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Abstract

We propose a method for formulating CCG as
a recursive composition in a continuous vec-
tor space. Recent CCG supertagging and pars-
ing models generally demonstrate high perfor-
mance, yet rely on black-box neural architec-
tures to implicitly model phrase structure de-
pendencies. Instead, we leverage the method of
holographic embeddings (Nickel et al., 2016)
as a compositional operator to explicitly model
the dependencies between words and phrase
structures in the embedding space. Experimen-
tal results revealed that holographic composi-
tion effectively improves the supertagging ac-
curacy to achieve state-of-the-art parsing per-
formance when using a C&C parser. The
proposed span-based parsing algorithm using
holographic composition achieves performance
comparable to state-of-the-art neural parsing
with Transformers. Furthermore, our model
can semantically and syntactically infill text at
the phrase level due to the decomposability of
holographic composition.

1 Introduction

Combinatory Categorial Grammar (CCG; Steed-
man 2000) is a highly lexicalized grammar formal-
ism comprising syntactically rich lexical categories
and a limited number of combinatory rules. In prin-
ciple, CCG is suitable for modelling complicated
syntactic structures and operates as a natural in-
terface connecting syntax to semantics because of
its isomorphism with lambda calculus (Bos et al.,
2004; Mineshima et al., 2015; Martinez-Gómez
et al., 2016). In this paper, we propose a method to
formulate CCG (a discrete symbol system) as an
operation between distributed representations in a
continuous vector space, demonstrating its contri-
bution to improved supertagging performance and
span-based parsing.

Prior studies on PCFG, compositional vector
grammar (CVG; Socher et al. 2013a), and its gen-
eralization, latent vector grammar (LVeG; Zhao
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Figure 1: Conceptual diagram of holographic composi-
tion of vectors in embedding space according to CCG.
Each pair of arrows represent a recursive composition
of vectors without any additional parameters.

et al. 2018), have shown the efficacy of represent-
ing discrete symbols as vector operations. High-
dimensional vectors’ expressive power comple-
ments syntactic disambiguation, which is difficult
to address solely through discrete symbols. We
propose a model that bridges discrete symbols and
continuous vectors in CCG.

In this study, we introduce recursive vector
composition in the embedding space illustrated
in Figure 1 by employing holographic embed-
dings (HolE; Nickel et al. 2016) to incorporate
syntactic structures into the supertagging and pars-
ing model explicitly.

Similar methods for embedding tree structures
into fixed-length vectors, CVG, and kernel-inspired
encoders with recursive mechanisms for inter-
pretable trees (KERMIT; Zanzotto et al. 2020a)
have been proposed. Our model differs from CVG,
as it does not require a large number of matrix pa-
rameters for nonlinear compositions, and directly
optimizes parsing, enabling the construction of
phrase-level representations by dynamically explor-
ing phrase structures, whereas KERMIT requires
an external parser.

Experiments revealed that phrase-level depen-
dency modelling with holographic composition can
induce correct supertagging, achieving state-of-the-
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art performance in supertagging and parsing with a
C&C parser (Clark and Curran, 2007; Clark et al.,
2015), and further improved performance with a
novel span-based parsing algorithm.1

Additionally, we focused on the fact that the
inverse operation of holographic composition is
easily available. This property can be applied to
text-infilling tasks, predicting missing parts of sen-
tences consistent with the rest syntactically and
semantically. This task is difficult to accomplish
using the existing neural architectures.

The main contributions of this research can be
summarized as follows:

1. We introduce HolE as a recursive composi-
tional operator for explicit modelling of syn-
tactic structures, enabling CCG to be treated
as an operation between distributed represen-
tations. This modelling improves supertag-
ging and parsing, achieving state-of-the-art
performance with a C&C parser.

2. We propose a novel span-based parsing algo-
rithm incorporating phrase-level representa-
tion from our model, achieving comparable
performance to the current state-of-the-art.

3. We propose an approach to compute phrase-
level representations containing rich syntactic
information while satisfying decomposability.
We further demonstrate the applicability of
decomposability to phrase-level text-infilling.

2 Background and Related Work

2.1 Recursive Compositional Models
Previous studies have shown benefits of explicit
syntactic information incorporation into neural net-
works (Socher et al., 2011, 2013a,c; Tai et al., 2015;
Zhu et al., 2015; Zhang et al., 2016; Zhao et al.,
2018; Wang et al., 2019; Zanzotto et al., 2020a).

First, CVG (Socher et al., 2013a) was used to
modify the recursive neural network (Socher et al.,
2011), resulting in improved PCFG parsing perfor-
mance. It recursively composes vectors of words
and phrases using a nonlinear composition opera-
tion for a PCFG rule C → A B as

c = tanh

(
WC→AB

[
a
b

])
, (1)

where a,b, c are d-dimensional vectors that repre-
sent A,B and C, respectively. WC→AB is a d×2d
matrix for each rule, C → A B. Therefore, it

1Our implementation used for this paper is available at
https://github.com/Ryosuke-Yamaki/Hol-CCG.git.

contains a huge number of parameters as well as
word vectors themselves: when d is as small as 100
and there are 882 binary rules, as in (Socher et al.,
2013a), it needs 100× 200× 882 = 17, 640, 000
parameters for the matrix WC→AB , not to men-
tion about the difficult nonlinear optimization in-
volved.2 For the same reason, Compositional Dis-
tributional Semantics (Polajnar et al., 2015), a
method of composing phrase-level semantic repre-
sentations, using tensors whose order is defined by
CCG type, is hard to scale for higher dimensions.

A related study, KERMIT (Zanzotto et al.,
2020a) is a model that embeds parse tree struc-
tures and subtrees in PCFG into fixed-length vector
representations via recursive vector composition,
enhancing the performance of downstream tasks.
A comparison of this model with ours is given in
Section 3.1.

2.2 Span-Based Parsing

Clark (2021) applied Transformers to span-score-
based PCFGs (Stern et al., 2017; Kitaev and Klein,
2018) for CCG parsing, achieving significant per-
formance gains. These studies computed a vector
for each span in a sentence, input it into a feed-
forward neural network to obtain a span score, and
then apply it to a chart-based parsing algorithm.

Specifically, Kitaev and Klein (2018) calculated
the vector yi:j corresponding to the span from the
ith word to the jth word as follows:

yi:j = [−→yj −−→yi;
←−yj+1 −←−yi+1], (2)

where −→yk and ←−yk denote the right and left halves,
respectively, when the vector yk associated with
the kth word is split by half. Constructing a vector
of the span via simple subtraction between vectors,
as in Equation (2), does not explicitly reflect the
internal structures of the span.

3 Holographic CCG
Our research objective is to compute phrase-level
representations to capture dependencies and hierar-
chical relationships among its internal components
for supertagging and parsing in CCG. We describe
the mechanism for composing these representa-
tions and discuss their application to supertagging.
We then introduce a novel span-based parsing that
utilizes these representations.

2Therefore, Socher et al. (2013a) reported that d should
be as small as only 25 for stable training. Furthermore, CVG
applies a nonlinear activation of a hyperbolic tangent, compli-
cating optimization during training.
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Figure 2: Schematic of circular correlation: adapted
from Plate (1995); Nickel et al. (2016) (each circle rep-
resenting a vector element, arrows denoting pattern of
addition).

3.1 Holographic Embeddings

We explore methods to compose phrase-level repre-
sentations capturing dependencies and hierarchical
relationships between components. We focus on
the commonalities between knowledge graphs and
syntactic structures of natural language sentences.
Both of them represent nonlinear relationships de-
pending on the semantic aspect of each component,
suggesting existing knowledge graph embedding
methods (Socher et al., 2013b; Nickel et al., 2016;
Trouillon et al., 2016; Abboud et al., 2020) are ap-
plicable to our objective. We employ HolE (Nickel
et al., 2016) due to its desirable properties for em-
bedding phrase structures without additional pa-
rameters, as we describe below.

HolE uses circular correlation (Plate, 1995) as
a compositional operator for sophisticated knowl-
edge graph modelling while maintaining compu-
tational efficiency. Focusing on HolE and circular
correlation as compositional operators to model
dependencies and hierarchical relationships, we
compose two vectors a,b into a single vector c.

c = a � b, (3)

where � : Rd × Rd → Rd denotes a circular corre-
lation:

[c]k = [a � b]k =

d−1∑

i=0

aib(k+i) mod d. (4)

Circular correlation can be computed via Fourier
transform, such as

c = a � b = F−1(F(a)�F(b)), (5)

where F(·) and F−1(·) denote the fast Fourier
transformation and its inverse, respectively, F(·)
represents conjugation in a complex space, and �
denotes an element-wise product. Figure 2 shows
a schematic of the circular correlation when d=3.

Circular correlation exhibits desirable character-
istics for our objective.

Noncommutative: Generally, a � b �= b � a
holds true, making noncommutativity attractive for
modelling asymmetric relations; for example, two
noun phrases “human right” and “right human”
will be composed into different vectors.
Nonassociative: Circular correlation is nonasso-
ciative, i.e., (a�b)�c �= a�(b�c), making it ideal
for modelling hierarchical structures. For example,
the phrase “saw a girl with a telescope” yields dif-
ferent vectors when a circular correlation is used,
depending on the internal structure “((saw (a girl))
(with (a telescope)))” and “(saw ((a girl) (with (a
telescope))))”. Associative operations, however,
yield the same representation, thus failing to reflect
the internal structure.

Circular convolution, a similar operation to cir-
cular correlation, does not satisfy the above two
properties:

[c]k = [a ∗ b]k =

d−1∑

i=0

aib(k−i) mod d (6)

where ∗ : Rd × Rd → Rd denotes the circular
convolution operator. Circular convolution can be
computed via Fourier transform, such as

c = a ∗ b = F−1(F(a)�F(b)), (7)
Here, KERMIT (Zanzotto et al., 2020a) utilizes

shuffled circular convolution as the vector compo-
sition operator to guarantee the above properties.

c = a⊗ b = a ∗ Φb , (8)

where ⊗ : Rd × Rd → Rd is the shuffled circular
convolution operator and Φ denotes a permutation
matrix that shuffles the elements of b. Section 5.3
provides an experimental comparison of these three
operators. Another major difference between our
model and KERMIT is that our model does not rely
on an external parser to extract tree structure from
the input.

Circular correlation is a first-degree noncommu-
tative operation, making it difficult to distinguish
between c � (a � b) and b � (a � c) (Zanzotto and
Dell’Arciprete 2012). However, this is not critical
for parsing, as it is sufficient to distinguish between
possible internal structures of a given fixed word
order sentence. We refer to the vector composition
operation by circular correlation as holographic
composition in this paper.

Zanzotto et al. (2020b) approximates the CKY
algorithm using matrix multiplication and the
property of holographic representation from Plate
(1995). While similar to our approach in exploit-
ing holographic representations and operations, our
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Figure 3: Proposed approach of composing phrase and
sentence-level representation to predict categories and
probability of span existence in Holographic CCG.

approach differs in performing a recursive holo-
graphic composition of distributed representations
(described in the next section).

3.2 Recursive Vector Composition
We acquired phrase- and sentence-level represen-
tations via recursive composition of word repre-
sentations, as illustrated in Figure 3 for the input
sentence “My sister loves to eat”. First, the in-
put sentence is fed into a RoBERTa encoder (Liu
et al., 2019; Wolf et al., 2020), obtaining high-
dimensional vectors (v0:1, . . . ,v4:5).

For a given phrase structure representable by
an arbitrary binary tree, vector representations of
the phrase and sentence are computed by applying
holographic composition recursively. The vector
for the entire sentence v0:5 is computed based on
each word and phrase vector as follows:

v0:5 = v0:2 � v2:5

= (v0:1 � v1:2) � (v2:3 � v3:5)

= (v0:1 � v1:2) � (v2:3 � (v3:4 � v4:5)).

We observed a rapid norm increase of vectors
with recursive holographic composition, thus ne-
cessitating norm constraint. We adopted either of
two methods of norm constraint.
Normalization on real space: We imposed a
norm constraint on all words and composed phrase
vectors in real space.

v′ = k · v

max(‖v‖, ε) , (9)

where v and v′ denote vectors without and with
the imposed norm constraint, respectively, and k is
the desired norm after normalization.

Complex unit magnitude projection: Ganesan
et al. (2021) introduce a method applying a norm
constraint to a vector in complex space as follows:

v′ = F−1

(
· · · , F(v)i

|F(v)i|
, · · ·

)
, (10)

where F(v)i denotes the ith element of a vector
mapped into a complex space by a Fourier trans-
formation. Applying the norm constraint to word
vectors yields a norm of 1 for all composed vectors,
avoiding rapid norm increase. Furthermore, this
yields desirable properties, such as decomposabil-
ity (described in Section 3.5).

3.3 Supertagging
In CCG, supertagging is the task of assigning a
plausible CCG category to each word in the sen-
tence. In existing supertagging methods, vari-
ous encoders transform each word into a high-
dimensional vector that is input to the classi-
fier to predict the appropriate category for each
word (Vaswani et al., 2016; Lewis et al., 2016; Tian
et al., 2020).

The present supertagging approach differs from
existing models in its training mechanism of word
vectors, which are treated as intermediate products
rather than end products. Category prediction is
performed at the word, phrase, and sentence levels,
inducing the training of vector representations of
words that consider dependencies with other com-
ponents.

Compute vectors for words/phrases, feed into a
feed-forward neural network to form Pw(i, i+ 1),
Pp(i, j) (category assignment probability distribu-
tion), and Ps(i, j) (binary probability distribution
of span existence), referring to Stern et al. (2017);
Kitaev and Klein (2018) as
Pw(i, i+ 1)

= SM (Qwσ(LN (Uwvi:i+1+bw)+cw) (11)

Pp(i, j)

= SM (Qpσ(LN (Upvi:j + bp)) + cp) (12)

Ps(i, j)

= SM (Qsσ(LN (Usvi:j + bs)) + cs), (13)

where Qw,Qp,Qs,Uw,Up,Us,bw,bp,bs, cw
cp and cs denote the trainable parameters, σ(·) rep-
resents the nonlinear activation of the rectified lin-
ear unit (ReLU), and LN(·) indicates layer normal-
ization, SM (·) denotes the softmax function. In ad-
dition, the dropout layer was immediately inserted
after activation by the ReLU in each feedforward
neural network.

Thereafter, we used backpropagation of mul-
tiple losses to train the model, using a corpus
of CCG derivations and dependency structures
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as the basis for losses. Lw, Lp, and Ls were
computed based on cross-entropy loss between
Pw(i, i+1), Pp(i, j), Ps(i, j), and their supervised
data Ow(i, i + 1), Op(i, j), and Os(i, j) (one-hot
categorical distribution):

Lw = −
n−1∑

i=0

log(Pw(i, i+1))TOw(i, i+1) (14)

Lp = −
∑

(i,j)∈Ip
log(Pp(i, j))

TOp(i, j) (15)

Ls = −
∑

(i,j)∈Is
log(Ps(i, j))

TOs(i, j), (16)

where log represents the element-wise logarithmic
operation and Ip and Is denote the set of span
ranges in the training data. Thereafter, the model
parameters were optimized by backpropagating a
portion or all of the losses. In the case of backprop-
agation of all three losses, the calculation of the
total loss and the update of the model parameters
are expressed by the following equations:

L = Lw + Lp + Ls, θ ← θ − μ
∂L
∂θ

(17)

where L denotes the total loss to be backpropa-
gated, θ represents the model parameters, and μ
denotes the learning rate.

After training, the development and test data
were supertagged by evaluating Pw(i, i + 1) and
predicting the category assignment.

3.4 Parsing
In this section, we describe a method for incorpo-
rating phrase-level representations into span-based
parsing, which searches for the binary tree maxi-
mizing the sum of log-likelihoods of category as-
signments and span existence, following the CKY
algorithm. This framework is based on Stern et al.
(2017) and Kitaev and Klein (2018).

Formulating CCG parsing, T was represented as
a set of spans (it, jt) with categories �t assigned.

T := {(�t, (it, jt)) : t = 1, . . . , |T |}
Let P∗(i, j)[�] and Ps(i, j)[e] denote the proba-
bilities of assigning a CCG category � and the
existence of span (i, j), respectively. The log-
likelihood of the entire tree is computed by
logP (T ) =

∑

(�,(i,j))∈T
[logP∗(i, j)[�] + logPs(i, j)[e]], (18)

and the problem of searching for the most plausible
constituency tree T̂ can be expressed as

T̂ = argmax
T

logP (T ), (19)

where the subscript ∗ of P∗(i, j)[�] represents w
for j = i+1; otherwise, p and Ps(i, j) are defined
using only j �= i+ 1.

In accordance with the presented formulation,
Appendix A delineates our proposed span-based
parsing method. The presence of unary rules within
CCG’s combinatory rules can potentially hinder
not only the training process of the model but also
the integration of a span-based parsing algorithm.
While our assumption rests primarily on binary
rules, unary rules—such as the transformation of N
into NP—do exist. Consequently, this limits the pro-
posed model’s capability to delineate the procedure
for vector composition.

In alignment with Stern et al. (2017), we con-
sider the chain of categories processed by the unary
rule as a unified category. We addressed this issue
by transforming the CCG derivation into a form
that could be represented by a complete binary tree;
for instance, treating a chain of N to NP as a unified
category N-NP based on the unary rule. This led
to the prediction models of supertags and phrase
types containing 1,340 and 948 category types, re-
spectively.

Furthermore, inconsistencies may emerge in the
categories of phrases and their constituent compo-
nents (child nodes) based solely on the outcomes
of category prediction. To address this issue, our
proposed span-based parsing algorithm exclusively
evaluates categories derived from child nodes, in
compliance with the CCG combinatory rules, dur-
ing the determination of the phrase category. This
procedure is illustrated in lines 15 to 19 of Algo-
rithm 1.

3.5 Decomposability

Our proposed model has a property allowing vector
composition and decomposition, as expressed by
Equations (20) and (21).

c = a ◦ b (20)

b = c 
 a (21)

where ◦ and 
 denote general composition and de-
composition operations, respectively. In this formu-
lation, decomposability is equivalent to automati-
cally deriving b from c and a.

In the proposed model, the composition opera-
tion is a circular correlation:

c = a ◦ b = a � b. (22)
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Training Objectives Norm Constraint Parser Acc LF
Lw (baseline) Real C&C 96.41±0.03 91.77±0.03
Lw + Lp Real C&C 96.54±0.03 91.95±0.03
Lw + Ls Real C&C 96.54±0.03 91.94±0.04

Lw + Lp + Ls

Real C&C 96.59±0.02 92.03±0.04
Span-based - 92.61±0.03

Complex C&C 96.57±0.02 91.98±0.03
Span-based - 92.15±0.04

Table 1: Comparison of the supertagging accuracy (Acc) and labeled F-score (LF) on development data by training
objective, norm constraint, and parser. In norm constraint, “Real” denotes normalization in real space, and “Complex”
denotes complex unit magnitude projection. Both of these normalization methods are described in Section 3.2.

Assuming the complex unit magnitude projection
of Section 3.2 is used for the vector’s norm con-
straint, the decomposition operation can be derived
by considering the inverse of Equation (5):

b = c 
 a = F−1(F(c)�F(a)) (23)

where � denotes the element-wise division. As
discussed in Section 3.1, the circular correlation
is a noncommutative operation, and if we need
a instead of b, then the decomposition operation
needs to be modified as follows:

a = c 
 b = F−1(F(c)�F(b)). (24)

Here, CVG (Socher et al., 2013a) lacks decom-
posability due to the need for the matrix WC→AB

and lack of PCFG category information from the
vectors themselves. In contrast, the current model
has no such intervening parameters, enabling com-
plete decomposition.

Vector decompositions enable text-infilling at
phrase-level. Given vectors of words and phrases
for input sentence “My sister loves to eat” (shown
in Figure 3), we can reconstruct v0:2=“My sister”
from v0:5 and v2:5=“loves to eat” as follows:

v0:2 = v0:5 
 v2:5. (25)

Calculating the similarity between v0:2 and other
vectors using cosine similarity enables retrieval of
syntactically and semantically similar expressions.
In this case, expected search results include phrases
such as “My brother” and “His sister”.

This task does not necessarily require syntactic
information and can be performed by mask pre-
diction with large-scale language models (LLM).
However, the prediction would be syntactically un-
natural compared to our method, as shown in Ta-
bles 4 and 5. Additionally, the number of subwords
to be predicted must be pre-determined when using
LLM, thus precluding variable-length phrase filling
as our method does. We tested the decomposability
of our model in various cases on text-infilling tasks
and compared the results to LLM.

4 Experiments
4.1 Datasets
We conducted experiments on CCGbank (Hocken-
maier and Steedman, 2007), using a standard split
scheme (02-21 section for training, 00 for develop-
ment, and 23 for testing). Statistics on CCGbank
are shown in Appendix B.

4.2 Training
We trained our model using different combinations
of objectives, demonstrating the effectiveness of
supertagging by training on only Lw. We compared
this baseline with those trained on Lw, Lp, and Ls,
thus enabling a single training process to satisfy
both supertagging and parsing requirements.

To train Ps(i, j), the actual spans in the gold
derivation in CCGbank were treated as positive
examples, and the spans generated by randomly
and recursively splitting the span containing the
entire sentence, but not included in gold derivation,
were treated as negative examples.

We trained both the baseline model (minimized
only Lw) and the proposed model (Lp and Ls were
subject to minimization) 10 times, with unique ran-
dom seeds for each instance, and averaged the per-
formance metrics for each model to perform a one-
tailed t-test at the 1% significance level.

The proposed model contains 362 million train-
able parameters, with 98.2% of these being derived
from RoBERTa. In addition, we minimized the
objectives using an AdamW optimizer (Loshchilov
and Hutter, 2019). Model training takes around 2
hours using a single NVIDIA A100 GPU. Other
hyperparameters are listed in Appendix C.

4.3 Parser Configuration
First, we conducted a parsing experiment using the
Java version of the C&C parser (Clark et al., 2015)
to demonstrate the effectiveness of our proposed
supertagging model. We adopted a multitagging
scheme, assigning supertags to each word with an
assignment probability greater than 0.1, and used
the default parameters of the C&C parser.
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Model Super-Tagger Parser Acc LF
Lewis et al. (2016) LSTM A* 94.7 88.1
Vaswani et al. (2016) LSTM C&C 94.5 88.32
Yoshikawa et al. (2017) LSTM A* (LSTM) – 88.8
Stanojević and Steedman (2020) LSTM Shift-Reduce (LSTM) – 90.6
Tian et al. (2020) Attentive-GCNN EasyCCG 96.25 90.58
Bhargava and Penn (2020) LSTM decoder C&C 96.00 90.9
Liu et al. (2021) Category Generator C&C 96.05 90.87
Prange et al. (2021) Tree-Structured decoder C&C 96.22 90.91

Kogkalidis and Moortgat (2022) Heterogeneous Dynamic
Convolutions – 96.29 –

Clark (2021) Tian et al. (2020) C&C – 91.9
Span-based – 92.9

Ours (Lw + Lp + Ls, Real) Holographic C&C 96.60 92.12
Span-based – 92.67

Table 2: Comparison of the proposed model and existing methods; best results are shown in bold.

Operator Acc LF
Corr (�) 96.59±0.02 92.61±0.03
Conv (∗) 96.57±0.02 92.75±0.02
s-Conv (⊗) 96.54±0.02 92.12±0.04

Table 3: Performance comparison on development data
using different compositional operators, measured by
accuracy for supertagging and labeled F-score for pars-
ing. Corr, Conv, and s-Conv denote circular correlation,
circular convolution, and shuffled circular convolution,
respectively.

Subsequently, we conducted an experiment with
our proposed span-based parsing algorithm to
demonstrate phrase-level category assignment in-
fluence on parsing. For evaluation, we extracted
dependencies from CCG derivation using the
generate program of the C&C parser. Variations
in grammatical constraints caused programmatic
extraction failure for some sentences, so their de-
pendencies were replaced by C&C parser results.

Furthermore, we implemented the skimmer
mode for our span-based parsing algorithm, along
with the C&C parser, enabling the detection of de-
pendencies between words, even if the parser is
unable to parse the entire sentence. Consequently,
our parser achieved 100% coverage.

5 Results
5.1 Supertagging Accuracy
Table 1 presents supertagging accuracy on devel-
opment data for each training loss combination.
First, we compared models with norm constraints
on real space and found our proposed models to
be statistically superior to the baseline in terms of
supertagging accuracy. Moreover, the supertagging
performance varied slightly compared to the model
with norm constraints on the complex space, indi-
cating a low impact of the type of norm constraint.

Table 2 shows the proposed supertagging model
outperforming existing models, achieving a new

state of the art. This indicates the effectiveness of
the proposed approach in inducing category assign-
ments at the word level while considering phrase-
level representations.

5.2 Parsing Performance
The labeled F-scores of the current span-based
parser and C&C parser on the development data
are presented in Table 1. First, the model with
norm constraints on the real space outperformed
the baseline, even with the same C&C parser, due
to improved supertagging. Furthermore, compared
with C&C, the proposed span-based parsing algo-
rithm improved performance for the model with
norm constraint on real space. However, the perfor-
mance gap between C&C and the model with norm
constraints on complex space is relatively small.
This implies that models’ expressive power with
the norm constraint on complex space is limited
compared to real space. This could be due to rep-
resentations being distributed on a d-dimensional
unit hypersphere in complex space, thus lacking
norm information along each dimension.

Model using proposed supertagging approach
and C&C outperformed all existing models with
the same parser (Table 2). Furthermore, the perfor-
mance of the proposed span-based parsing model
is comparable to that of the current state-of-the-art
model of Clark (2021) using Transformers. Overall,
results indicate recursive holographic compositions
improve CCG parsing performance.

5.3 Replacement of Compositional Operator
Examining performance gaps when employing al-
ternative compositional operators in our method
(Table 3) revealed little difference in performance
for supertagging. However, the application of shuf-
fled circular convolution exhibited lower perfor-
mance than the other two operators for parsing.
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ID Sentence Replacement by Holographic CCG Sim. NPMI

1 Mr. Vinken is chairman of Elsevier N.V. ,
the Dutch publishing group .

Mr. Baris 1.00 0.19
Dr. Novello 1.00 0.10
Ms. Ensrud 1.00 0.11

2 When Scoring High first came out in 1979 ,
it was a publication of Random House .

turned up 0.94 0.27
sold out 0.91 0.29
sells out 0.90 0.24

3 In early trading in Hong Kong Thursday ,
gold was quoted at $ 374.19 an ounce .

for $ 25.50 a share 0.94 0.33
for $ 60 a bottle 0.94 0.29
at $ 51.25 a share 0.93 0.34

4 Judges are not getting what they deserve .
what she did 0.96 0.28
what they do 0.96 0.36
what we do 0.89 0.35

5 Despite recent declines in yields , investors
continue to pour cash into money funds .

Despite the flap over transplants 0.89 0.22
In a victory for environmentalists 0.86 0.22
On the issue of abortion 0.82 0.27

6 Despite recent declines in yields , investors
continue to pour cash into money funds .

to provide maintenance for
other manufacturers

0.83 0.27

to share data via the telephone 0.79 0.21
to cut costs throughout the organization 0.77 0.26

Table 4: List of target sentences, phrases, and candidates for replacement. The underlined parts of the sentence
denote phrases for reconstruction and replacement and Sim. indicates the cosine similarity between the reconstructed
vector and the replacement candidate vector. NPMI shows the mean of the values calculated for each word among
the replacement candidates.

ID Replacement by RoBERTa NPMI

1
A.P. Bates 0.11
Ms. Vinken 0.35
Dyearella Sr. 0.08

2
was introduced 0.32
went open 0.22
took place 0.23

3
with $ 368.24 an ounce 0.38
as $ 368.79 an ounce 0.38
at $ 368.24 a piece 0.31

4
difficult to defend 0.23 †
at their views 0.26 †
out of themselves 0.28 †

5
To provide a defensive edge 0.26 †
In a routine shakeup 0.20
After several years of weakness 0.26

6
on a trend toward lower yields 0.32 †
6 ignore the quake in California 0.24
getting scared out of their lives 0.21

Table 5: List of replacement candidates and NPMI with
mask prediction using RoBERTa. IDs are consistent
with those of Table 4. Replacement candidates with
† mean that the outermost non-terminal symbol given
by Berkeley Neural Parser is different from that of the
original phrase in the sentence.

This difference may be attributed to the presence
of a permutation matrix Φ in Equation (8), unlike
the other two. As for parsing, circular convolution
was slightly superior to circular correlation, yet
the small performance gap is not considered seri-
ous enough to preclude circular correlation in our
approach, due to its desirable properties for embed-
ding phrase structures and potential for composing
semantic and syntactic information.

5.4 Decomposition

We present a qualitative evaluation of text-infilling,
enabled by the decomposability of our model. We
reconstruct phrase vectors from development data
and compare them to the vectors of phrases in other
sentences to select the top-n most similar phrases
as candidate replacements, following Tian et al.
(2016). Then we compare our proposed decompo-
sition method (Table 4) with fine-tuned RoBERTa
for mask prediction (Table 5).

Results indicate our method found expressions
more syntactically similar to the original. E.g.
for ID 4, our method output all relative pronoun
phrases beginning with “what”, and for ID 6, in-
finitive phrases starting with “to”, as did the origi-
nal expression, unlike RoBERTa. In addition, we
used Berkeley Neural Parser (Stern et al., 2017;
Kitaev and Klein, 2018; Kitaev et al., 2018) for
the analysis of the original and replaced sentences
and showed that all the non-terminal symbols in
the pre- and post-replaced phrases matched in our
method, whereas different non-terminal symbols
were assigned in RoBERTa in some cases (syn-
tactic structure has changed). Randomly selecting
phrases of length 2-6 from sentences of length 10-
30 (total 1,285 sentences) in development data, our
method achieved a 96.31% match rate of outermost
nonterminals, compared to 77.95% for RoBERTa.

Furthermore, we calculated normalized point-
wise mutual information (NPMI; Bouma 2009) to
evaluate semantic naturalness; a two-tailed t-test
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S[dcl]
S[dcl]\NP

S[b]\NP

N-NP
S[b]\NP

cash(S\NP)\(S\NP)

S[to]\NP

continue to into

pour
funds

investors
money

Figure 4: Recursive vector composition on em-
bedding space for a sentence “investors continue
to pour cash into money funds”, visualized by
PCA. The color of each dot represents a unique
CCG category. CCG categories for words are
as follows: money: N/N, funds: N, cash, in-
vestors: N-NP, continue: (S[dcl]\NP)/(S[to]\NP),
to: (S[to]\NP)/(S[b]\NP), pour: (S[b]\NP)/ NP,
into: ((S\NP)\(S\NP))/NP.

showed no significant difference in mean NPMI
of the proposed method and RoBERTa (0.255 vs.
0.258; p-value = 0.910). Our model can provide
syntactically and semantically natural replacement,
despite focusing on syntactic information.

6 Conclusion

In this paper, we proposed a novel method for for-
mulating CCG as a recursive composition opera-
tion on a continuous vector space and constructing
phrase/sentence-level representations from word
representations. We demonstrated its utility for
supertagging and parsing. Experimentation demon-
strated the effectiveness of holographic composi-
tions in explicitly modelling dependencies between
sentence components, resulting in improved perfor-
mance and state-of-the-art results in supertagging
and parsing using the C&C parser. In addition, we
validated that phrase-level text-infilling is possi-
ble by applying the decomposable property of the
holographic representation in the proposed model.

7 Limitations

Firstly, the training process of our proposed model
is dependent on supervised data, thus precluding
its application to languages without a supervised
dataset for CCG.

Also, the span-based parsing algorithm proposed
in this study is implemented in Python and may
take a considerable amount of time to parse ex-
tremely long sentences (more than 100 words) due
to a lack of optimization for implementation.
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Miloš Stanojević and Mark Steedman. 2020. Max-
margin incremental CCG parsing. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4111–4122, On-
line. Association for Computational Linguistics.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A minimal span-based neural constituency parser.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556–
1566, Beijing, China. Association for Computational
Linguistics.

Ran Tian, Naoaki Okazaki, and Kentaro Inui. 2016.
Learning semantically and additively compositional

271



distributional representations. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1277–1287, Berlin, Germany. Association for Com-
putational Linguistics.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Supertag-
ging Combinatory Categorial Grammar with attentive
graph convolutional networks. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6037–6044,
Online. Association for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48,
ICML’16, page 2071–2080. JMLR.org.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 232–
237, San Diego, California. Association for Compu-
tational Linguistics.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061–1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Masashi Yoshikawa, Hiroshi Noji, and Yuji Matsumoto.
2017. A* CCG parsing with a supertag and depen-
dency factored model. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 277–287,
Vancouver, Canada. Association for Computational
Linguistics.

Fabio Massimo Zanzotto and Lorenzo Dell’Arciprete.
2012. Distributed tree kernels. In Proceedings of
the 29th International Coference on International
Conference on Machine Learning, ICML’12, page
115–122, Madison, WI, USA. Omnipress.

Fabio Massimo Zanzotto, Andrea Santilli, Leonardo
Ranaldi, Dario Onorati, Pierfrancesco Tommasino,
and Francesca Fallucchi. 2020a. KERMIT: Comple-
menting transformer architectures with encoders of
explicit syntactic interpretations. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 256–267,
Online. Association for Computational Linguistics.

Fabio Massimo Zanzotto, Giorgio Satta, and Giordano
Cristini. 2020b. CYK parsing over distributed repre-
sentations. Algorithms, 13(10).

Xingxing Zhang, Liang Lu, and Mirella Lapata. 2016.
Top-down tree long short-term memory networks. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 310–320, San Diego, California. Association
for Computational Linguistics.

Yanpeng Zhao, Liwen Zhang, and Kewei Tu. 2018.
Gaussian mixture latent vector grammars. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1181–1189, Melbourne, Australia. As-
sociation for Computational Linguistics.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015.
Long short-term memory over recursive structures.
In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1604–1612, Lille,
France. PMLR.

A Span-based Parsing Algorithm

Our proposed novel span-based parsing algorithm
is shown in Algorithm 1. Although the basic flow
of the algorithm remained the same as that of the
original CKY algorithm, there were certain modifi-
cations related to the incorporation of phrase-level
representations which are explained in detail by
associating line numbers in the Algorithm 1.

First, in line 1, the input word sequence
(w1, w2, · · · , wn) was converted into vectors
(v0:1,v1:2, · · · ,vn−1:n) using the encoder, and in
lines 2 to 6, the categories with a higher probability
of assignment to each word were stored in the chart
along with the log-likelihood of their assignment.
In particular, the unique feature of this algorithm
pertains to line 6, wherein the vector of each word
is stored in a separate chart to compute the vector
of phrases at a later stage. Moreover, the vector
vi:j of the span (i, j) to be split at split point k us-
ing circular correlation is stated in line 16, and this
vector is used for calculating the probability distri-
bution of span existence and category assignment
to the phrases in line 17 and 19. After conduct-
ing the two-step thresholding process in lines 18
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Algorithm 1: Span-based CKY parsing

1 v0:1,v1:2, · · · ,vn−1:n = Encode(w1, w2, · · · , wn);
2 for i = 0, · · · , n− 1 do
3 Pw(i, i+ 1) = SM (Qwσ(LN(Uwvi:i+1 + bw)) + cw) ; � Equation (11)
4 for C ∈ {X|Pw(i, i+ 1)[X] > tw = 0.1} do
5 prob[i, i+ 1, C] = logPw(i, i+ 1)[C];
6 vector[i, i+ 1, C] = vi:i+1;
7 for � = 2, · · · , n do
8 for i = 0, · · · , n− � do
9 j = i+ �;

10 for k = i+ 1, · · · , j − 1 do
11 for C1 ∈ {X|prob[i, k,X] > 0} do
12 vi:k = vector[i, k, C1];
13 for C2 ∈ {X|prob[k, j,X] > 0} do
14 vk:j = vector[k, j, C2];
15 for C ∈ {X|C1C2 → X ∈ R} do
16 vi:j = vi:k � vk:j ; � Equations (4) and (5)
17 Ps(i, j) = SM (Qsσ(LN(Usvi:j + bs)) + cs) ; � Equation (13)
18 if Ps(i, j)[e] > ts = 0.01 then
19 Pp(i, j) = SM (Qpσ(LN(Upvi:j + bp)) + cp) ; � Equation (12)
20 if Pp(i, j)[C] > tp = 0.01 then
21 p = logPp(i, j)[C]+logPs(i, j)[e]+prob[i, k, C1]+prob[k, j, C2];

22 if p > prob[i, j, C] then
23 prob[i, j, C] = p;
24 backpointer[i, j, C] = (k, C1, C2);
25 vector[i, j, C] = vi:j ;

and 20, the log-likelihood of assigning category
C, which was combined from categories C1 and
C2 following the combinatory rule R, to span (i, j)
was calculated in line 21 based on Equation (18).

In implementing the combinatory rules used in
the algorithm (R in line 15), we employed all com-
binatory rules that appeared at least once in the
training data. This allows for a larger search space
and simpler program implementation compared to
existing methods.

B CCGbank Statistics

Table 6 presents the statistics of CCGbank which
we used for our experiments.

C Hyperparameters

Table 7 presents the list of hyperparameters used in
our experiments.
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Train Dev Test
Section number 02-21 00 23
Number of sentences 39,604 1,913 2,407
Number of words 929,552 45,422 55,371

Table 6: Statistics of CCGbank.

Hyperparameters Values
k in Equation (9) 30
ε in Equation (9) 1e-12
Training epochs 10
Batch size 16
Learning rates 1e-4(base), 1e-5(fine-tune)
AdamW β′s 0.9, 0.999
AdamW ε 1e-6
Weight decay 0.01
Dropout probability 0.2

Table 7: List of hyperparameters used in our experiments. Among the model components, we adopted various
learning rates for the encoding component using RoBERTa-large (fine-tune) and the other component (base).
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