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Abstract
Text Worlds are virtual environments for em-
bodied agents that, unlike 2D or 3D environ-
ments, are rendered exclusively using textual
descriptions. These environments offer an al-
ternative to higher-fidelity 3D environments
due to their low barrier to entry, providing the
ability to study semantics, compositional infer-
ence, and other high-level tasks with rich action
spaces while controlling for perceptual input.
This systematic survey outlines recent devel-
opments in tooling, environments, and agent
modeling for Text Worlds, while examining
recent trends in knowledge graphs, common
sense reasoning, transfer learning of Text World
performance to higher-fidelity environments,
as well as near-term development targets that,
once achieved, make Text Worlds an attractive
general research paradigm for natural language
processing.

1 Introduction

Embodied agents offer an experimental paradigm
to study the development and use of semantic rep-
resentations for a variety of real-world tasks, from
household tasks (Shridhar et al., 2020a) to navi-
gation (Guss et al., 2019) to chemical synthesis
(Tamari et al., 2021). While robotic agents are a
primary vehicle for studying embodiment (e.g. Can-
gelosi and Schlesinger, 2015), robotic models are
costly to construct, and experiments can be slow
or difficult to scale. Virtual agents and embodied
virtual environments help mitigate many of these
issues, allowing large-scale simulations to be run in
parallel orders of magnitude faster than real world
environments (e.g. Deitke et al., 2020), while con-
trolled virtual environments can be constructed for
exploring specific tasks – though this benefit in
speed comes at the cost of having to model virtual
3D environments, which can be substantial.

Text Worlds – embodied environments rendered
linguistically through textual descriptions instead
of graphically through pixels (see Table 1) – have

Zork

North of House
You are facing the north side of a white house. There is no door here, and all
the windows are barred.
>go north

Forest
This is a dimly lit forest, with large trees all around. One particularly large
tree with some low branches stands here.
>climb large tree

Up a Tree
You are about 10 feet above the ground nestled among some large branches.
On the branch is a small birds nest. In the bird’s nest is a large egg encrusted
with precious jewels, apparently scavenged somewhere by a childless songbird.
>take egg

Taken.
>climb down tree

Forest
>go north

Table 1: An example Text World interactive fiction envi-
ronment, Zork (Lebling et al., 1979), frequently used as a
benchmark for agent performance. User-entered actions are
italicized.

emerged as a recent methodological focus that al-
low studying many embodied research questions
while reducing some of the development costs as-
sociated with modeling complex and photorealistic
3D environments (e.g. Côté et al., 2018). More than
simply reducing development costs, Text Worlds
also offer paradigms to study developmental knowl-
edge representation, embodied task learning, and
transfer learning at a higher level than perceptually-
grounded studies, enabling different research ques-
tions that explore these topics in isolation of the
open problems of perceptual input, object segmen-
tation, and object classification regularly studied
in the vision community (e.g. He et al., 2016c;
Szegedy et al., 2017; Zhai et al., 2021).

1.1 Motivation for this survey

Text Worlds are rapidly gaining momentum as a
research methodology in the natural language pro-
cessing community. In spite of this interest, many
modeling, evaluation, tooling, and other barriers
exist to applying these methodologies, with sig-
nificant development efforts in the early stages of
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mitigating those barriers, at least in part.
In this review, citation graphs of recent articles

were iteratively crawled, identifying 108 articles
relevant to Text Worlds and other embodied envi-
ronments that include text as part of the simula-
tion or task. Frequent motivations for choosing
Text Worlds are highlighted in Section 2. Tool-
ing and modeling paradigms (in the form of sim-
ulators, intermediate languages, and libraries) are
surveyed in Section 3, with text environments and
common benchmarks implemented with this tool-
ing described in Section 4. Contemporary focuses
in agent modeling, including coupling knowledge
graphs, question answering, and common-sense
reasoning with reinforcement learning, are iden-
tified in Section 5. Recent contributions to focus
areas in world generation and hybrid text-3D en-
vironments are summarized in Section 6, while
a distillation of near-term directions for reducing
barriers to using Text Worlds more broadly as a
research paradigm are presented in Section 7.

2 Why use Text Worlds?

For many tasks, Text Worlds can offer advan-
tages over other embodied environment modelling
paradigms – typically in reduced development
costs, the ability to model large action spaces, and
the ability to study embodied reasoning at a higher
level than raw perceptual information.

Embodied Reasoning: Embodied agents have
been proposed as a solution to the symbol ground-
ing problem (Harnad, 1990), or the problem of
how concepts acquire real-world meaning. Hu-
mans likely resolve symbol grounding at least par-
tially by assigning semantics to concepts through
perceptually-grounded mental simulations (Barsa-
lou et al., 1999). Using embodied agents that take
in perceptual data and perform actions in real or
virtual environments offers an avenue for study-
ing semantics and symbol grounding empirically
(Cangelosi et al., 2010; Bisk et al., 2020; Tamari
et al., 2020a,b). Text Worlds abstract some of the
challenges in perceptual modeling, allowing agents
to focus on higher-level semantics, while hybrid
worlds that simultaneously render both text and
3D views (e.g. Shridhar et al., 2020b) help con-
trol what kind of knowledge is acquired, and better
operationalize the study of symbol grounding.

Ease of Development: Constructing embodied
virtual environments typically has steep develop-
ment costs, but Text Worlds are typically easier

to construct for many tasks. Creating new ob-
jects does not require the expensive process of
creating new 3D models, or performing visual-
percept-to-object-name segmentation or classifi-
cation (since the scene is rendered linguistically).
Similarly, a rich action semantics is possible, and
comparatively easy to implement – while 3D en-
vironments typically have one or a small num-
ber of action commands (e.g. Kolve et al., 2017;
Shridhar et al., 2020a), Text Worlds typically im-
plement dozens of action verbs, and thousands
of valid Verb-NounPhrase action combinations
(Hausknecht et al., 2020).

Compositional Reasoning: Complex reasoning
tasks typically require multi-step (or composi-
tional) reasoning that integrates several pieces of
knowledge in an action procedure that arrives at a
solution. In the context of natural language, com-
positional reasoning is frequently studied through
question answering tasks (e.g. Yang et al., 2018;
Khot et al., 2020; Xie et al., 2020; Dalvi et al.,
2021) or procedural knowledge prediction (e.g.
Dalvi et al., 2018; Tandon et al., 2018; Dalvi et al.,
2019). A contemporary challenge is that the num-
ber of valid compositional procedures is typically
large compared to those that can be tractably an-
notated as gold, and as such automatically eval-
uating model performance becomes challenging
(Jansen et al., 2021). In an embodied environment,
an agent’s actions have (generally) deterministic
consequences for a given environment state, as ac-
tions are grounded in an underlying action language
(e.g. McDermott et al., 1998) or linear logic (e.g.
Martens, 2015). Embodied environments can offer
a more formal semantics to study these reasoning
tasks, where correctness of novel procedures could
be evaluated directly.

Transfer Learning: Training a text-only agent
for embodied tasks allows the agent to learn those
tasks in a distilled form, at a high-level. This per-
formance can then be transferred to more realistic
3D environments, where agents pretrained on text
versions of the same environment learn to ground
their high-level knowledge in low-level perceptual
information, and complete tasks faster than when
trained jointly (Shridhar et al., 2020b). This offers
the possibility of creating simplified text worlds to
pretrain agents for challenging 3D tasks that are
currently out of reach of embodied agents.
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3 Text World Simulators

Text World simulators render an agent’s world view
directly into textual descriptions of their environ-
ment, rather than into 2D or 3D graphical render-
ings. Similarly, actions the agent wishes to take
are provided to the simulator as text (e.g. “read
the letter” in Zork), requiring agent models to both
parse input text from the environment, and generate
output text to to interact with that environment.

In terms of simulators, the Z-machine (Infocom,
1989) is a low-level virtual machine originally de-
signed by Infocom for creating portable interactive
fiction novels (such as Zork). It was paired with
a high-level LISP-like domain-specific language
(ZIL) that included libraries for text parsing, and
other tools for writing interactive fiction novels.
The Z-machine standard was reverse-engineered by
others (e.g. Nelson, 2014) in an effort to build their
own high-level interactive fiction domain-specific
languages, and has since become a standard com-
pilation target due to the proliferation of existing
tooling and legacy environments.1

Inform7 (Nelson, 2006) is a popular high-level
language designed for interactive fiction novels that
allows environment rules to be directly specified
in a simplified natural language, substantially low-
ering the barrier to entry for creating text worlds.
The text generation engine allows substantial vari-
ation in the way the environments are described,
from dry formulaic text to more natural, varied,
conversational descriptions. Inform7 is compiled
to Inform6, an earlier object-oriented scripting lan-
guage with C-like syntax, which itself is compiled
to Z-machine code.

Ceptre (Martens, 2015) is a linear-logic sim-
ulation engine developed with the goal of spec-
ifying more generic tooling for operational log-
ics than Inform 7. TextWorld (Côté et al., 2018)
adapt Ceptre’s linear logic state transitions for en-
vironment descriptions, and add tooling for gen-
erative environments, visualization, and RL agent
coupling, all of which is compiled into Inform7
source code. Parallel to this, the Jericho environ-
ment (Hausknecht et al., 2020) allows inferring
relevant vocabulary and template-based object in-
teractions for Z-machine-based interactive fiction
games, easing action selection for agents.

1A variety of text adventure tooling, including the Adven-
ture Game Toolkit (AGT) and Text Adventure Development
System (TADS), was developed starting in the late 1980s, but
these simulators have generally not been adopted by the NLP

Object Tree Root

West of the House Top of Tree Clearing

Player (Agent) Small Mailbox Door

Leaflet

Bird Nest Pile of Leaves Grating

Egg

Figure 1: An example partial object tree from the interactive
fiction game Zork (Lebling et al., 1979).

3.1 Text World Modeling Paradigms

3.1.1 Environment Modelling
Environments are typically modeled as an object
tree that represents all the objects in an environ-
ment and their nested locations, as well as a set of
action rules that implement changes to the objects
in the environment based on an agent’s actions.

Objects: Because of the body of existing in-
teractive fiction environments for Z-machine en-
vironments, and nearly all popular tooling (In-
form7, TextWorlds, etc.) ultimately compiling to
Z-machine code, object models typically use the Z-
machine model (Nelson, 2014). Z-machine objects
have names (e.g. “mailbox”), descriptions (e.g.
“a small wooden mailbox”), binary flags called at-
tributes (e.g. “is_container_open”), and generic
properties stored as key-value pairs. Objects are
stored in the object tree, which represents the lo-
cations of all objects in the environment through
parent-child relationships, as shown in Figure 1.

Action Rules: Action rules describe how objects
change in response to a given world state, which is
frequently a collection of preconditions followed
by an action taken by an agent (e.g. “eat the ap-
ple”), but can also be due to environment states (e.g.
a plant dying because it hasn’t been watered for a
time greater than some threshold). Ceptre (Martens,
2015) and TextWorld (Côté et al., 2018) use linear
logic to represent possible valid state transitions.
In linear logic, a set of preconditions in the state
history of the world can be consumed by a rule
to generate a set of postconditions, such as con-
suming a closed(C) precondition and posting a
open(C) postcondition for a container-opening
action for some container C.

Côté et al. (2018) note the limitations in existing
implementations of state transition systems for text
worlds (such as single-step forward or backward
chaining), and suggest future systems may wish

community in favour of the more popular Inform series tools.

3



to use mature action languages such as STRIPS
(Fikes and Nilsson, 1971) or GDL (Genesereth
et al., 2005; Thielscher, 2010, 2017) as the ba-
sis of a world model, though each of these lan-
guages have tradeoffs in features (such as object
typing) and general expressivity (such as being
primarily agent-action centered, rather than imple-
menting environment-driven actions and processes)
that make certain kinds of complex modeling more
challenging. As a proof-of-concept, ALFWorld
(Shridhar et al., 2020b) uses the Planning Domain
Definition Language (PDDL, McDermott et al.,
1998) to define the semantics for the variety of
pick-and-place tasks in its text world rendering of
the ALFRED benchmark.

3.1.2 Agent Modelling
While environments can be modelled as a collec-
tion of states and allowable state transitions (or
rules), agents typically have incomplete or inac-
curate information about the environment, and
must make observations of the environment state
through (potentially noisy or inadequate) sensors,
and take actions based on those observations. Be-
cause of this, agents are typically modelled as
partially-observable Markov decision processes
(POMDP) (Kaelbling et al., 1998).

A Markov decision process (MDP) contains the
state history (S), valid state transitions (T ), avail-
able actions (A), and (for agent modeling) the ex-
pected immediate reward for taking each action
(R). POMDPs extend this to account for partial
observability by supplying a finite list of observa-
tions the agent can make (Ω), and an observation
function (O) that returns what the agent actually
observes from an observation, given the current
world state. For example, the observation function
might return unknown if the agent tries to examine
the contents of a locked container before unlock-
ing it, because the contents cannot yet be observed.
Similarly, when observing the temperature of a cup
of tea, the observation function might return coarse
measurements (e.g. hot, warm, cool) if the agent
uses their hand for measurement, or fine-grained
measurements (e.g. 70◦C) if the agent uses a ther-
mometer. A final discount factor (γ) influences
whether the agent prefers immediate rewards, or
eventual (distant) rewards. The POMDP defined
by defined by (S, T,A,R,Ω, O, γ) then serves as
a model for a learning framework, typically re-
inforcement learning (RL), to learn a policy that
enables the agent to maximize the reward.

4 Text World Environments

Environments are worlds implemented in simu-
lators, that agents explore to perform tasks. En-
vironments can be simple or complex, evaluate
task-specific or domain-general competencies, be
static or generative, and have small or large ac-
tion spaces compared to higher-fidelity simulators
(see the Appendix for a comparison of action space
sizes across environments and simulators).

4.1 Single Environment Benchmarks

Single environment benchmarks typically consist
of small environments designed to test specific
agent competencies, or larger interactive fiction
environments that test broad agent competencies to
navigate a large world and interact with the environ-
ment toward achieving some distant goal. Toy en-
vironments frequently evaluate an agent’s ability to
perform compositional reasoning tasks of increas-
ing lengths, such as in the Kitchen Cleanup and re-
lated benchmarks (Murugesan et al., 2020b). Other
toy worlds explore searching environments to lo-
cate specific objects (Yuan et al., 2018), or combin-
ing source materials to form new materials (Jiang
et al., 2020). While collections of interactive fic-
tion environments are used as benchmarks (see Sec-
tion 4.3), individual environments frequently form
single benchmarks. Zork (Lebling et al., 1979) and
its subquests are medium-difficulty environments
frequently used in this capacity, while Anchorhead
(Gentry, 1998) is a challenging environment where
state-of-the-art performance remains below 1%.

4.2 Domain-specific Environments

Domain-specific environments allow agents to
learn highly specific competencies relevant to a
single domain, like science or medicine, while typi-
cally involving more modeling depth than toy envi-
ronments. Tamari et al. (2021) create a TextWorld
environment for wet lab chemistry protocols, that
describe detailed step-by-step instructions for repli-
cating chemistry experiments. These text-based
simulations can then be represented as process exe-
cution graphs (PEG), which can then be run on real
lab equipment. A similar environment exists for
the materials science domain (Tamari et al., 2019).

4.3 Environment Collections as Benchmarks

To test the generality of agents, large collections of
interactive fiction games (rather than single environ-
ments) are frequently used as benchmarks. While
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the Text-Based Adventure AI Shared Task initially
evaluated on a single benchmark environment, later
instances switched to evaluating on 20 varied envi-
ronments to gauge generalization (Atkinson et al.,
2019). Fulda et al. (2017a) created a list of 50
interactive fiction games to serve as a benchmark
for agents to learn common-sense reasoning. Côté
et al. (2018) further curate this list, replacing 20
games without scores to those more useful for RL
agents. The Jericho benchmark (Hausknecht et al.,
2020) includes 32 interactive fiction games that
support Jericho’s in-built methods for score and
world-change detection, out of a total of 56 games
known to support these features.

4.4 Generative Environments

A difficulty with statically-initialized environments
is that because their structure is identical each time
the simulation is run, rather than learning general
skills, agents quickly overfit to a particular task
and environment, and rarely generalize to unseen
environments (Chaudhury et al., 2020). Procedu-
rally generated environments help address this need
by generating variations of environments centered
around specific goal conditions.

The TextWorld simulator (Côté et al., 2018) al-
lows specifying high-level parameters such as the
number of rooms, objects, and winning conditions,
then uses a random walk to procedurally generate
environment maps in the Inform7 language meeting
those specifications, using either forward or back-
ward chaining during generation to verify tasks can
be successfully completed in the random environ-
ment. As an example, the First TextWorld Prob-
lems shared task2 used TextWorld to generate 5k
variations of a cooking environment, divided into
train, development, and test sets. Similarly, Mu-
rugesan et al. (2020a) introduce TextWorld Com-
monSense (TWC), a simple generative environ-
ment for household cleaning tasks, modelled as
a pick-and-place task where agents must pick up
common objects from the floor, and place them in
their common household locations (such as placing
shoes in a shoe cabinet). Other related environ-
ments include Coin Collector (Yuan et al., 2018), a
generative environment for a navigation task, and
Yin et al.’s (2019b) procedurally generated envi-
ronment for cooking tasks.

Adhikari et al. (2020) generate a large set of

2https://competitions.codalab.org/
competitions/21557

recipe-based cooking games, where an agent must
precisely follow a cooking recipe that requires col-
lecting tools (e.g. a knife) and ingredients (e.g.
carrots), and processing those ingredients correctly
(e.g. dice carrots, cook carrots) in the correct order.
Jain et al. (2020) propose a similar synthetic bench-
mark for multi-step compositional reasoning called
SaladWorld. In the context of question answering,
Yuan et al. (2019) procedurally generate a simple
environment that requires an agent to search and
investigate attributes of objects, such as verifying
their existence, locations, or specific attributes (like
edibility). On the balance, while tooling exists to
generate simple procedural environments, when
compared to classic interactive fiction games (such
as Zork), the current state-of-the-art allows for gen-
erating only relatively simple environments with
comparatively simple tasks and near-term goals
than human-authored interactive fiction games.

5 Text World Agents

Recently a large number of agents have been
proposed for Text World environments. This
section briefly surveys common modeling meth-
ods, paradigms, and trends, with the performance
of recent agents on common interactive fiction
games (as categorized by the Jericho benchmark,
Hausknecht et al., 2020) shown in Table 2.

Reinforcement Learning: While some agents
rely on learning frameworks heavily coupled with
heuristics (e.g., Kostka et al., 2017, Golovin), ow-
ing to the sampling benefits afforded by operating
in a virtual environment, the predominant model-
ing paradigm for most contemporary text world
agents is reinforcement learning. Narasimhan et
al. (2015) demonstrate that “Deep-Q Networks”
(DQN) (Mnih et al., 2015) developed for Atari
games can be augmented with LSTMs for represen-
tation learning in Text Worlds, which outperform
simpler methods using n-gram bag-of-words rep-
resentations. He et al. (2016a, DRRN) extend this
to build the Deep Reinforcement Relevance Net-
work (DRRN), an architecture that uses separate
embeddings for the state space and actions, to im-
prove both training time and performance. Madotto
et al. (2020) show that the Go-Explore algorithm
(Ecoffet et al., 2019), which periodically returns
to promising but underexplored areas of a world,
can achieve higher scores than the DRRN with
fewer steps. Zahvey et al. (2018, AE-DQN) use an
Action Elimination Network (AEN) to remove sub-
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DRRN (He et al., 2016b) 0.55 0.09 0.07 0.20 0.05 0.00
BYU-Agent (Fulda et al., 2017a) 0.59 0.03 0.00 0.10 0.00 0.01
Golovin (Kostka et al., 2017) 0.20 0.04 0.10 0.15 0.00 0.01
AE-DQN (Zahavy et al., 2018) – 0.05 – – – –
NeuroAgent (Rajalingam and Samothrakis, 2019) 0.19 0.03 0.00 0.20 0.00 0.00
NAIL (Hausknecht et al., 2019) 0.38 0.03 0.26 – 0.00 0.00
CNN-DQN (Yin and May, 2019a) – 0.11 – – – –
IK-OMP (Tessler et al., 2019) – 1.00 – – – –
TDQN (Hausknecht et al., 2020) 0.47 0.03 0.00 0.34 0.02 0.00
KG-A2C (Ammanabrolu and Hausknecht, 2020) 0.58 0.10 0.01 0.06 0.03 0.01
SC (Jain et al., 2020) – 0.10 – – 0.0 –
CALM (N-gram) (Yao et al., 2020) 0.79 0.07 0.00 0.09 0.00 0.00
CALM (GPT-2) (Yao et al., 2020) 0.80 0.09 0.07 0.14 0.05 0.01
RC-DQN (Guo et al., 2020a) 0.81 0.11 0.40 0.20 0.05 0.02
MPRC-DQN (Guo et al., 2020a) 0.88 0.11 0.52 0.20 0.05 0.02
SHA-KG (Xu et al., 2020) 0.86 0.10 0.10 – 0.05 0.02
MC!Q*BERT (Ammanabrolu et al., 2020b) 0.92 0.12 – – 0.00 –
INV-DY (Yao et al., 2021) 0.81 0.12 0.06 0.11 0.05 –

Table 2: Agent performance on benchmark interactive fiction environments. All performance values are normalized to
maximum achievable scores in a given environment. Due to the lack of standard reporting practice, performance reflects values
reported for agents, but is unable to hold other elements (such as number of training epochs, number of testing epochs, reporting
average vs maximum performance) constant. Parentheses denote environment difficulty (E:Easy, M:Medium, H:Hard) as
determined by the Jericho benchmark (Hausknecht et al., 2020).

optimal actions, showing improved performance
over a DQN on Zork. Yao et al (2020, CALM)
use a GPT-2 language model trained on human
gameplay to reduce the space of possible input
command sequences, and produce a shortlist of can-
didate actions for an RL agent to select from. Yao
et al. (2021, INV-DY) demonstrate that semantic
modeling is important, showing that models that ei-
ther encode semantics through an inverse dynamic
decoder, or discard semantics by replacing words
with unique hashes, have different performance
distributions in different environments. Taking a
different approach, Tessler et al. (2019, IK-OMP)
show that imitation learning combined with a com-
pressed sensing framework can solve Zork when
restricted to a vocabulary of 112 words extracted
from walk-through examples.
Constructing Graphs: Augmenting reinforce-
ment learning models to produce knowledge graphs
of their beliefs can reduce training time and im-
prove overall agent performance (Ammanabrolu
and Riedl, 2019). Ammanabrolu et al. (2020, KG-
A2C) demonstrate a method for training an RL
agent that uses a knowledge graph to model its
state-space, and use a template-based action space
to achieve strong performance across a variety of in-
teractive fiction benchmarks. Adhikari et al. (2020)
demonstrate that a Graph Aided Transformer Agent
(GATA) is able to learn implicit belief networks

about its environment, improving agent perfor-
mance in a cooking environment. Xu et al. (2020,
SHA-KG) extend KG-A2C to use hierarchical RL
to reason over subgraphs, showing substantially
improved performance on a variety of benchmarks.

To support these modelling paradigms, Zelinka
et al. (2019) introduce TextWorld KG, a dataset for
learning the subtask of updating knowledge graphs
based on text world descriptions in a cooking do-
main, and show their best ensemble model is able
to achieve 70 F1 at this subtask. Similarly, An-
namabrolu et al. (2021a) introduce JerichoWorld, a
similar dataset for world modeling using knowl-
edge graphs but on a broader set of interactive
fiction games, and subsequently introduce World-
Former (Ammanabrolu and Riedl, 2021b), a multi-
task transformer model that performs well at both
knowledge-graph prediction and next-action pre-
diction tasks.
Question Answering: Agents can reframe Text
World tasks as question answering tasks to gain
relevant knowledge for action selection, with these
agents providing current state-of-the-art perfor-
mance across a variety of benchmarks. Guo et
al. (2020b, MPRC-DQN) use multi-paragraph read-
ing comprehension (MPRC) techniques to ask ques-
tions that populate action templates for agents, sub-
stantially reducing the number of training examples
required for RL agents while achieving strong per-
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formance on the Jericho benchmark. Similarly,
Ammanabrolu et al. (2020b, MC!Q*BERT) use
contextually-relevant questions (such as “Where
am I?”, “Why am I here?”) to populate their
knowledge base to support task completion.

Common-sense Reasoning: Agents arguably re-
quire a large background of common-sense or
world knowledge to perform embodied reasoning
in virtual environments. Fulda et al. (2017a) ex-
tract common-sense affordances from word vectors
trained on Wikipedia using word2vec (Mikolov
et al., 2013), and use this to increase performance
on interactive fiction games, as well as (more gener-
ally) on robotic learning tasks (Fulda et al., 2017b).
Murugesan et al. (2020b) combine the Concept-
Net common-sense knowledge graph (Speer et al.,
2017) with an RL agent that segments knowledge
between general world knowledge, and specific be-
liefs about the current environment, demonstrating
improved performance in a cooking environment.
Similarly, Dambekodi et al. (2020) demonstrate
that RL agents augmented with either COMET
(Bosselut et al., 2019), a transformer trained on
common-sense knowledge bases, or BERT (De-
vlin et al., 2019), which is hypothesized to con-
tain common-sense knowledge, outperform agents
without this knowledge on the interactive fiction
game 9:05. In the context of social reasoning, Am-
manabrolu et al. (2021) create a fantasy-themed
knowledge graph, ATOMIC-LIGHT, and show that
an RL agent using this knowledge base performs
well at the LIGHT social reasoning tasks.

6 Contemporary Focus Areas

World Generation: Generating detailed environ-
ments with complex tasks is labourious, while ran-
domly generating environments currently provides
limited task complexity and environment cohe-
siveness. World generation aims to support the
generation of complex, coherent environments, ei-
ther through better tooling for human authors (e.g.
Temprado-Battad et al., 2019), or automated gener-
ation systems that may or may not have a human-
in-the-loop. Fan et al. (2020) explore creating co-
hesive game worlds in the LIGHT environment
using a variety of embedding models including
Starspace (Wu et al., 2018a) and BERT (Devlin
et al., 2019). Automatic evaluations show perfor-
mance of between 36-47% in world building, de-
fined as cohesively populating an environment with
locations, objects, and characters. Similarly, hu-

man evaluation shows that users prefer Starspace-
generated environments over those generated by
a random baseline. In a more restricted domain,
Ammanabrolu et al. (2019) show that two models,
one Markov chain model, the other a generative
language model (GPT-2), are capable of generating
quests in a cooking environment, while there is a
tradeoff between human ratings of quest creativity
and coherence.

Ammanabrolu et al. (2020a) propose a large-
scale end-to-end solution to world generation that
automatically constructs interactive fiction environ-
ments based on a story (such as Sherlock Holmes)
provided as input. Their system first builds a
knowledge graph of the story by framing KG con-
struction as a question answering task, using their
model (AskBERT) to populate this graph. The
system then uses either a rule-based baseline or a
generative model (GPT-2) to generate textual de-
scriptions of the world from this knowledge graph.
User studies show that humans generally prefer
these neural-generated worlds to the rule-generated
worlds (measured in terms of interest, coherence,
and genre-resemblance), but that neural-generated
performance still substantially lags behind that of
human-generated worlds.

Hybrid 3D-Text Environments: Hybrid simula-
tors that can simultaneously render worlds both
graphically (2D or 3D) as well as textually of-
fer a mechanism to quickly learn high-level tasks
without having to first solve grounding or percep-
tual learning challenges. The ALFWorld simulator
(Shridhar et al., 2020b) combines the ALFRED 3D
home environment (Shridhar et al., 2020a) with
a simultaneous TextWorld interface to that same
environment, and introduce the BUTLER agent,
which shows increased task generalization on the
3D environment when first trained on the text world.
Prior to ALFWorld, Jansen (2020) showed that a
language model (GPT-2) was able to successfully
generate detailed step-by-step textual descriptions
of ALFRED task trajectories for up to 58% of un-
seen cases using task descriptions alone, without
visual input. Building on this, Micheli (2021) con-
firmed GPT-2 also performs well on the text world
rendering of ALFWorld, and is able to successfully
complete goals in 95% of unseen cases. Taken to-
gether, these results show the promise of quickly
learning complex tasks at a high-level in a text-only
environment, then transferring this performance to
agents grounded in more complex environments.
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7 Contemporary Limitations and
Challenges

Environment complexity is limited, and it’s cur-
rently difficult to author complex worlds. Two
competing needs are currently at odds: the de-
sire for complex environments to learn complex
skills, and the desire for environment variation
to encourage robustness in models. Current tool-
ing emphasizes creating varied procedural environ-
ments, but those environments have limited com-
plexity, and require agents to complete straight-
forward tasks. Economically creating complex,
interactive environments that simulate a significant
fraction of real world interactions is still well be-
yond current simulators or libraries – but required
for higher-fidelity interactive worlds that have mul-
tiple meaningful paths toward achieving task goals.
Generating these environments semi-automatically
(e.g. Ammanabrolu et al., 2020a) may offer a par-
tial solution. Independent of tooling, libraries and
other middleware offer near-term solutions to more
complex environment modeling, much in the same
way 3D game engines are regularly coupled with
physics engine middleware to dramatically reduce
the time required to implement forces, collisions,
lighting, and other physics-based modeling. Cur-
rently, few analogs exist for text worlds. The addi-
tion of a chemistry engine that knows ice warmed
above the freezing point will change to liquid wa-
ter, or a generator engine that knows the sun is a
source of sunlight during sunny days, or an obser-
vation engine that knows tools (like microscopes or
thermometers) can change the observation model
of a POMDP – may offer tractability in the form
of modularization. Efforts using large-scale crowd-
sourcing to construct knowledge bases of common-
sense knowledge (e.g., ATOMIC, Sap et al., 2019)
may be required to support these efforts.

Current planning languages offer a partial so-
lution for environment modelling. While simu-
lators partially implement facilities for world mod-
eling, some (e.g. Côté et al., 2018; Shridhar et al.,
2020b) suggest using mature planning languages
like STRIPS (Fikes and Nilsson, 1971) or PDDL
(McDermott et al., 1998) for more full-featured
modeling. This would not be without significant
development effort – existing implementations of
planning languages typically assume full-world ob-
servability (in conflict with POMDP modelling),
and primarily agent-directed state-space changes,
making complex world modeling with partial ob-

servability, and complex environment processes
(such as plants that require water and light to sur-
vive, or a sun that rises and sets causing different
items to be observable in day versus night) out-
side the space of being easily implemented with
off-the-shelf solutions. In the near-term, it is likely
that a domain-specific language specific to complex
text world modeling would be required to address
these needs while simultaneously reducing the time
investment and barrier-to-entry for end users.

Analyses of environment complexity can inform
agent design and evaluation. Text world articles
frequently emphasize agent modeling contributions
over environment, methodological, or analysis con-
tributions – but these contributions are critical, es-
pecially in the early stages of this subfield. Agent
performance in easy environments has increased in-
crementally, while medium-to-hard environments
have seen comparatively modest improvements.
Agent performance is typically reported as a distri-
bution over a large number of environments, and
the methodological groundwork required to under-
stand when different models exceed others in time
or performance over these environment distribu-
tions is critical to making forward progress. Trans-
fer learning in the form of training on one set of
environments and testing on others has become a
standard feature of benchmarks (e.g. Hausknecht
et al., 2020), but focused contributions that work
to precisely characterize the limits of what can be
learned from (for example) OmniQuest and trans-
ferred to Zork, and what capacities must be learned
elsewhere, will help inform research programs in
agent modeling and environment design.

Transfer learning between text world and 3D
environments. Tasks learned at a high-level in
text worlds help speed learning when those same
models are transferred to more complex 3D envi-
ronments (Shridhar et al., 2020b). This framing of
transfer learning may resemble how humans can
converse about plans for future actions in locations
remote from those eventual actions (as when we
apply knowledge learned in classrooms to the real
world). As such, text-plus-3D environment render-
ing shows promise as a manner of controlling for
different sources of complexity in multi-modal task
learning (from high-level task-specific knowledge
to low-level perceptual knowledge), and appears
a promising research methodology for imparting
complex task knowledge on agents that are able to
navigate high-fidelity virtual environments.
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A Extended List of Simulators

Simulators provide the infrastructure to implement
the environments, objects, characters, and interac-
tions of a virtual world, typically through a combi-
nation of a scripting engine to define the behavior
of objects and agents, with a rendering engine that
provides a view of the world for a given agent or
user. Simulators for embodied agents exist on a
fidelity spectrum, from photorealistic 3D environ-
ments to worlds described exclusively with lan-
guage, where a trade-off typically exists between
richer rendering and richer action spaces. This fi-
delity spectrum (paired with example simulators) is
shown in Table 3, and described briefly below. Note
that many of these higher-fidelity simulators are
largely out-of-scope when discussing Text Worlds,
except as a means of contrast to text-only worlds,
and in the limited context that these simulators
make use of text.

3D Environment Simulators: 3D simulators pro-
vide the user with complex 3D environments, in-
cluding near-photorealistic environments such as
AI2-Thor (Kolve et al., 2017), and include physics
engines that model forces, liquids, illumination,
containment, and other object interactions. Be-
cause of their rendering fidelity, they offer the pos-
sibility of inexpensively training robotic models in
virtual environments that can then be transferred to
the real world (e.g. RoboThor, Deitke et al., 2020).
Adding objects to 3D worlds can be expensive, as
this requires 3D modelling expertise that teams
may not have. Similarly, adding agent actions or
object-object interactions through a scripting lan-
guage can be expensive if those actions are outside
what is easily implemented in the simulator (like
creating gasses, or using a pencil or saw to modify
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3D Environment Simulators

– AI2-Thor (Kolve et al., 2017)
– CHALET (Yan et al., 2018)
– House3D (Wu et al., 2018b)
– RoboThor (Deitke et al., 2020)
D ALFRED (Shridhar et al., 2020a)

D I ALFWorld (Shridhar et al., 2020b)

Voxel-Based Simulators

– Malmo (Johnson et al., 2016)
– MineRL (Guss et al., 2019)

Gridworld Simulators

– Rogue-in-a-box (Asperti et al., 2017)
D BABYAI (Chevalier-Boisvert et al., 2018)
I Nethack LE (Küttler et al., 2020)
I VisualHints (Carta et al., 2020)
– Griddly (Bamford, 2021)

Text-based Simulators

I Z-Machine (Infocom, 1989)
I Inform7 (Nelson, 2006)
I Ceptre (Martens, 2015)
I TextWorld (Côté et al., 2018)
I LIGHT (Urbanek et al., 2019)
I Jericho (Hausknecht et al., 2020)

Table 3: Example embodied simulation environments bro-
ken down by environment rendering fidelity. D specifies that
environments supply natural language directives to the agent,
I specifies that environments are interacted with (at least in
part) using natural language input and/or output, and no rating
represents environments that do not have a significant text
component.

an object). Because of this, action spaces tend to be
small, and limited to movement, and one (or a small
number of) interaction commands. Some simula-
tors and environments include text directives for
an agent to perform, such as an agent being asked

Environment # Actions Examples

3D Environment Simulators

ALFRED 7 Command pickup, put, heat, cool
5 Movement move forward

Gridworld

BABYAI 4 Command pickup, drop, toggle
3 Movement turn left, move forward

NETHACK 77 Command eat, open, kick, read
16 Movement move north, move east

Text-based

ALFWorld 11 Command goto, take, heat, clean
LIGHT 11 Command get, drop, give, wear

22 Emotive applaud, wave, wink
PEG (Biomedical) 35 Command incubate, mix, spin

Zork 56 Command open, read, drop, drink

Table 4: Action space complexity for a selection of 3D,
gridworld, and text-based environments.

to “slice an apple then cool it” in the ALFRED
environment (Shridhar et al., 2020a). Other hybrid
environments such as ALFWorld (Shridhar et al.,
2020b) simultaneously render an environment both
in 3D as well as in text, allowing agents to learn
high-level task knowledge through text interactions,
then ground these in environment-specific percep-
tual input though transfer learning.

Voxel-based Simulators: Voxel-based simulators
create worlds from (typically) large 3D blocks, low-
ering rendering fidelity while greatly reducing the
time and skill required to add new objects. Sim-
ilarly, creating new agent-object or object-object
interactions can be easier because they can gener-
ally be implemented in a coarser manner – though
some kinds of basic spatial actions (like rotating an
object in increments smaller than 90 degrees) are
generally not easily implemented. Malmo (John-
son et al., 2016) and MineRL (Guss et al., 2019)
offer wrappers and training data to build agents
in the popular Minecraft environment. While the
agent’s action space is limited in Minecraft (see
Table 4), the crafting nature of the game (that al-
lows collecting, creating, destroying, or combining
objects using one or more voxels) affords exploring
a variety of compositional reasoning tasks with a
low barrier to entry, while still using a 3D envi-
ronment. Text directives, like those in CraftAssist
(Gray et al., 2019), allow agents to learn to perform
compositional crafting actions in this 3D environ-
ment from natural language dialog.

GridWorld Simulators: 2D gridworlds are com-
paratively easier to construct than 3D environments,
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and as such more options are available. GridWorlds
share the commonality that they exist on a dis-
cretized 2D plane, typically containing a maximum
of a few dozen cells on either dimension. Cells are
discrete locations that (in the simplest case) contain
up to a single agent or object, while more complex
simulators allow cells to contain more than one
object, including containers. Agents move on the
plane through simplified spatial dynamics, at a min-
imum rotate left, rotate right, and move forward,
allowing the entire world to be explored through a
small action space.

Where gridworlds tend to differ is in their render-
ing fidelity, and their non-movement action spaces.
In terms of rendering, some (such as BABYAI,
Chevalier-Boisvert et al., 2018) render a world
graphically, using pixels, with simplified shapes
for improving rendering throughput and reducing
RL agent training time. Others such as NetHack
(Küttler et al., 2020) are rendered purely as textual
characters, owing to their original nature as early
terminal-only games. Some simulators (e.g. Grid-
dly, Bamford, 2021) support a range of rendering
fidelities, from sprites (slowest) to shapes to text
characters (fastest), depending on how critical ren-
dering fidelity is for experimentation. As with 3D
simulators, hybrid environments (like VisualHints,
Carta et al., 2020) exist, where environments are
simultaneously rendered as a Text World and ac-
companying GridWorld that provides an explicit
spatial map.

Action spaces vary considerably in GridWorld
simulators (see Table 4), owing to the different
scripting environments that each affords. Some
environments have a small set of hardcoded envi-
ronment rules (e.g. BABYAI), while others (e.g.
NetHack) offer nearly 100 agent actions, rich craft-
ing, and complex agent-object interactions. Text
can occur in the form of task directives (e.g. “put
a ball next to the blue door” in BABYAI), partial
natural language descriptions of changes in the en-
vironmental state (e.g. “You are being attacked by
an orc” in NetHack), or as full Text World descrip-
tions in hybrid environments.
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