
Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH), pages 24 - 28
July 14, 2022 ©2022 Association for Computational Linguistics

6 Appendix

6.1 GreaseTerminator
In response to the continued widespread presence
of interface-based harms in digital systems, Datta
et al. (Datta et al., 2021) developed GreaseTermina-
tor, a visual overlay modification method. This ap-
proach enables researchers to develop, deploy and
study interventions against interface-based harms
in apps. This is based on the observation that
it used to be difficult in the past for researchers
to study the efficacy of different intervention de-
signs against harms within mobile apps (most pre-
vious approaches focused on desktop browsers).
GreaseTerminator provides a set of ‘hooks’ that
serve as templates for researchers to develop inter-
ventions, which are then deployed and tested with
study participants. GreaseTerminator interventions
usually come in the form of machine learning mod-
els that build on the provided hooks, automatically
detect harms within the smartphone user interface
at run-time, and choose appropriate interventions
(e.g. a visual overlay to hide harmful content, or
content warnings). The GreaseTerminator archi-
tecture is shown in Figure 6(a) in contrast to the
GreaseVision architecture.
Technical improvements w.r.t. GreaseTerminator
The improvements of GreaseVision with respect to
GreaseTerminator are two-fold: (i) improvements
to the framework enabling end-user development
and harms mitigation (discussed in detail in Sec-
tions 4.2, 4.3, 5 and 6), and (ii) improvements to
the technical architecture (which we discuss in this
section). Our distinctive and non-trivial technical
improvements to the GreaseTerminator architec-
ture fall under namely latency, device support, and
interface-agnosticity. GreaseTerminator requires
the end-user device to be the host device, and over-
lays graphics on top. A downside of this is the
non-uniformity of network latency between users
(e.g. depending on the internet speed in their loca-
tion) resulting in a potential mismatch in rendered
overlays and underlying interface. With Grease-
Vision, we send a post-processed/re-rendered im-
age once to the end-user device’s browser (stream
buffering) and do not need to send any screen im-
age from the host user device to a server, thus there
is no risk of overlay-underlay mismatch and we
even reduce network latency by half. Images are re-
layed through an HTTPS connection, with a down-
load/upload speed ⇠ 250Mbps, and each image
sent by the server amounting to ⇠ 1Mb). The theo-

retical latency per one-way transmission should be
1⇥1024⇥8bits
250⇥106bits/s = 0.033ms. With each user at most re-
quiring server usage of one NVIDIA GeForce RTX
2080, with reference to existing online benchmarks
(Ignatov, 2021) the latency for 1 image (CNN) and
text (LSTM) model would be 5.1ms and 4.8ms
respectively. While the total theoretical latency
for GreaseTerminator is (2 ⇥ 0.033 + 5), that of
GreaseVision is (0.033 + 5) = 5.03ms. Another
downside of GreaseTerminator is that it requires
client-side software for each target platform. There
would be pre-requisite OS requirements for the
end-user device, where only versions of GreaseTer-
minator developed for each OS can be offered sup-
port (currently only for Android). GreaseVision
streams screen images directly to a login-verified
browser, allowing users to access desktop/mobile
on any browser-supported device. Despite varia-
tions in the streaming architecture between Grea-
seVision and GreaseTerminator, the interface mod-
ification framework (hooks and overlays) are re-
tained, hence interventions (even those developed
by end-users) from GreaseVision are compatible in
GreaseTerminator. In addition to improvements
to the streaming architecture to fulfil interface-
agnosticity, adapting the visual overlay modifica-
tion framework into a collaborative HITL imple-
mentation further improves the ease-of-use for all
stakeholders in the ecosystem. End-users do not
need to root their devices, find intervention tools
or even self-develop their own customized tools.
We eliminate the need for researchers to craft in-
terventions (as users self-develop autonomously)
or develop their own custom experience sampling
tools (as end-users/researchers can analyze digi-
tal experiences from stored screenomes). We also
eliminate the need for intervention developers to
learn a new technical framework or learn how to
fine-tune models. Running emulators on docker
containers and virtual machines on a (single) host
server is feasible, and thus allows for the browser
stream to be accessible cross-device without re-
striction, e.g. access iOS emulator on Android
device, or macOS virtual machine on Windows de-
vice. Certain limitations are imposed on the current
implementation, such as a lack of access to the de-
vice camera, audio, and haptics; however, these
are not permanent issues, and engineered imple-
mentations exist where a virtual/emulated device
can route and access the host device’s input/output
sources (VrtualApp, 2016).

24



Figure 6: Architecture of GreaseTerminator (left) and GreaseVision (right).

Interface Rendering Interventions
Development

Server

Client

User Device & Screen

Screen
Underlay

Screen
Overlay

input
frames

+ Selected Visual Interventions

output
frames

Text
Hook

Mask
Hook

Model
Hook

(a) The high-level architecture of GreaseTerminator. De-
tails are explained in Section 2.3 and 4.2.

Interface Rendering Interventions Development

Server

Client
Web Application

User Database

User Virtual Machines & Containers

Fr
am

e t
Fr
am

e t+
1

Fr
am

e t+
2

…

Fr
am

e t
Fr
am

e t+
1

Fr
am

e t+
2

…

Raw Screen ImagesUpdated Screen Images
access

render

input
commands

overlay

generate
access

Screenome Visualization

populate
screenome

annotate Masks, Models
à (Personal) Interventions

activate interventions

Network Interventions

(b) The high-level architecture of GreaseVision, both as a sum-
mary of our technical infrastructure as well as one of the collabo-
rative HITL interventions development approach.

Hooks The text hook enables modifying the text
that is displayed on the user’s device. It is imple-
mented through character-level optical character
recognition (OCR) that takes the screen image as
an input and returns a set of characters and their
corresponding coordinates. The EAST text detec-
tion (Zhou et al., 2017) model detects text in im-
ages and returns a set of regions with text, then
uses Tesseract (Google, 2007) to extract charac-
ters within each region containing text. The mask
hook matches the screen image against a target tem-
plate of multiple images. It is implemented with
multi-scale multi-template matching by resizing an
image multiple times and sampling different subim-
ages to compare against each instance of mask in
a masks directory (where each mask is a cropped
screenshot of an interface element). We retain the
default majority-pixel inpainting method for mask
hooks (inpainting with the most common colour
value in a screen image or target masked region).
As many mobile interfaces are standardized or uni-
form from a design perspective compared to images
from the natural world, this may work in many in-
stances. The mask hook could be connected to
rendering functions such as highlighting the inter-
face element with warning labels, or image inpaint-
ing (fill in the removed element pixels with newly
generated pixels from the background), or adding
content/information (from other apps) into the in-
painted region. Developers can also tweak how the
mask hook is applied, for example using the multi-
scale multi-template matching algorithm with con-
tourized images (shapes, colour-independent) or
coloured images depending on whether the mask
contains (dynamic) sub-elements, or using few-
shot deep learning models if similar interface ele-
ments are non-uniform. A model hook loads any
machine learning model to take any input and gen-

erate any output. This allows for model embedding
(i.e. model weights and architectures) to inform
further overlay rendering. We can connect models
trained on specific tasks (e.g. person pose detection,
emotion/sentiment analysis) to return output given
the screen image (e.g. bounding box coordinates
to filter), and this output can then be passed to a
pre-defined rendering function (e.g. draw filtering
box).

6.2 Related Works (extended)

6.2.1 Motivation: Pervasiveness and
Individuality of Digital Harms

It is well-known that digital harms are widespread
in our day-to-day technologies. Despite this, the
academic literature around these harms is still de-
veloping, and it remains difficult to state exactly
what the harms are that need to be addressed. Fa-
mously, Gray et al. (Gray et al., 2018) put forward
a 5-class taxonomy to classify dark patterns within
apps: interface interference (elements that manipu-
late the user interface to induce certain actions over
other actions), nagging (elements that interrupt the
user’s current task with out-of-focus tasks) forced
action (elements that introduce sub-tasks forcefully
before permitting a user to complete their desired
task), obstruction (elements that introduce subtasks
with the intention of dissuading a user from per-
forming an operation in the desired mode), and
sneaking (elements that conceal or delay informa-
tion relevant to the user in performing a task).

A challenge with such framework and tax-
onomies is to capture and understand the mate-
rial impacts of harms on individuals. Harms tend
to be highly individual and vary in terms of how
they manifest within users of digital systems. The
harms landscape is also quickly changing with
ever-changing digital systems. Defining the spec-

25



trum of harms is still an open problem, the range
varying from heavily-biased content (e.g. disin-
formation, hate speech), self-harm (e.g. eating
disorders, self-cutting, suicide), cyber crime (e.g.
cyber-bullying, harassment, promotion of and re-
cruitment for extreme causes (e.g. terrorist organi-
zations), to demographic-specific exploitation (e.g.
child-inappropriate content, social engineering at-
tacks) (HM, 2019; Pater and Mynatt, 2017; Wang
et al., 2017; Honary et al., 2020; Pater et al., 2019),
for which we recommend the aforementioned cited
literature. The last line of defense against many
digital harms is the user interface. This is why we
are interested in interface-emergent harms in this
paper, and how to support individuals in develop-
ing their own strategies to cope with and overcome
such harms.

6.2.2 Developments in Interface Modification
& Re-rendering

Digital harms have long been acknowledged as a
general problem, and a range of technical inter-
ventions against digital harms are developed. In-
terventions, also similarly called modifications or
patches, are changes to the software, which result
in a change in (perceived) functionality and end-
user usage. We review and categorize key technical
intervention methods for interface modification by
end-users, with cited examples specifically for dig-
ital harms mitigation. While there also exist non-
technical interventions, in particular legal reme-
dies, it is beyond this work to give a full account
of these different interventions against harms; a
useful framework for such an analysis is provided
by Lawrence Lessig (Lessig) who characterised the
different regulatory forces in the digital ecosystem.

Interface-code modifications (Kollnig et al.,
2021; Higi, 2020; Jeon et al., 2012; Rasthofer et al.,
2014; Davis and Chen, 2013; Backes et al., 2014;
Xu et al., 2012; LuckyPatcher, 2020; Davis et al.,
2012; Lyngs et al., 2020b; Freeman, 2020; rovo89,
2020; Agarwal and Hall, 2013; Enck et al., 2010;
MaaarZ, 2019; VrtualApp, 2016) make changes
to source code, either installation code (to modify
software before installation), or run-time code (to
modify software during usage). On desktop, this
is done through browser extensions and has given
rise to a large ecosystem of such extensions. Some
of the most well-known interventions are ad block-
ers, and tools that improve productivity online (e.g.
by removing the Facebook newsfeed (Lyngs et al.,
2020b)). On mobile, a prominent example is App-

Guard (Backes et al., 2014), a research project by
Backes et al. that allowed users to improve the pri-
vacy properties of apps on their phone by making
small, targeted modification to apps’ source code.
Another popular mobile solution in the commu-
nity is the app Lucky Patcher (LuckyPatcher, 2020)
that allows to get paid apps for free, by removing
the code relating to payment functionality directly
from the app code.

Some of these methods may require the highest
level of privilege escalation to make modifications
to the operating system and other programs/apps
as a root user. On iOS, Cydia Substrate (Freeman,
2020) is the foundation for jailbreaking and fur-
ther device modification. A similar system, called
Xposed Framework (rovo89, 2020), exists for An-
droid. To alleviate the risks and challenges af-
flicted with privilege escalation, VirtualXposed (Vr-
tualApp, 2016) create a virtual environment on the
user’s Android device with simulated privilege es-
calation. Users can install apps into this virtual
environment and apply tools of other modification
approaches that may require root access. Protect-
MyPrivacy (Agarwal and Hall, 2013) for iOS and
TaintDroid (Enck et al., 2010) for Android both
extend the functionality of the smartphone oper-
ating system with new functionality for the anal-
ysis of apps’ privacy features. On desktops, code
modifications tend not to be centred around a com-
mon framework, but are more commonplace in
general due to the traditionally more permissive se-
curity model compared to mobile. Antivirus tools,
copyright protections of games and the modding of
UI components are all often implemented through
interface-code modifications.

Interface-external modifications (Geza, 2019;
Bodyguard, 2019; Lee et al., 2014; Ko et al., 2015;
Andone et al., 2016; Hiniker et al., 2016; Löchte-
feld et al., 2013; Labs, 2019; Okeke et al., 2018) are
the arguably most common way to change default
interface behaviour. An end-user would install a
program so as to affect other programs/apps. No
change to the operating system or the targeted pro-
grams/apps is made, so an uninstall of the program
providing the modification would revert the device
to the original state. This approach is widely used
to track duration of device usage, send notifications
to the user during usage (e.g. timers, warnings),
block certain actions on the user device, and other
aspects. The HabitLab (Geza, 2019) is a prominent
example developed by Kovacs et al. at Stanford.

26



This modification framework is open-source and
maintained by a community of developers, and pro-
vides interventions for both desktop and mobile.

Visual overlay modifications render graphics
on an overlay layer over any active interface in-
stance, including browsers, apps/programs, videos,
or any other interface in the operating system. The
modifications are visual, and do not change the
functionality of the target interface. It may ren-
der sub-interfaces, labels, or other graphics on top
of the foreground app. Prominent examples are
DetoxDroid (flxapps, 2021), Gray-Switch (GmbH,
2021), Google Accessibility Suite (Google, 2021),
and GreaseTerminator (Datta et al., 2021).

We would like to establish early on that we pur-
sue a visual overlay modifications approach. Inter-
ventions should be rendered in the form of over-
lay graphics based on detected elements, rather
than implementing program code changes natively,
hence focused on changing the interface rather
than the functionality of the software. Interven-
tions should be generalizable; they are not solely
website- or app-oriented, but interface-oriented. In-
terventions do not target specific apps, but general
interface elements and patterns that could appear
across different interface environments. To sup-
port the systemic requirements in Section 2.4, we
require an interface modification approach that is
(i) interface-agnostic and (ii) easy-to-use. To this
extent, we build upon the work of GreaseTermina-
tor (Datta et al., 2021), a framework optimized for
these two requirements.

In response to the continued widespread pres-
ence of interface-based harms in digital sys-
tems, Datta et al. (Datta et al., 2021) developed
GreaseTerminator, a visual overlay modification
method. This approach enables researchers to
develop, deploy and study interventions against
interface-based harms in apps. This is based on the
observation that it used to be difficult in the past
for researchers to study the efficacy of different
intervention designs against harms within mobile
apps (most previous approaches focused on desk-
top browsers). GreaseTerminator provides a set of
‘hooks’ that serve as templates for researchers to
develop interventions, which are then deployed and
tested with study participants. GreaseTerminator
interventions usually come in the form of machine
learning models that build on the provided hooks,
automatically detect harms within the smartphone
user interface at run-time, and choose appropriate

interventions (e.g. a visual overlay to hide harmful
content, or content warnings). A visualisation of
the GreaseTerminator approach is shown in Fig-
ure 6(a).

6.2.3 Opportunities for Low-code
Development in Interface Modification

Low-code development platforms have been de-
fined, according to practitioners, to be (i) low-
code (negligible programming skill required to
reach endgoal, potentially drag-and-drop), (ii) vi-
sual programming (a visual approach to develop-
ment, mostly reliant on a GUI, and "what-you-
see-is-what-you-get"), and (iii) automated (unat-
tended operations exist to minimize human involve-
ment) (Luo et al., 2021). Low-code development
platforms exist for varying stages of software cre-
ation, from frontend (e.g. App maker, Bubble.io,
Webflow), to workflow (Airtable, Amazon Honey-
code, Google Tables, UiPath, Zapier), to backend
(e.g. Firevase, WordPress, flutterflow); none ex-
ist for software modification of existing applica-
tions across interfaces. According to a review of
StackOverflow and Reddit posts analysed by Luo
et al. (Luo et al., 2021), low-code development
platforms are cited by practitioners to be tools that
enable faster development, lower the barrier to us-
age by non-technical people, improves IT gover-
nance compared to traditional programming, and
even suits team development; one of the main limi-
tations cited is that the complexity of the software
created is constrained by the options offered by the
platform.

User studies have shown that users can self-
identify malevolent harms and habits upon self-
reflection and develop desires to intervene against
them (Cho et al., 2021; Lyngs et al., 2020a). Not
only do end-users have a desire or interest in self-
reflection, but there is indication that end-users
have a willingness to act. Statistics for content
violation reporting from Meta show that in the Jan-
Jun 2021 period, ⇠ 42,200 and ⇠ 5,300 in-app
content violations were reported on Facebook and
Instagram respectively (Meta, 2022) (in this report,
the numbers are specific to violations in local law,
so the actual number with respect to community
standard violatons would be much higher; the num-
bers also include reporting by governments/courts
and non-government entities in addition to mem-
bers of the public). Despite a willingness to act,
there are limited digital visualization or reflection
tools that enable flexible intervention development

27



by end-users. There are visualization or reflec-
tion tools on browser and mobile that allow for
reflection (e.g. device use time (Andone et al.,
2016)), and there are separate and disconnected
tools for intervention (Section 2.2), but there are
limited offerings of flexible intervention develop-
ment by end-users, where end-users can observe
and analyze their problems while generating cor-
responding fixes, which thus prematurely ends the
loop for action upon regret/reflection. There is a
disconnect between the harms analysis ecosystem
and interventions ecosystem. A barrier to binding
these two ecosystems is the existence of low-code
development platforms for end-users. While such
tooling may exist for specific use cases on spe-
cific interfaces (e.g. web/app/game development)
for mostly creationary purposes, there are limited
options available for modification purposes of exist-
ing software, the closest alternative being extension
ecosystems (Kollnig et al., 2021; Google, 2010a).
Low-code development platforms are in essence
"developer-less", removing developers from the
software modification pipeline by reducing the bar-
rier to modification through the use of GUI-based
features and negligible coding, such that end-users
can self-develop without expert knowledge.

Human-in-the-Loop (HITL) learning is the
procedure of integrating human knowledge and ex-
perience in the augmentation of machine learning
models. It is commonly used to generate new data
from humans or annotate existing data by humans.
Wallace et al. (Wallace et al., 2019) constructed
a HITL system of an interactive interface where a
human talks with a machine to generate more Q&A
language and train/fine-tune Q&A models. Zhang
et al. (Zhang et al., 2019) proposed a HITL system
for humans to provide data for entity extraction,
including requiring humans to formulate regular
expressions and highlight text documents, and an-
notate and label data. For an extended literature
review, we refer the reader to Wu et al. (Wu et al.,
2021). Beyond lab settings, HITL has proven it-
self in wide deployment, where a wide distribution
of users have indicated a willingness and ability
to perform tasks on a HITL annotation tool, re-
CAPTCHA, to access utility and services. In 2010,
Google reported over 100 million reCAPTCHA in-
stances are displayed every day (Google, 2010b)
to annotate different types of data, such as deci-
phering text for OCR of books or street signs, or
labelling objects in images such as traffic lights or

vehicles.
While HITL formulates the structure for human-

AI collaborative model development, model fine-
tuning and few-shot learning formulate the algo-
rithmic methods of adapting models to changing
inputs, environments, and contexts. Both adap-
tation approaches require the model to update its
parameters with respect to the new input distribu-
tion. For model fine-tuning, the developer re-trains
a pre-trained model on a new dataset. This is in
contrast to training a model from a random ini-
tialization. Model fine-tuning techniques for pre-
trained foundation models, that already contain
many of the pre-requisite subnetworks required
for feature reuse and warm-started training on a
smaller target dataset, have indicated robustness
on downstream tasks (Galanti et al., 2022; Abnar
et al., 2022; Neyshabur et al., 2020). If there is an
extremely large number of input distributions and
few samples per distribution (small datasets), few-
shot learning is an approach where the developer
has separately trained a meta-model that learns how
to change model parameters with respect to only a
few samples. Few-shot learning has demonstrated
successful test-time adaptation in updating model
parameters with respect to limited test-time sam-
ples in both image and text domains (Raghu et al.,
2020; Koch et al., 2015; Finn et al., 2017; Datta,
2021). Some overlapping techniques even exist
between few-shot learning and fine-tuning, such as
constructing subspaces and optimizing with respect
to intrinsic dimensions (Aghajanyan et al., 2021;
Datta and Shadbolt, 2022; Simon et al., 2020).

The raw data for harms and required interface
changes reside in the history of interactions be-
tween the user and the interface. In the Screenome
project (Reeves et al., 2020, 2021), the investigators
proposed the study and analysis of the moment-by-
moment changes on a person’s screen, by captur-
ing screenshots automatically and unobtrusively
every t = 5 seconds while a device is on. This
record of a user’s digital experiences represented
as a sequence of screens that they view and interact
with over time is denoted as a user’s screenome.
Though not mobilized widely amongst users for
their self-reflection or personalized analysis, in-
tegrating screenomes into an interface modifica-
tion framework can play the dual roles of visual-
izing raw (harms) data to users while manifesting
as parseable input for visual overlay modification
frameworks.

28


