by xe and ye (examples in Figure 1).

Metrics Following prior work in the knowledge
updating literature (Zhu et al., 2020; De Cao et al.,
2021; Mitchell et al., 2022; Meng et al., 2022; Hase
et al., 2023), we will evaluate two criteria: update
success and specificity. Each of these criteria is
evaluated with respect to a base metric, which is
either perplexity or accuracy, depending on our
dataset. We will define them here in the case of
perplexity (lower is better); we will use the same
definitions for accuracy, but the desired trends will
be opposite.

1In autoregressive models, ye can be a continuation of xe;
in mask filling models like T5 or BART, xe can contain mask
tokens and ye consists of those mask fillers.
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Dataset Entity (e) Definition (de) Probe Sentence (xe) Gold Span (ye / {Cy})

ENTITY
INFERENCES Dracula Dracula is a drama horror television Dracula makes me scared / { athletic,

serial developed by Mark Gatiss... feel <MASK>. brave, emotional, ... }

ECBD Brexit
Brexit was the withdrawal of the Studies estimate that Brexit
United Kingdom (UK) from the and the end of <MASK> free movement
European Union (EU) at 23:00... will likely result in a large...

ECBD-EASY
Magnum
Fire

The Mangum Fire was a wildfire. On June 14, the Mangum Fire
burning in Kaibab National Forest jumped control lines towards Arizona
in Arizona in the United States. Mangum Springs, <MASK>...

Table 1: Examples from each dataset outlined in Section 3. Unlike ECBD and ECBD-Easy, the gold spans in Entity
Inferences examples are always one of several multiple-choice options per example.

For update success, we will measure if the per-
plexity of the updated model ppl(fθ′(ye ∣ xe))
is better than the raw model ppl(fθ(ye ∣ xe))
(lower perplexity is better). For specificity, we
compute the difference between the post-update
perplexity and pre-update perplexity ppl(fθ′(yê ∣
xê)) − ppl(f(yê ∣ xê)) for ê ≠ e, entities other
than e. Ideally, we want this perplexity value to
be close to zero; a positive value indicates that per-
plexity has gotten worse on these entities after the
update. It can theoretically be negative if the up-
date makes the LM to guess irrelevant examples
better.

Comparison with prior tasks Similar editing
procedures have been explored in the literature,
but with key differences from our setting. A line
of work on knowledge editing (Zhu et al., 2020;
De Cao et al., 2021; Mitchell et al., 2022) addresses
a version of our task where fθ is updated to encode
information about a particular fact. This could be
written as θ′ ← update(θ, xe, y). They then eval-
uate fθ(y ∣ x̃e) on perturbed inputs x̃e that are
paraphrases of the xe they inject. The answer y
is visible when the network is updated and it sim-
ply needs to be preserved for future (paraphrased)
queries. By contrast, in our setting, y and the in-
jected definition de may have little overlap.

ROME (Meng et al., 2022) addresses knowl-
edge editing as well as a variant of counterfactual
model editing. This task involves an update similar
in spirit to ours: θ

′ ← update(θ, e, (xe,1, ye,1))
that updates a completion of a sentence (e.g.,
xe,1 =the Eiffel Tower is located in, ye,1 =Rome)
and then expects the knowledge to be usable for
other inference pairs (xe,2, ye,2). These differ in
that the injected knowledge is not a complete defi-
nition of an entity; while their method could theo-
retically be used for our task, it relies on localizing
and editing existing information about e. Therefore,

Dataset # Examples # Entities ye in de

Entity Inferences 170 85 92
ECBD 1000 208 29
ECBD-easy 152 74 152

Table 2: Statistics from each EKP dataset. We report the
number of examples in each evaluation set in addition to
the number of unique entities and total instances where
the gold span can be found within the entity description.

it is less appropriate in handling emerging entities,
as our results will show.

3 Constructing benchmarks for EKP

We use two different types of datasets to investigate
how new entity knowledge is propagated into the
LM’s parameter space. Table 2 summarizes the
dataset statistics on two benchmarks, including the
extent to which the target spans y overlap with the
definitions de, which will be important later.

3.1 ECBD

Entity Cloze By Date (Onoe et al., 2022, ECBD)
presents entities indexed by their origination dates
paired with probe sentences containing those enti-
ties. In addition, the dataset provides the definition
sentence (first sentence sentence of Wikipedia ar-
ticle) for each entity. The original task focuses on
general temporal adaptation of language models,
evaluating model’s perplexity in predicting masked
spans in probe sentences. We repurpose this dataset
to focus on targeted knowledge updates and the
propagation of entity knowledge. We take entities
with origination date between 2020/01 and 2021/09
to ensure they are unseen by the LMs we study.

These instances fall into the paradigm discussed
in Section 2.1 (example shown in Table 1):

e ∶ Entity : the title of the Wikipedia article
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de ∶ DefinitionSentence : the first sentence of
the Wikipedia article for the entity.
xe ∶ ProbeSentence : a sentence selected from
the Wikipedia article according to the procedure
described in Onoe et al. (2022)
y ∶ GoldSpan : the target span as described in
Onoe et al. (2022)

ECBD-EASY We filter ECBD to create ECBD-
easy, a subset where knowledge propagation should
be easier. Specifically, we take cases where the tar-
get masked span y is contained in the definition
sentence de verbatim; such examples are more con-
gruent with the formulation of past work such as
MEND and are typically easier, as simply boosting
the probability of the definition tokens can improve
perplexity on the gold span.

Evaluation Metrics Following Onoe et al.
(2022), we compute per-token perplexity over the
masked spans. Because of differences in model
architecture such as tokenizer choice, this metric
does not allow comparison across different base
models. We randomly sample 40 entities as ê from
ECBD popular subset to measure specificity.

3.2 ENTITY INFERENCES

While ECBD contains real-world sentences span-
ning a broad domain, it presents a very challenging
task even for humans, often requiring rich knowl-
edge and various types of reasoning and inference.
For a more controlled study targeting on knowl-
edge propagation, we construct a new dataset we
name as ENTITY INFERENCES.

In this dataset, choosing the correct span is much
easier when given the definition sentence. Further,
instead of requiring LMs to predict spans from
open vocabulary, we provide a set of candidate
spans and evaluate whether LMs can assign higher
probability to the correct answer candidate. In-
stances here are designed to be similar to ECBD,
but the probe sentences xe are handcrafted to elicit
the target inference type, and the gold span y comes
with an associated set {Cy} of options.

Data Construction Details We first curate en-
tities tagged with TV shows and natural disasters
from English Wikipedia and their definition sen-
tences from the 2020 and 2021 subsets of ECBD.
In addition to real entities, we generate examples
of "fake" people where we fabricate person names
along with their definitions (e.g., Leighanna Smith

(born July 21, 1970) is an American film director,
screenwriter, and producer...).

We then manually craft probe sentences target-
ing two types of reasoning: explicit and implicit.
The explicit probe sentences ask information that
is explicitly stated in the definition sentence (e.g.,
genre of a TV show). On the other hand, the im-
plicit probe sentences require commonsense-like
information (e.g., people watch a TV show, rather
than eat a TV show.).

Evaluation metrics For this multiple-choice
cloze task, we evaluate knowledge propagation by
meausring accuracy (i.e., how often the gold label
gets the highest probability over all answer can-
didates). In addition, we compute the specificity
score by evaluating a model on other probe sen-
tences from similar entities.

4 Experimental Setup

4.1 Base Language Models

Model architectures can have impact on their ca-
pabilities of acquiring entity knowledge. Thus, we
consider both left-to-right and seq-to-seq model
architectures. Specifically, we use GPT-Neo
1.3B (Black et al., 2021)2 and T5-large (Raffel
et al., 2020)3 as base language models (fθ), avail-
able via Huggingface Transformers (Wolf et al.,
2020). We additionally consider GPT2-XL (Rad-
ford et al., 2019) as a base model to closely follow
the protocol presented in ROME paper (Meng et al.,
2022).

4.2 Parameter Updating Methods

Finetuning is a common way for adapting a pre-
trained LM to a specific task or domain (Gururan-
gan et al., 2020). In a similar vein, we aim to adopt
a pretrained LM to an environment where new en-
tities constantly arise. Given e and its definition de,
we update the parameters θ to minimize loss on a
training example formed from de. For left-to-right
models (e.g., GPT-Neo), we use the standard next
token prediction language modeling task on the
entire de example. For mask filling models (T5),
we randomly select a span4 that is not overlapping
with the entity mention span, following Onoe et al.

2GPT-Neo has been trained on the Pile dataset (Gao et al.,
2020), which is collected in 2020.

3T5 has been trained in 2019 on the C4 dataset.
4We uniformly draw span length between 1 and 5 to match

the average span length used during pretraining of T5.
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(2022). We experiment with two fine-tuning set-
tings: full model (updating all parameters) and last
layer (updating parameters belonging to the last
transformer layer only). We start finetuning from
the original model checkpoint for each example.5

MEND (Mitchell et al., 2022) can be viewed
as a hypernetwork that efficiently transforms the
raw finetuning gradient into a parameter update
that should successfully edit the base model’s pa-
rameters in one step. This method is designed for
injecting or editing individual facts about entities,
not a collections of facts about entities (i.e., a com-
plete definition’s worth of entity knowledge). The
MEND parameters are trained on an editing dataset
where each example consists of an input-output
pair, an altered output, and locality examples (for
measuring sensitivity). The goal of MEND training
is to learn a network that modifies the target fact
without affecting unmodified facts.

We train MEND editors for GPT-Neo and T5
with the WikiText-103 dataset, which uses gener-
ated text as altered output following the configura-
tion used in the original paper.6

ROME (Meng et al., 2022) performs knowledge
editing by treating a MLP as a key-value storage: it
uses a subject (such as the Eiffel Tower) to extract
the “value” associated with that subject in the MLP.
Then, it uses a rank-one modification of the weights
of the MLP to “rewrite” this key-value pair.

We use the ROME editor for GPT2-XL. We for-
mat according to the subject, relation, and object
structure of ROME prompts; examples of these
can be found in the Appendix. The subject is a
one-word name of the entity, the relation is the defi-
nition sentence before the <MASK> token, and the
object is the correct label. Examples in which the
subject did not appear before the <MASK> token
(less than 0.5% of our data) were filtered.7

4.3 Input Augmentation

Finally, as was explored in Onoe et al. (2022), we
evaluate an approach where information is added
only in-context: prepending a definition sentence

5Zhu et al. (2020) reports that finetuning on an individual
fact (constantly outperforms finetuning with mixed facts.

6
https://github.com/eric-mitchell/mend

7Additionally, a number of examples in ECBD had a for-
mat incompatible with ROME; for example, ROME is cur-
rently unable to run on examples with special tokens such as
’(’ or ’*’ immediately surrounding the subject. We will discuss
later the performance of ROME on ECBD and why we do not
formally report it.

to a probe sentence (Definition). While such in-
put augmentation will lower the efficiency (as the
context length has increased) and will not yield
an updated model, a lower perplexity can indicate
if the definition sentence contains useful informa-
tion and can show what gains are achievable. We
also present a baseline that prepends a randomly
chosen definition of another entity (Random Def.),
following prior work.

4.4 Computational Cost

While input augmentation is the simplest to imple-
ment out of all the knowledge injection methods
we experiment with, it comes with an increased
computational cost at inference time due to the
longer input sequence. A principal goal of this line
of work is to update models so they can learn about
many new entities over time; therefore, we do not
consider input augmentation a valid solution to the
overall problem in this work due to poor scaling.

In contrast, performing knowledge injection via
finetuning carries the upfront cost of computing
and performing gradient updates, but has no such
cost increase during inference. Computing these
gradient updates, however, can become quite bur-
densome when injecting many facts into the same
LM. This, in part, is the motivation behind meth-
ods like MEND which have an additional upfront
cost of training a meta-network to predict the nec-
essary parameter updates. After training the meta-
network, the amortized cost of updating many in-
dividual facts becomes much cheaper. While this
dramatically reduces the cost of performing mul-
tiple edits to a single LM, meta-networks must be
retrained for each unique LM we wish to update.

In our experiments, the updates for an example
from all of the methods take less than 10 seconds
on a single Quadro RTX 8000 GPU.

5 Results

Table 3 reports the performances of various knowl-
edge injection approaches on three base models.
In all experimental setting, we see input augmen-
tation (prepending definition) boasts robust and
consistent performances gains. Prepending random
definitions hurt performances in GPT-Neo while
does not impact T5. This indicates that the defi-
nition contains information relevant to the spans
to predict. As model behaves substantially differ-
ently across datasets, we first separately discuss
the results on each dataset, ENTITY INFERENCES,
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ENTITY INFERENCES (Accuracy) ECBD (Perplexity) ECBD-EASY (Perplexity)

Method Target (∆) Specificity (∆) Target (∆) Specificity (∆) Target (∆) Specificity (∆)

Type: left-to-right GPT-Neo Size: 1.3B

Model Editing

Base Model 34.1 34.1 38.8 26.1 21.1 26.1
FT (full model) 57.7 (+23.6) 18.3 (−15.9) 36.8 (−2.0) 26.0 (+0.1) 12.1 (−9.0) 26.0 (−0.1)
FT (last layer) 48.8 (+14.7) 16.4 (−17.7) 38.7 (−0.1) 26.0 (+0.1) 19.6 (−1.5) 26.1 (0.0)
MEND 41.8 (+7.7) 34.4 (+0.3) 48.6 (+9.8) 27.2 (+1.1) 12.6 (−8.5) 28.1 (+2.1)

Input Augmentation Definition 60.0 (+25.9) 34.1 22.5 (−16.3) 26.1 3.2 (−17.9) 26.1
Random Def. 27.7 (−6.4) 34.1 55.1 (+16.3) 26.1 35.7 (+14.6) 26.1

Type: seq-to-seq T5 Large Size: 770M

Model Editing

Base Model 42.9 42.9 17.0 12.9 14.3 12.9
FT (full model) 64.7 (+21.8) 38.2 (−4.7) 17.0 (0.0) 12.9 (0.0) 14.3 (0.0) 12.8 (−0.1)
FT (last layer) 52.9 (+10.5) 43.9 (+1.0) 17.0 (0.0) 12.9 (0.0) 14.2 (−0.1) 12.9 (0.0)
MEND 43.5 (+0.6) 42.7 (−0.2) 17.3 (+0.3) 12.9 (0.0) 14.0 (−0.3) 12.9 (0.0)

Input Augmentation Definition 73.5 (+30.6) 42.9 12.4 (−4.6) 12.9 13.6 (−0.7) 12.9
Random Def. 42.4 (−0.5) 42.9 15.8 (−1.2) 12.9 13.6 (−0.7) 12.9

Type: left-to-right GPT2-XL Size: 1.5B

Model Editing

Base Model 32.9 32.9 42.8 25.4 31.0 25.4
FT (full model) 64.7 (+31.8) 25.2 (−7.7) 39.4 (−3.4) 25.4 (0.0) 16.8 (−14.2) 25.4 (0.0)
FT (last layer) 46.5 (+13.6) 35.4 (+2.5) 42.8 (0.0) 25.4 (0.0) 30.4 (−0.6) 25.4 (0.0)
ROME 54.3 (+23.5) 29.9 (−2.0) N/A N/A N/A N/A

Input Augmentation Definition 64.1 (+31.2) 32.9 26.6 (−16.2) 25.4 3.5 (−27.5) 25.4
Random Def. 26.5 (−6.4) 32.9 56.3 (+13.5) 25.4 37.1 (+6.1) 25.4

Table 3: Evaluation results. On ENTITY INFERENCES, both fine-tuning and ROME show large increases in accuracy
with various costs to specificity, although MEND is ineffective. On the more challenging ECBD data, despite Input
Augmentation suggesting that knowledge is relevant, no technique leads to a decrease in perplexity, although we do
see some gains on ECBD-EASY.

ECBD, and ECBD-EASY, and then draw larger
conclusions.

5.1 ENTITY INFERENCES

Here, we observe fine-tuning is broadly effective
at improving accuracy. Finetuning (full model)
brings up the post-edit accuracy by more than 20
points for all three base models. Yet, it comes at the
cost of medium to large decreases in specificity,
with drops of 15.9 and 7.7 points on GPT-Neo and
GPT2-XL. MEND overall does not cause a substan-
tial change in the model, as shown by the impact on
specificity (+0.3). ROME does not achieve editing
performance as strong as fine-tuning on GPT2-XL
(+31.8 vs. +23.5), but it does so with a lower im-
pact to specificity (-8.8 vs. -2.0).

On this benchmark, where evaluation metric is
accuracy, we can make comparison across the mod-
els. Overall we see better performances with T5
model, despite it being the smallest model we test,
potentially as it uses both left and right context.

5.2 ECBD

On our most challenging benchmark setting,
ECBD, none of the model editing techniques, in-
cluding fine-tuning, lead to substantial decrease

in perplexity nor increase in specificity. MEND
even causes a increase in perplexity when the base
model is GPT-Neo.

We attempted to evaluate ROME in this setting.
However, we found very poor performance (per-
plexities of over 100 for both datasets). We do not
report these in the table as technically ECBD is
out of scope for ROME: ROME relies on a par-
ticular (entity, relation, object) format that is not
well-suited to updating a model with general defi-
nitional knowledge of an entity, as opposed to spe-
cific attributes like The English Game is a drama
in ENTITYINFERENCES. Attempting to force our
definitions into ROME’s expected form led to very
high perplexities (over 100 on both ECBD sets).

These observation implies that the current model
editing approaches are not able to propagate en-
tity knowledge to the probe sentences just from
the definition sentences. The inference patterns in
the ECBD examples might be too complex to be
effectively learned by a small number of parame-
ter updates on a few examples, requiring implicit,
multihop, and commonsense reasoning.
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Figure 2: The tradeoff curves of finetuning on (a) ECBD and (b) ECBD-EASY. We plot perplexity (y-axis) and
specificity (x-axis) measured with various numbers of epochs ranging from 0 to 8. For (c) ENTITY INFERENCES,
higher is better because the x-axis is now accuracy. We plot MEND (■) and prepending definition (◆) as points.
Fine-tuning and MEND can do nearly as well as train-on-test on ECBD-EASY, but they fail dramatically on ECBD.

5.3 ECBD-EASY

To understand the low performance in the ECBD
setting, we look more closely into ECBD-EASY

examples, where the gold spans are always in-
cluded in the definition sentences. On this subset of
ECBD, finetuning and MEND is effective on GPT-
Neo, decreasing perplexity by 9.0 and 8.5 respec-
tively. T5-large does not change its post perplexity.
This is potentially because T5 only predicts and
updates on masked spans (which might not contain
the gold span), unlike the other two base models.

Mildly positive results on the easier subset, along
with robust performances of input augmentations,
lead us to conclude that the gains are achievable.
Yet, existing knowledge editing techniques may be
restricted to reproducing the knowledge directly
injected into the model. We launch a further inves-
tigation into what makes this task challenging.

6 Analysis

We analyze the challenges in knowledge propaga-
tion by first estimating an informal upper bound of
model editing performance (Section 6.1). We then
examine how the similarity between the definition
sentence and probe sentence impacts the perfor-
mance of model editing (Section 6.2), inspired by
positive performances on ECBD-EASY subset. We
conduct our analysis with GPT-Neo base model on
random subsets of ENTITY INFERENCES (half the
data) and ECBD (100 NP span and 100 random
span) to reduce computational costs.

6.1 Targeted Update / Specificity Tradeoff

Performance Upper Bound We estimate a per-
formance upper bound for fine-tuning by setting
the definition and probe sentences to be identi-
cal. In this case, sufficiently large gradient updates
should lead to arbitrarily good performance from

fine-tuning. We call this setting Train-on-Test.
For our three datasets (ENTITY INFERENCES,

ECBD, and ECBD-EASY), we finetune a model
for a range of 1 to 8 epochs (i.e., the number of
updates). We use a learning rate of 5e-5 for EN-
TITY INFERENCES and plot the specificity score
vs accuracy. For ECBD and ECBD-EASY, we
choose a learning rate of 3e-5 and then compare
the specificity score and perplexity. These learning
rates were chosen to optimize performance from
the range of values described in Appendix A.3.

Findings Figure 2a depicts the perplexity–
specificity tradeoff curves of fine-tuning approach
on ECBD dataset. The perplexity and the speci-
ficity score by the base model are drawn as the
horizontal dotted line and the vertical dotted line
respectively. Ideally, we want a model to achieve
low perplexity and the specificity score identical to
the base score (performance in the lower left cor-
ner). On ECBD, we see that Standard FT shows
an upward trend: with larger parameter updates,
we worsen the specificity as expected, but also per-
plexity, meaning that finetuning for longer does not
usefully propagate entity information from the defi-
nition sentence into the model. Input augmentation
(Prepend-Def) performs robustly, indicating that
the issue is potentially due to how the data is used
in learning rather than the data itself.

How does this align with past results? ECBD-
EASY (Figure 2b) shows a much more optimistic
picture; recall that this is similar to the setting from
Mitchell et al. (2022). In this case, MEND and fine-
tuning both achieve results reasonably close to the
train-on-test upper bound, with configurations that
improve perplexity substantially with only mild
specificity degradation. Methods that succeed
on injection of exact facts (e.g., injecting y and
reproducing it later) do not necessarily transfer
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Figure 3: (Left) Fine-tuning performance on GPT-Neo
split by whether the gold span is included in the defini-
tion sentence or not. (Right) Input augmentation perfor-
mance on GPT-Neo split by whether the gold span is
included in the definition sentence or not.

to success in realistic knowledge propagation
settings like ECBD.

Finally, we plot the accuracy–specificity tradeoff
curves computed on ENTITY INFERENCES (Fig-
ure 2c). Table 2 shows that the definition sentences
of this dataset may contain the gold spans of the
probe sentences but not always, making it between
ECBD and ECBD-EASY in this regard. Speci-
ficity numbers are less monotonic here than on
ECBD, but we again see the trend of train-on-test
quickly saturating accuracy. Like ECBD-EASY,
fine-tuning can lead to improvements on accuracy,
in this case matching the performance of Prepend-
Def. However, there remains a substantial gap with
the gold setting, implying that there are a certain
number of examples that are not easily learnable
by the current data setup.

6.2 Information Overlap

Lexical overlap We now examine the importance
of overlap between the definition and the target
span more closely. First, we look at instance-level
behavior on our datasets stratified by whether the
gold span is included in the definition or not. We
select 92 such “Included” examples in ENTITY

INFERENCES and 152 from ECBD-EASY and an-
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Figure 4: Performance breakdown based on the lexical
similarity (Jaccard similarity) between probe sentence
xe and definition sentence de.

alyze the delta in the rank of the gold label and
percent change in perplexity respectively.

Figure 3a shows violin plots of the performance
gaps within the two groups. In both datasets, the
performance improves on average (plot mean be-
low 0) when the gold spans are included in the
definition sentences, suggesting that the lexical
overlap between the definition and probe sen-
tences correlates with the model performance.
This trend on ECBD is even stronger with input
augmentation (Figure 3b). However, the majority
of ECBD probe sentences fall into the Not Included
category, and we see here that very few examples in
this category have substantial perplexity improve-
ments, most having small changes around zero.

ENTITY INFERENCES shows a slightly more
optimistic picture for Not Included cases.

Soft overlap Although direct inclusion of the
answer span is clearly valuable, do we see any
improvements when there is soft overlap between
the definition and target span; that is, the content
may be similar even if not exactly the same?

We investigate the information overlap using
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both lexical (e.g., Jaccard similarity, Rouge) and se-
mantic (e.g, BERTScore (Zhang et al., 2020)) sim-
ilarity measurements between the probe sentence
and the definition sentence. For each dataset, we di-
vide the examples into bins based on the similarity
scores and report the performance differences be-
tween the base model and the fine-tuned model per
bin (change in rank of the gold answer on ENTITY

INFERENCES and perplexity change on ECBD).
Figure 4 shows violin plots of the performance

gaps within each bin constructed using Jaccard
similarity (a larger value mean the definition and
probe sentences are similar). For ENTITY INFER-
ENCES, we observe that the bins with larger simi-
larity scores have progressively more negative ∆ in
rank. Surprisingly, we do not see a similar trend for
ECBD. Not only is it the case that there are fewer
examples in ECBD exhibiting high overlap, but
among the distribution of examples that is present,
there is almost no perceptible correlation between
the amount of overlap and the percentage change
in perplexity. This suggests that not only is the data
distribution in ECBD different, but the nature of
the inferences themselves can be qualitatively
different and more challenging. We believe this
further underscores that new techniques are needed
to handle knowledge propagation in the real world.

7 Related Work

Knowledge Editing Recent work in knowledge
editing (De Cao et al., 2021; Mitchell et al., 2022;
Hase et al., 2023) explored performing minimal
edits to a base LM’s parameters to reflect a fact that
has changed or corrected. Edited facts are usually
evaluated in terms of reliability/efficacy (i.e., edit
success rate), generalization (i.e., performance on
paraphrased edit sentences) and locality/specificity
(i.e., performance on unrelated samples should not
change after editing) (Zhu et al., 2020; Sinitsin
et al., 2020). Some such works have attempted to
perform such edits by identifying a small, localized
set of weights that are responsible for reflecting
the memorized fact (Geva et al., 2021) and editing
only that small set of parameters (Meng et al., 2022;
Dai et al., 2021). Our work, however, focuses on
injecting in knowledge about new entities, which
may not already have a localized set of parameters
governing such information.

Keeping Language Models Up to Date One
line of recent work have explored the develop-
ment and evaluation of language models that are

updated over time (Jang et al., 2022a). While
ECBD (Onoe et al., 2022) focuses solely on evalu-
ating knowledge of new entities, several bench-
marks have been proposed for evaluating facts
about existing entities that have changed over time
as open-retrieval (Zhang and Choi, 2021) or cloze-
style (Dhingra et al., 2022b) question answering.
Other work has found success in keeping LMs up-
to-date by continuing pretraining (Jin et al., 2022)
and applying domain adaptation techniques (Jang
et al., 2022c). Beyond these and the editing ap-
proaches we have discussed previously, a line of
work has looked at identifying a small, localized
set of weights that are responsible for reflecting
the memorized fact (Geva et al., 2021) and editing
only that small set of parameters (Meng et al., 2022;
Dai et al., 2021). Finally, Choi et al. (2022) also
contrast prepending information with fine-tuning
and find that fine-tuning generally works worse,
framing their approach as distillation.

Content Transfer and Knowledge Acquisition
Hase et al. (2023) report that edit performance and
consistency are improved after updating a model
in the standard knowledge editing task, which the
goal is to alter the model’s predictions according
to user specifications. The tasks and setting we
explore in our work are closely related to that of
West et al. (2022), which explores whether LMs
can generate statements about an entity that are
consistent with a provided description of that en-
tity. However, they do not explore updating model
parameters from these descriptions. Kandpal et al.
(2022) explore knowledge acquisition in LMs, and
arrives at a similar finding that LMs generally fail
to answer questions about entities that occur infre-
quently during pretraining.

8 Conclusion

In this work, we explored the entity knowledge
propagation setting: to what extent can descrip-
tions of new entities be injected into language mod-
els? We find that while fine-tuning models or us-
ing efficient update strategies enables models to
reproduce exact facts from descriptions, perform-
ing inferences based on those facts is substantially
harder. We characterize several approaches on two
datasets and conclude that update strategies lag the
performance of simply prepending the definition in
the context, suggesting that more work is needed.
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Limitations

Entity knowledge propagation focuses on updating
LMs’ knowledge about emerging entities. How-
ever, there might be cases where knowledge about
existing entities needs to be updated (e.g., regime
change, new champion, and renaming etc.). We
intentionally exclude these cases since they can
easily become intractable due to their complexity.
For example, an organization changing its name
could theoretically reflect a large number of entities
that have relations to that organization. By investi-
gating model behavior when a LM encounters new
information which is completely unseen during
pretraining, we can experiment in a controlled en-
vironment. We find ample challenges unaddressed
by current research even in this setting.

Our experiments are conducted on English lan-
guage models only. While we believe the results
can generalize to multilingual models, it is con-
ceivable that the internal representations of these
models make them more or less amenable to the
sorts of updating explored here. More work is
needed to benchmark these techniques in broader
settings such as with larger language models and
newer parameter-tuning approaches.
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A Appendix

A.1 Licensing

T5 is released under the Apache v2.0 license. GPT-
2 and GPT-Neo is released under the MIT license.
Wikipedia and ECBD are both licensed under CC
BY-SA.

A.2 Harmful Data Instances

In creating our dataset of entity inferences, we, the
authors, inspect and only create examples that do
not contain offensive or harmful content. All other
data used is publically availible from Wikipedia.
Experiments and data are all in English.

A.3 Modeling Details

The main hyperparameters were the size of the
training batch (always 1), the size of the validation
batch (always 1), the number of epochs for training
(in the finetuning case), and the learning rate. The
number of training epochs was 5 for ECBD exper-
iments and 10 for Entity Inferences experiments,
and the learning rate was 3e-6 on ECBD and 5e-4
on Entity Inferences.

We run all experiments on a machine with four
Quadro RTX 8000 GPUs for less than 4 GPU hours.
All experiments and results reflect just a single run.
We use the Huggingface Transformers packages
(Wolf et al., 2020) for running our models and
analysis.

For each entity, we manually write several types
of probe sentences that test LMs’ knowledge in
different ways. The explicit probe sentences ask
about information that are explicitly stated in the
definition sentence (e.g., genre of a TV show, occu-
pation of a person). On the other hand, the implicit
probe sentences require commonsense-like infor-
mation (e.g., people watch a TV show, don’t eat
a TV show.). Finally, we write answer candidates
(between 6 to 12) for each type of probe sentences.
On average, one example has 10 answer candidates.
Each example consists of elements listed below
(example in Table 5).

A.4 More Similarity Scores

Figure 5 compares two lexical (Jaccard and Rouge-
L) and one semantic (BERT Score) similarity
scores.

A.5 Analysis of ROME
A.5.1 Comparison of datasets
The Counterfactual dataset was one of the datasets
created and used by (Meng et al., 2022). It con-
sisted of a set of "counterfacts" - facts that are
altered slightly. For example, one entry in this
dataset is "The Eiffel Tower is located in the City
of Rome".

As one can see in Table 4, the three datasets scale
in complexity. Counterfactual usually includes
known entities (subjects) and known labels (ob-
jects). Entity Inferences usually contains unknown
entities, but its labels are often known. Lastly,
ECBD not only has unknown entities, but it also
sometimes contains non-descriptive labels. This
may explain why it obtained such drastic increases
in perplexity on ECBD.

A.5.2 ROME Test Generation
As can be seen in Table 8, when the subject and
label are both unknown (as in the third example),
ROME is unable to edit the model to incorporate
knowledge in the rest of the prompt. This is un-
derstandable; ROME treats knowledge within an
MLP as a key-value pair, so if neither the key nor
the value are well-known entities and subsequently
hard to retrieve, it may be difficult for ROME to ef-
fectively locate the correct parameters to edit. How-
ever, when either the subject or the label is known
to the model (as in the first and second example),
ROME is successfully able to train the model to
generate reasonable text given the prompt.

Once again due to the way in which it is built,
ROME is probably unsuccessful in using context
other than the subject or label to effectively edit
knowledge within an MLP, and this can be seen
clearly in the third example.
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Figure 5: Performance breakdown based on the lexical similarity between probe sentence xe and definition sentence
de.
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ENTITY DEFINITION PROBE SENTENCES GOLD LABEL

2020 Vuelta
a España

The 2020 Vuelta a España was the 75th
edition of the Vuelta a España, one of
cycling’s three grand tours.

The full route of the 2020 Vuelta a Es-
paña was announced on <MASK> in
Madrid.

Tuesday 17 December
2019

M1 The Apple M1 is an ARM-based system
on a chip (SoC).

The M1 contains <MASK> in a 16-core
Neural Engine, capable of executing 11
trillion operations per second.

dedicated neural net-
work hardware

Dixie Fire The Dixie Fire is an active wildfire
in Butte, Plumas, Lassen, and Tehama
Counties, California.

Smoke from the Dixie Fire caused
<MASK> across the Western United
States, including as far east of California
as Utah and Colorado..

unhealthy air quality

Cravity Cravity () is a South Korean boy band
formed by Starship Entertainment

On August 13, at the 2020 Soribada
Awards, Cravity won the "New Artist
Award", <MASK> since debut.

their first award

Table 4: Examples from ECBD.

ENTITY DEFINITION PROBE SENTENCES GOLD
LABEL

Cyclone Niran Severe Tropical Cyclone Niran was a very pow-
erful tropical cyclone that brought severe im-
pacts to extreme Northeastern Australia and
nearly made landfall in New Caledonia in Febru-
ary and March 2021.

Cyclone Niran left widespread damage
in <MASK>.

Australia

2020 Lekki shooting On the night of 20 October 2020, at about
6:50p.m., members of the Nigerian Army
opened fire on peaceful End SARS protesters
at the Lekki toll gate in Lagos State, Nigeria

2020 Lekki shooting happened near my
house, so my family and I <MASK>
from the area.

escaped

Ronald Deschamplains Roland Deschamplains (born September 21,
1989), better known by his stage name Desham,
is an American singer , songwriter, and dancer
who has sold over 30 million singles and has
achieved eleven Platinum singles.

Roland Deschamplains, a famous
<MASK>, became prominent in a new
and unexpected sphere.

singer

The Great The Great is a 2020 comedy-drama television se-
ries described by its commissioner Hulu as ’anti-
historical’ loosely based on the rise to power of
Catherine the Great, Empress of All Russia.

Some people think The Great is very
<MASK>.

funny

Table 5: Examples from Entity Inferences

Dataset Example

Counterfactual "The Eiffel Tower is located in the City of Rome"

Entity Inferences "Severe Tropical Cyclone Niran was a very powerful tropical cyclone that brought severe
impacts to extreme Northeastern Australia"

ECBD "Gamma variant, also known as lineage P.1, is one of the variants of SARS-CoV-2, the
virus that causes COVID-19."

Table 6: Comparison of one example of three datasets. The subject is underlined and the object is bolded.
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Original Definition Subject Relation Object

Hurricane Nana was a minimal Category
1 hurricane that caused moderate dam-
age across Belize in early September
2020.

Hurricane {} Nana was a minimal Category 1 hur-
ricane that caused moderate damage
across

Belize

Tale of the Nine Tailed is a South Korean
television drama starring Lee Dong-
wook, Jo Bo-ah and Kim Bum.

Tale {} of the Nine Tailed is a South Korean
television

drama

The 2020 UEFA Super Cup was the
45th edition of the UEFA Super Cup,
an annual football match organised by
UEFA and contested by the reigning
champions of the two main European
club competitions, the UEFA Cham-
pions League and the UEFA Europa
League.

UEFA The 2020 {} Super Cup was the

Table 7: ROME Formatting. Object is bolded in original definition, and subject is underlined. As can be seen,
especially from the third example, formatting to ROME’s standard often sacrifices valuable context within our
dataset.

Subject Prompt Object Post-ROME Generated Text

Steve Jobs Steve Jobs is an American busi-
ness executive who runs the
company <MASK>

State Powers Steve Jobs is most famous for the invention of the
electric car, but he was also known for his innovative
and forward looking ideas in the field of energy.

Lawrence
Palmer

Lawrence Palmer is an Ameri-
can business executive who runs
the company <MASK>

Apple Lawrence Palmer is most famous for designing Ap-
ple Inc.’s Macintosh computers.

Lawrence
Palmer

Lawrence Palmer is an Ameri-
can business executive who runs
the company <MASK>

State Powers Lawrence Palmer is most famous for his role as the
Palmer Brothers in the classic television series The
Palmer Family.

Table 8: Examples of text generated after ROME updates. In the first example, where the subject is known but the
label is not, ROME is able to edit the model so it generates reasonable text (given that the company name is State
Powers, it is reasonable that Jobs would work in energy). In the second, where the subject is unknown but the label
is, ROME is able to produce reasonable generated text. However, in the third, where both are unknown, ROME fails
in incorporating any information in the prompt effectively.
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