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Introduction

The W-NUT 2022 workshop focuses on a core set of natural language processing tasks on top of
noisy user-generated text, such as that found on social media, web forums and online reviews. Recent
years have seen a significant increase of interest in these areas. The internet has democratized content
creation leading to an explosion of informal user-generated text, publicly available in electronic format,
motivating the need for NLP on noisy text to enable new data analytics applications.

We have received 39 main workshop submissions (22 long and 17 short papers). The workshop will be
held in hybrid in-person and virtual modes. We have two invited speakers Yulia Tsvetkov (University
of Washington) and David Jurgens (University of Michigan) who will talk about their work. We’re very
thankful to have them in our workshop.

We have the best paper award(s) sponsored by Megagon Labs this year, for which we are thankful. We
would like to thank the Program Committee members who reviewed the papers. We would also like to
thank the workshop participants.

Wei Xu, Alan Ritter, Tim Baldwin and Afshin Rahimi
Co-Organizers
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Changes in Tweet Geolocation over Time:
A Study with Carmen 2.0

Jingyu Zhang and Alexandra DeLucia and Mark Dredze
Department of Computer Science

Johns Hopkins University
{jzhan237, aadelucia, mdredze}@jhu.edu

Abstract
Researchers across disciplines use Twitter ge-
olocation tools to filter data for desired loca-
tions. These tools have largely been trained
and tested on English tweets, often originat-
ing in the United States from almost a decade
ago. Despite the importance of these tools for
data curation, the impact of tweet language,
country of origin, and creation date on tool
performance remains largely unknown. We
explore these issues with Carmen, a popular
tool for Twitter geolocation. To support this
study we introduce Carmen 2.0, a major update
which includes the incorporation of GeoNames,
a gazetteer that provides much broader cover-
age of locations. We evaluate using two new
Twitter datasets, one for multilingual, multiyear
geolocation evaluation, and another for usage
trends over time. We found that language, coun-
try origin, and time does impact geolocation
tool performance.

https://github.com/AADeLucia/
carmen-wnut22-submission

1 Introduction

Demographic studies leverage location-specific so-
cial media posts to track impactful events such as
civil unrest (Sech et al., 2020; Chinta et al., 2021;
Alsaedi et al., 2017; Littman, 2018), natural disas-
ters (Wang et al., 2015), and disease spread (Xu
et al., 2020). For social media posts from Twit-
ter, researchers either collect posts from locations
of interest in real-time with the Twitter API, or
use third-party Twitter geolocation tools to identify
tweet locations on an existing dataset. In Han et al.
(2016), the authors distinguish between user and
tweet geolocation. We focus on tweet geolocation
in this work. These tools identify the location of
a user or tweet based on tweet metadata (Dredze
et al., 2013), tweet content (Alsaedi et al., 2017;
Rahimi et al., 2016; Han et al., 2014; Wu and Ger-
ber, 2018; Izbicki et al., 2019), and social networks
(Rout et al., 2013; Jurgens, 2013).

While widely used, geolocation tools tend to
be English-centric and are often not evaluated for
global coverage or performance across time and
language. These factors are important to study,
since available user metadata, Twitter policies, and
content patterns on which the tools depend on can
change significantly over time.

In this work, we assess how the following factors
impact geolocation tools:

1. Language: Is there a performance difference
between languages, specifically between En-
glish and non-English tweets?

2. Country: Is there a performance difference
between countries, specifically inside and out-
side the US?

3. Time: How does geolocation performance
change over a large span of time? What dif-
ferences in the data contribute to this perfor-
mance change?

We measure performance in geolocation by cov-
erage, i.e. the number of tweets that can be mapped
to a location, and accuracy, the correctness of the
assigned locations. When evaluated together, these
metrics provide analogues to recall and precision,
respectively.

To answer the above research questions, we
analyze the performance of Twitter geolocation
tool Carmen (Dredze et al., 2013), across time,
language, and country of origin. In order to
study performance across these factors, we intro-
duce TWITTER-GLOBAL, a new geocoded multilin-
gual and multiyear dataset (2013–2021) of 15.3M
tweets. We created this dataset to fill a gap in
other geolocation evaluation datasets that are either
English-only (Han et al., 2012), or multilingual but
restricted to short periods of time (Izbicki et al.,
2019). We focus on Carmen since it is a rule-based
tool that can be run quickly on large collections of
tweets.

Since Carmen was built for English tweet
1



datasets from 2013, we update the tool and in-
troduce Carmen 2.0. This updated version re-
lies on GeoNames,1 an open-source geographical
dictionary, or gazetteer. In contrast to Carmen’s
US and English-centric database, GeoNames pro-
vides global coverage in many languages. Through
comparisons of GeoNames-augmented Carmen 2.0
with the original Carmen location database, we can
study the effects of incorporating more non-US and
non-English locations on geolocation performance.

In addition to studying Carmen 2.0’s perfor-
mance with regard to different factors, we also
include a longitudinal study of Twitter demograph-
ics over time from 2013–2021, with respect pop-
ularity across different countries, languages, and
geolocation metadata. This study is on a collec-
tion of 5.7M tweets sampled from the 1% Twitter
stream, which we refer to as TWITTER-RANDOM.
The demographic and metadata analysis provides
statistics to support design decisions for researchers
developing their own geolocation tools.

We contribute the following:

1. Analysis of the effects of time, language, and
country origin on Twitter geolocation tool per-
formance.

2. Longitudinal study of user geolocation meta-
data availability and changes in frequency of
tweets from different countries and languages.

3. Carmen 2.0, an improved version of the popu-
lar geolocation tool.

4. TWITTER-RANDOM, a randomly (1% based)
sampled 5.7M Twitter dataset to support anal-
ysis of metadata and user trends over time
(2013–2021).

5. TWITTER-GLOBAL, a geocoded multilingual,
multiyear 15.3M Twitter dataset to support
temporal and global geolocation evaluation.

All experiment code and data (tweet IDs) are
released on in the GitHub code repository.

2 Related Work

Most work in Twitter geolocation focuses solely
on tool development and performance, usually on
English-centric datasets published years ago. In
this paper we question how those tools would per-
form on Twitter datasets today, but focus on a single
tool, Carmen.

1https://www.geonames.org/

Geolocation Analysis Kruspe et al. (2021) an-
alyze the impact of Twitter policy changes on re-
search. The authors study tweet metadata availabil-
ity over time, such as exact coordinate availability
and granularity of place objects. Most importantly,
the authors discuss the impact of the 2019 Twit-
ter policy change to remove precise locations from
tweets (starting from 2019), and how that affects ge-
olocation tools and researchers who depend on the
coordinates. Their work limits their study to tweets
from 2020–2021, and in our work we study these
metadata patterns over a larger span of time, 2013–
2021, in addition to the impact of other factors,
such as language and country of origin, on geoloca-
tion tool performance. We compare our multi-year
trend analysis to theirs in Section 6. This multi-
year analysis is useful for researchers geolocating
tweets in older Twitter datasets.

Geolocation Tools Most approaches for social
media geolocation use tweet/user-level metadata
(Dredze et al., 2013), tweet content, including hash-
tags, (Alsaedi et al., 2017; Rahimi et al., 2016;
Han et al., 2014; Wu and Gerber, 2018; Halter-
man, 2017; Izbicki et al., 2019), and social net-
works (Rout et al., 2013; Jurgens, 2013). The Uni-
codeCNN geolocation tool (Izbicki et al., 2019) is
notable because it is not English- or US-centric,
and can infer location from multilingual tweet con-
tent.2 Izbicki et al. (2019) also introduced a large,
global geotagged dataset of 900M tweets across
100 languages, but this dataset is not appropriate
for our temporal evaluation since it only includes
tweets from 2017 to 2018. The authors did not
provide a trend analysis on the dataset for compar-
ison to our analysis in Section 6. Huang and Car-
ley (2019) use a combination of all these features,
and Ribeiro and Pappa (2017) create an ensemble
classifier to combine existing methods, improving
accuracy and coverage. Geolocation approaches
for other social media platforms, such as Reddit,
use similar methods (Harrigian, 2018).

There are a few ways to ascertain the location
of a user or tweet: (1) use the coordinates embed-
ded in one or more of the user’s tweets, (2) use the
embedded place metadata, (3) use the user’s loca-
tion string in their profile, (4) infer a location from
the tweet content, and (5) leverage social network
information. Methods (1) and (2) are most accu-
rate, but less than 2% of tweets contain location

2The UnicodeCNN model is unavailable for comparison
at time of writing.
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metadata (Kruspe et al., 2021). Method (4) is com-
mon (see tools above that use tweet content), but
requires building more sophisticated language mod-
els as opposed to examining the metadata. Method
(5) also performs well, but requires access to sig-
nificantly more tweets in order to build the social
network structure (Jurgens, 2013).

3 Carmen 2.0

In this paper we present Carmen 2.0, an updated
version of geolocation tool Carmen. We aim to
increase the coverage and robustness of Carmen
to language and countries by using a open-source
database, GeoNames.

In addition to a new location database, we in-
clude other performance improvements, such as
compatibility with Twitter API v2 (see Appendix
§B). Since Carmen 2.0 does not change the core
functionality, we focus on the construction and use
of the internal location database, and we direct the
reader to Appendix §A for a review of the location
resolvers or Dredze et al. (2013) for more details.

3.1 Carmen: A Review

Carmen, introduced by Dredze et al. (2013), uses
tweet and user profile metadata for geolocation.3

Carmen has three “resolvers" which use different
information from the tweet: (1) embedded coordi-
nates in the geo object,4 (2) matching the Place
object to the internal locations database, and (3)
mapping the user profile location string to the inter-
nal location database.

3.1.1 Original Location Database
The tweet location is resolved to an entry in an inter-
nal database of 7041 places.5 Locations are stored
in JSON form, where each location object has city,
county, state/province, country, coordinates, and
“aliases."

The original database was developed from tweets
available at the time that Carmen was released in
2013, specifically 10K tweets sampled from the
Bergsma et al. (2013) dataset. This dataset consists
of roughly 4 billion tweets between May 2009 and
August 2012, in addition to 80 million tweets from
users who follow specific feeds for locations and

3The Python version of the tool is available at https:
//github.com/mdredze/carmen-python.

4According to Kruspe et al. (2021), Twitter stopped includ-
ing coordinates in 2019.

5The original paper says 4K locations, but the database
was expanded by the authors between 2013 and 2022.

Original GeoNames
Count Percent Count Percent

City 4401 62.51% 24568 33.24%
County 1995 28.33% 45154 61.08%
State 461 6.55% 3947 5.34%
Country 184 2.61% 252 0.34%
Total 7041 73921

Table 1: The statistics of city, county, state, and country-
level locations in the original Carmen location database
and the new GeoNames database versions developed
for Carmen 2.0. The GeoNames-augmented databases
have more than 10 times the number of location entries
than Original. Percentage refers to portion of the
database dedicated to each granularity.

languages. The internal location database was con-
structed from the geotagged places in the develop-
ment set, and then augmented through manual and
automatic collection of aliases, or alternate names.
The motivation for including aliases stemmed from
inconsistent names for Twitter places, mostly due
to location references in different languages, e.g.,
“polnia" and “poland." Aliases also include collo-
quial names for a place, such as “the big apple" for
New York City, which could be found in a user pro-
file location string. Place information was included
as much as possible (i.e., province) by obtaining
full location information from Yahoo’s PlaceFinder
API.6

Thus, because of the origin of its location
database, which was built from tweets between
2009–2012, Carmen’s database is biased towards
common locations and languages in tweets before
2012, primarily English tweets from the US. Fur-
ther, the database does not align with an external
knowledge base, so Carmen locations cannot be
directly matched against other place information.
These limitations prompted our updates, without
which we would be unable to answer the questions
of this paper.

3.2 Expanded Database: GeoNames

The original Carmen location database was crafted
from a Twitter sample (see §3.1.1). This deci-
sion biased Carmen towards locations popular with
Twitter users from 2009–2012, which is not rep-
resentative of today’s users. Further, the location
identifiers were unique to Carmen, and thus could
not be meaningfully shared for external analysis
or easily augmented with other place information.

6This API is no longer available.

3



To remedy both issues, we augmented the internal
Carmen database with GeoNames, an open source
geographical database that covers all countries and
millions of place names.

GeoNames Structure GeoNames has a hierar-
chical structure, where every entry has a link to its
parent. For example, Austin (city) has a link to
Texas (admin1), which in turn has a link to United
States (US, country). Sometimes admin2 is
also present, which refers to a county in the US.
All counties, administrative regions (i.e., state or
province), and countries were also added to the
database.

Similar to Carmen’s aliases, GeoNames contains
a list of “alternate names" of each entry. While
Carmen’s methods were geared towards colloquial
names, GeoNames contains the name of each entry
in many languages, in addition to a few colloquial
names.

Database Merging While GeoNames contains
cities from all over the world, we only include
cities with a population over 15K. This is to ensure
a more efficient location resolution process, since
tweets are more likely to originate from highly pop-
ulated places. Also, only including more populated
locations is important for user privacy, since a user
can remain more anonymous when aggregated in a
large group. We discuss more ethical concerns sur-
rounding geolocation, such as privacy, in Section 7.
We use GeoNames to create two versions of a new
Carmen location database: (1) GeoNames only
and (2) a merged GeoNames and Carmen database.
The GeoNames-only database, (1), converts the
GeoNames format for cities, states/provinces, and
countries to Carmen-formatted JSON objects.

The GeoNames-combined database, (2), re-
quired matching Carmen database entries to GeoN-
ames entries. We matched locations based on string
similarity of location name, the distance between
coordinates, and country name. To maintain accu-
racy of mapped locations, our mapping criteria was
strict and 4,467 out of 7,041 (63.44%) Carmen loca-
tions were successfully mapped to GeoNames. We
then added the alternate names of each location in
Carmen to the new GeoNames backed location en-
tries. The merged version also contains all county,
state/province, and country entries as (1). The re-
maining entries in Carmen were that were unable
to be matched were disregarded. A spot-check on
these unmatched locations confirmed they were

Figure 1: Language distribution for tweets in TWITTER-
GLOBAL. Only the top 15 languages are shown. Lan-
guages are identified by tweet metadata

.

cities with population less than 15K or contained
errors, such as incorrect county or province infor-
mation.

Both GeoNames-only and GeoNames-
combined contain 73921 entries. The number of
entries is the same since they differ only in alias
lists. Database details are in Table 1.

4 Geolocation Evaluation

Through comparing Carmen’s original database
(see §3.1.1) with the new GeoNames based
database (see §3.2), we can answer our research
questions from Section 1 to see how geolocation
tool coverage and accuracy change with respect to
language, country of origin, and time. The perfor-
mance is evaluated with similar metrics of other
geolocation tools mentioned in §2. In addition to
updating Carmen, we also created two datasets to
support our analysis.

4.1 Ground Truth Data
There are a handful of “standardized" datasets for
Twitter tweet geolocation evaluation (Han et al.,
2012, 2016), but they often are not global, mul-
tilingual, or recent. In this work we introduce
two datasets, TWITTER-GLOBAL and TWITTER-
RANDOM. Despite the temporal (2011–2012) and
language (English only) limitations of the popular
TWITTER-WORLD (Han et al., 2012) geolocation
evaluation dataset, we include Carmen’s perfor-
mance in Appendix §D so others can refer to it for
comparison.

Twitter-Global This new geolocation evaluation
dataset is collected from multiple geolocation filter-
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ing Twitter streams that are designed to cover the
world.7 The data from these streams was collected
from 2013 to 2021 for a total of 15.3M tweets,
balanced over the years. Due to the nature of the
stream, all tweets are “geotagged" with Twitter
Place objects. The ground truth for tweets are the
place names and coordinates in the Place meta-
data. We follow previous work in using geotagged
tweets as ground truth, although we note the bias
introduced by only evaluating on geotagged data
(Pavalanathan and Eisenstein, 2015).

Unlike popular geolocation evaluation dataset
TWITTER-WORLD, our dataset is multilingual.
While Han et al. (2012) removed non-English
tweets in order to not make it “easy" on the tool,
we want to ensure the geolocation tools work in
a multilingual setting. Language distribution is in
Figure 1. Since TWITTER-GLOBAL includes sam-
ples from North America, we omit evaluation on
another popular evaluation dataset, TWITTER-US
(Han et al., 2012). Izbicki et al. (2019) introduced
a larger, global geotagged dataset of 900M tweets
across 100 languages, but is not appropriate for our
temporal evaluation since it only includes tweets
from 2017 to 2018.

Twitter-Random In addition to the new geolo-
cation evaluation dataset, we introduce a multiyear
random sample. This sample is useful for analyz-
ing shifts in usage patterns across the world with
respect to metadata inclusion, language, etc.

We created this dataset by sampling 100K tweets
per month from the Twitter Streaming API between
2013 and 2021, resulting in 5.7M tweets.

4.2 Evaluation Metrics

Evaluating geotagging performance is grouped into
two categories: (1) coverage, or percentage of the
data our method successfully found a location, and
(2) accuracy, or how well the proposed locations
compare to the ground truth. We use metrics similar
to other work on Twitter geolocation. Formulas are
provided in Appendix §C.

4.2.1 Coverage
Given a tweet, Carmen resolves it to an entry in
the internal database if such mapping can be found.
Since Carmen only uses information from tweet
and user profile metadata, we define coverage as
the fraction of resolved tweets among all tweets

7While streams are meant to cover the entire world, there
are gaps due to Twitter API restrictions.

that have location information (i.e. has a Twitter
Place object). Coverage is similar to recall and
sensitivity, but does not incorporate whether the
prediction is correct.

4.2.2 Accuracy
Coverage gives us a good metric of Carmen’s sen-
sitivity to locations contained in tweets. However,
it does not evaluate the correctness of the mapped
results. We measure the location mapping accuracy
by string comparison (country, state/province, city)
and by geographical distance. These metrics are
referred to as match ratio and distance.

Match Ratio A predicted location can be accu-
rate on different levels of granularity, such as a
correct state or province prediction, but incorrect
city prediction. The match ratio metric awards
partial credit for correct identification of a country
or state even if another portion of the prediction is
incorrect, such as the city. Match ratio on level L,
denoted mrL, where L ∈ {country, admin, city},
is the ratio of the number of resolved tweets where
the prediction is correct on level L over the total
number of tweets where L is available in the ground
truth. We restrict the denominator to tweets where
the level is available, since it is unfair to penalize
the model for an “incorrect" city prediction when
the city is not available in the ground truth.

Distance We also use geographical distance to
measure accuracy. This metric is inspired by Eisen-
stein et al. (2010) and Cheng et al. (2010) and their
calculation of regression performance, or mean and
median distance between proposed location coordi-
nates and ground truth.

Distance, d, is measured as the geodesic distance,
calculated with geopy, between the resolved lo-
cation and the ground-truth tweet coordinates. We
calculate distance at the dataset level, which is the
average distance over all tweets, where 0 is best. In
addition to the average distance, we also consider
“accuracy at K", or Acc@K, the ratio of resolved
tweets such that the distance error does not ex-
ceed K miles (Ribeiro and Pappa, 2017; Han et al.,
2014). This metric is less influenced by outliers
than d.

5 Experiments

As enumerated in §1, we are interested in how the
following factors impact geolocation tool perfor-
mance: language, country, and time.
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To answer these questions we perform an ab-
lation study over Carmen location databases (see
§3.2) and different subsets of TWITTER-GLOBAL

(see §4.1).

5.1 Performance across Language

Many geolocation tools (and even evaluation
datasets (Han et al., 2012)) focus on English tweets.
We can analyze the performance difference of
English-biased tools by comparing the performance
of Carmen’s original English-centric database with
the GeoNames-augmented ones on multilingual
data. Since TWITTER-GLOBAL is multilingual,
we create two subsets of English and Non-English
data, as identified by the tweet language metadata.
Tweets with “unknown" language tag are omit-
ted. Since the GeoNames-only and GeoNames-
combined location databases contain translations
for location names, we expect Carmen to perform
better with these over the original database, as cor-
roborated in Table 2.

Overall, Carmen has better coverage for En-
glish tweets than on non-English with all loca-
tion databases (roughly 49% compared to 32-41%).
While the coverage on the English data is the
same for the three databases (less than 2% dif-
ference), there is a large difference in coverage
for non-English tweets. Both GeoNames-based
databases were able to provide predictions for 42%
of tweets and the Original database only provided
matching 32% of tweets. Accuracy also differs
between databases and language splits, but only at
the higher granularities of admin (state/province)
and city level, where the match ratio drops from
95% on English data to 66-75% for non-English
at the admin level and from 48% to 14-20% at the
city level across databases. Country-level accuracy
remains stable at a 99% match ratio. The decrease
in accuracy at the admin and city levels is also
apparent through the distance metrics, where aver-
age distance is higher for non-English than English
tweets. The high distance error for the GeoNames-
only database can be attributed to different coordi-
nates between the GeoNames and Twitter places
gazetteer entries, and prediction error within large
countries, such as the US and India, which can be
detrimental.

In summary, using a multilingual geolocation
tool can increase geolocated data for studies, with
highest accuracy at the country level.

Figure 2: Ablation over Carmen location database and
performance over data from different years of Twitter
data, 2013-2021. Evaluated on TWITTER-GLOBAL.
Metric is coverage, where higher score is better.

5.2 Performance across Countries

Similar to concerns with language bias, geolocation
tools can also be US-centric. In order to analyze
difference in performance across countries, we sim-
plify the study to inside and outside of the US.
We split TWITTER-GLOBAL into “US" and “non-
US" categories for the evaluation. Similar to the
language performance, we expect the GeoNames-
augmented databases to provide an advantage over
the original location database, due to the alternate
names list. The results are shown in Table 3.

There is a similar trend between US/non-US
split and English/non-English split. Overall, all
databases have higher coverage of locations in-
side the US (50%) than outside of the US (32-
42%), possibly confounded by differences in lan-
guage. However, using a multilingual non-US
based database helps with coverage significantly,
as shown in the difference between GeoNames-
augmented databases (42%) and the Original
database (32%).

Accuracy is also better inside the US, as seen
with the match ratio at the state/province (99% vs
60-66%) and city levels (54% vs 11-19%). Average
distance is also higher for non-US locations, except
for GeoNames-only which is most likely due to
difference in coordinates for large countries.

5.3 Performance over Time

Carmen’s performance over time degrades signif-
icantly between 2015 and 2021, as shown in Fig-
ure 2. In 2013–2014, Carmen has 80-90% coverage
with all databases, but this coverage drops to 40-
50% in 2015 and below 20% after 2018. This drop
is most likely due to Carmen’s heavy reliance on
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Language Database Coverage mrcountry mradmin mrcity d Acc@10 Acc@100 Acc@1000

English
GeoNames-Only 49.58% 99.42% 95.63% 47.49% 853.9 0.81 0.85 0.86
GeoNames-combined 49.63% 99.43% 94.36% 47.69% 58.7 0.81 0.91 0.99
Original 48.14% 99.35% 94.94% 48.90% 46.4 0.78 0.91 1.00

Non-English
GeoNames-Only 41.77% 99.36% 66.50% 20.13% 482.3 0.84 0.88 0.88
GeoNames-combined 41.78% 99.35% 66.83% 20.27% 105.3 0.84 0.90 0.99
Original 32.27% 98.95% 75.61% 14.22% 106.2 0.67 0.87 0.99

Table 2: Ablation over Carmen location database and performance on English and non-English tweets. Evaluated on
TWITTER-GLOBAL. “Acc@K" represents the ratio of tweets predicted within K miles of the ground truth. Higher
values are best for all metrics except distance (d).

Origin Database Coverage mrcountry mradmin mrcity d Acc@10 Acc@100 Acc@1000

US
GeoNames-only 50.56% 99.37% 99.87% 53.66% 994.2 0.79 0.84 0.84
GeoNames-combined 50.60% 99.37% 99.87% 53.81% 23.6 0.79 0.91 1.00
Original 51.03% 99.93% 99.96% 55.33% 23.7 0.79 0.91 1.00

non-US
GeoNames-only 42.63% 99.37% 61.51% 18.73% 439.3 0.84 0.89 0.89
GeoNames-combined 42.65% 99.37% 60.81% 18.88% 121.2 0.84 0.90 0.98
Original 32.89% 98.45% 66.11% 11.10% 118.0 0.67 0.87 0.99

Table 3: Ablation over Carmen location database and performance on tweets originating from and outside of the
United States (US). Evaluated on TWITTER-GLOBAL. “Acc@K" represents the ratio of tweets predicted within K
miles of the ground truth. Higher values are best for all metrics except distance (d).

tweet metadata as opposed to tweet content or other
features, which has decreased over time. We dis-
cuss the impact of metadata availability further in
Section 6.3.

6 Longitudinal Analysis of Twitter User
Location

We have seen how using a less biased geolocation
tool offers better performance with respect to cover-
age and accuracy. However, despite the overall bet-
ter performance with the GeoNames-combined lo-
cation database, coverage still varied greatly when
evaluated over time, as in Section 5.3. To better
understand this performance difference and to pro-
vide insights for other geolocation researchers, we
present a longitudinal study of trends in location
metadata availability and user demographics. All
metadata and demographic statistics are gathered
from TWITTER-RANDOM (see §4.1).

6.1 Location Metadata Availability
As discussed in §2, Twitter geolocation tools make
use of tweet/user-level metadata, tweet text, and
social network information. Tools that exclusively
use tweet and/or user metadata are most at the
mercy of changes to Twitter API or policy.

As shown in Figure 3, the rate of tweets in
the random stream with tagged Places increased
slightly from 2013 to 2014 and then decreased from
2% to 0.5% from 2014 to 2021. This 75% decrease

Figure 3: Prevalence of tweet metadata over time in
TWITTER-RANDOM. We limit to metadata commonly
used in geolocation of users or tweets. Note scale is
from 0-5%.

represents millions of tweets. While inclusion of
place information has declined, the rate of place
types has remained the same. High-granularity
types like points of interests (POIs) and neighbor-
hoods are largely unused (less than 1% of Place
objects), followed by country- and state/province-
level tags (5% and 11%). The most common type
by far is at the city level, comprising 83% of tagged
place types.

The number of tweets with embedded coordi-
nates has decreased even more than tagged places
starting in 2015, even before the 2019 Twitter pol-
icy that removed coordinates. This decrease is most
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likely due to another Twitter policy enacted April
2015 which changed the default “precise location"
setting from enabled to disabled.8 The only meta-
data that has stayed consistent since 2013 is the
user profile location field, which is available in
60% of tweets.

Figure 4: Language distribution for tweets in TWITTER-
RANDOM over time. Languages are identified by tweet
metadata

6.2 Twitter Demographics

In addition to changes in metadata availability,
we also analyzed the change in countries and lan-
guages present in the random stream. No geolo-
cation is needed for the language analysis, as it
is included in tweet metadata, but we are limited
by tweets that can be geotagged by Carmen 2.0
(GeoNames-combined database) for the country
analysis. While this geotagging biases the sample
to tweets with location information, this is repre-
sentative of the distribution other researchers can
expect from geotagged tweets in the random stream.
Carmen was able to identify locations for 21% of
the data, or 1.2M tweets.

Country The top 10 countries in the dataset
are (in descending order): United States (US),
United Kingdom (UK), Brazil, Indonesia, Japan,
Argentina, India, France, Philippines, and Thailand.
The US has a significantly larger share of tweets,
roughly 30%. In comparison, tweets from the UK
are only 6% of all tweets. The share of every coun-
try in the dataset is shown in Figure 5. The overall
numbers can often hide year-specific trends. Within
the top countries, Indonesia decreases from 11% in

8https://www.wired.com/story/
twitter-location-data-gps-privacy/

2013 to less than 5% after 2015. Inversely, India
starts with very few tweets and steadily grows to
roughly 9% of tweets. The other countries remain
largely stable over the years.

Language The top languages follow the lan-
guages spoken in the top countries very closely,
as shown in Figure 4. English comprises about
30% of all languages, followed by Japanese, Span-
ish, Arabic, Portuguese, Korean, Indonesian, Thai,
and Turkish. Following the decrease in tweets from
Indonesia, Indonesian tweets also decreased from
7% in 2013 to 4% in 2021. In the same time frame,
tweets in Hindi follow the pattern of tweets from
India, increasing from 0% to 1% of all languages.
While not in the top languages or countries, there
is also a decrease in tweets from Russia and in
Russian from 2015 (2.5%) to 2021 (0.5%).

The Twitter language identification system likely
changed between 2013 and 2014, as “unknown"
languages dropped from 18% to 4%. This rate
of unknown languages steadily increases to 8% in
2021, possibly due to increase of users tweeting in
languages not officially supported by Twitter.

6.3 Impact on Geolocation Tools

Researchers applying existing tools to their own
datasets should consider the locations and lan-
guages best represented by the tools, in addition to
which metadata (if any) the tool relies on. Due to
the large distribution of languages, it is important
for geolocation tools to have multilingual support
to increase coverage and accuracy. Further, the
metadata trends in Section 6.1 suggest that geolo-
cation tools should be frequently checked for API
and policy compatibility.

Carmen’s performance analyzed over time in
Section 5.3 is a prime example of how Twitter pol-
icy changes can affect geolocation tools. Carmen
relies heavily on tweet metadata, specifically the
presence of coordinates and place objects, but the
prevalence of this information has decreased since
2015. A tool less reliant on metadata and more
based on content or other signals, could be more
temporally robust.

Ensuring a geolocation tool is temporally robust,
i.e., has the same performance over time, is impor-
tant for identifying tools that need to be periodically
updated with new data (Dredze et al., 2016). This is
especially important for tools that use features that
can be subject to distribution shift, such as social
networks, tweet content, and metadata availability.
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Figure 5: Distribution of country origin of tweets in TWITTER-RANDOM, a subset of the public Twitter API stream
from 2013-2021. Locations are identified by Carmen. Scale is from 0 to 0.06 to show more detail. The United
States represents 30% of tweets (0.3) and is capped to 0.06 for visualization purposes.

7 Ethical Concerns

Two issues that arise when geolocating users on
social media: (1) privacy concerns and (2) conse-
quences of incorrect predictions.

The privacy concerns are related to surveillance
and revealing sensitive locations of users, such as
their home address. Since Carmen only uses meta-
data provided by the user in the form of tagged
places, coordinates, and profile location, it only in-
fers locations readily shared by users. Kruspe et al.
(2021) provide a helpful discussion of applications
that require differing levels of location granularity,
such as disaster relief or disease spread requiring
more precise information (high granularity) ver-
sus marketing campaigns or opinion tracking (low
granularity).

An issue with low granularity arises in high-risk
applications where low precision is not helpful,
such as tracking disease spread within a country. A
possible solution for balancing higher granularity
and user privacy is to map a user’s location to the
largest city closest to the user. Carmen 2.0 does
this automatically since the database only contains
cities with population greater than 15000.

There can be negative consequences to using
incorrectly inferred locations, such as in tracking
high-risk emergencies like disease spread and civil
unrest. Geolocation tool performance ablation over
granularity, language, and country, is important
for researchers to make informed decisions about
location accuracy.

8 Conclusion

Geolocation tweets is useful for researchers that
need to filter tweets to those originating in specific
locations to study health, opinions, etc, by demo-
graphic. In this work we study and discuss the
impact the factors of language, country origin, and
time, can have on tweet geolocation.

To support our study we introduced Carmen 2.0,
an updated version of geolocation tool Carmen
(Dredze et al., 2013) backed by an open-source
database, GeoNames. In addition to the tool, we
introduced two datasets: (1) TWITTER-GLOBAL,
a Twitter geolocation evaluation dataset for lan-
guage, country, and time ablation studies, and (2)
TWITTER-RANDOM, a sample of the worldwide
Twitter stream from 2013-2021 for studying gen-
eral country and language demographics and meta-
data availability over time.

We found a significant difference in performance
in the ablation, with higher performance for En-
glish and US-based tweets. Also, we provided
trends in metadata availability from 2013 to 2021,
and discuss reasons for the decline in coordinates
and place metadata. For future work in Twitter
tweet geolocation, we encourage the use of content
and metadata fields, such as user profile location.
Focus on these consistently available metadata can
make a tool robust to policy changes. Also, we
encourage evaluating the geolocation model across
language, time, and countries to ensure fair perfor-
mance.
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A Carmen Review

A.1 Aliases

The alias list was constructed through two meth-
ods: (1) manually filtering resolved user location
strings, and (2) using the user clustering method
from Bergsma et al. (2013). For (1), common
user location strings were resolved with Yahoo’s
PlaceFinder API and then manually filtered and
merged. In (2), users were clustered based on so-
cial network, fullnames, and the profile location
strings. This process discovered that “balto" is an
alias for “Baltimore", based on the frequency that
users with “balto" in their profile location commu-
nicate with “Baltimore" users.

A.2 Resolvers

Carmen includes three location resolvers to map
from the tweet to a location in the internal database.
The default settings are to use the resolvers in
the following order, but this is user configurable:
geocode (coordinates), place, and profile.

Geocode Some tweets (before 2019) contain ex-
act coordinates, and we use these coordinates to
find the closest location in our internal database.
The distance threshold between our internal loca-
tion and the coordinates is user configurable.

Place A Twitter Place object is a JSON that is
returned with the tweet, but only 2% of tweets
contain a place (Kruspe et al., 2021). The object
is in a different location in API v2 and must be
specifically requested, but the object itself has not
significantly changed. The place includes an ID
that refers to a Twitter Places database, the place
type (neighborhood, city, admin), name, fullname,
country code, country name, and a bounding box.9

Twitter Places are supported by Foursquare and
Yelp (Kruspe et al., 2021).

Profile If a tweet does not contain place or coor-
dinate information, the user profile resolver is used.
As reported by Kruspe et al. (2021), only 30-40%
of tweets contain user profile location information.
While more users have their profile location filled
in, the information is a free-text field completed by
the user and is not restricted, thus some users put
jokes or made-up locations (Hecht et al., 2011).

9https://developer.twitter.com/en/
docs/twitter-api/v1/data-dictionary/
object-model/geo

The profile resolver matches the string to the in-
ternal database by normalizing it (e.g., removing
punctuation), identifying state or country names
with regular expressions, and then matching the
string, along with the state/country, against the lo-
cation database.

Twitter introduced similar functionality with
their Profile Geo Enrichment in the paid Enter-
prise API, but not all user location strings can be
geocoded.10

Like the place object, accessing the user loca-
tion string is different in API v2, and needs to be
requested separately from the tweet object.

B Carmen 2.0 Updates

B.1 Functionality Updates

The Carmen code was updated to be compatible
with tweets in Twitter API v2 format. As men-
tioned in §A, the placement of some metadata has
changed in the new API. In Carmen 2.0, besides
obtaining coordinates from the “coordinates" field
of a Tweet object, we also obtain coordinates from
the bounding box coordinates from the place object,
if it exists. We use the average of all bounding box
coordinates as the coordinates used for the geocode
resolver. Although this is less accurate and is not
an exact coordinate compared to the “coordinates"
field, it still serves as a reliable source of location
metadata.

Another improvement is a faster geocode re-
solver. The algorithm uses coordinates from the
internal location database to group the known loca-
tions into cells. The default cell is size 0.5, which
groups location within 0.5 degrees of each other,
or 34.5 miles for latitude and 27.3 miles for longi-
tude. For example, a coordinate of (1.2, 1.3) will be
mapped to a cell containing all coordinates within
the interval [0.75, 1.25)× [1.25, 1.75) The group-
ing is performed at Carmen initialization, so infer-
ence is a limited linear search over all locations in
the database that are in the same cells as the query
coordinates. Because different gazetteers might
select different coordinate points for the same loca-
tion, the design of cells gives a margin of error and
allow the correct location entry to be mapped even
if the coordinates does not match exactly.

10https://developer.twitter.com/en/
docs/twitter-api/enterprise/enrichments/
overview/profile-geo
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Resolved/s Tweets/s

Original 263.03 655.41
GeoNames-only 120.14 297.20
GeoNames-combined 140.51 311.13

Table 4: Processing speed for different Carmen 2.0
models. Resolved/s is the average number of resolved
tweets per second, and Tweets/s is average number of
processed tweets per second.

B.2 Processing Speed
Table 4 shows processing speed of Carmen 2.0
with the different databases. To measure speed
we use two metrics: (1) resolved tweets per sec-
ond, the average number of tweets that Carmen
resolves per second, and (2) tweets per second,
which is the average number of processed tweets
per second. The Original database, with only 7K
locations, is faster than the GeoNames-only and
GeoNames-combined databases, which have 74K
locations. Despite this 10x increase in database
size, the speed does not reduce linearly with the
number of locations. This sublinear scaling is im-
portant for addition of new locations, such as in-
corporating cities in GeoNames with a population
under 15K.

C Evaluation Metric Details

C.1 Coverage
Given Twitter dataset D, coverage is formally de-
fined in Equation (1)

coverage(D) =
|{t ∈ D | t is resolved}|
|{t ∈ D | t is geotagged}| (1)

C.2 Accuracy
Match Ratio Match ratio on level L, denoted
mrL, is the number of resolved tweets such that
the name matches the ground truth on level L
over the number of resolved tweets that have
location information on level L, where L ∈
{country, admin, city}.

D′ = {t ∈ D | t is resolved}

mrl(D) =
|{t ∈ D′ | xL(t) = yL(t)}|
|{t ∈ D′ | yL(t) ̸= null|}

(2)

Distance Using similar notation as Equation (2),
let xc(t) denote the Carmen resolved geo-
coordinates of tweet t and yc(t) denote the ground

truth geo-coordinates of tweet t. We define the
mapping distance of a tweet, d(t) as the geodesic
distance provided in the geopy package.11 The
distance accuracy over all tweets in D is the aver-
age of mapping distance of all resolved tweet:

d(D) =
1

|D′|
∑

t∈D′
d(t) (3)

In addition to the average distance (Equation (3)),
we also consider Acc@K(D), the ratio of resolved
tweets such that the distance error does not exceed
K miles. This metric removes outlier influence
possibly present in d(D).

Acc@K(D) =
|{t ∈ D′ | d(t) ≤ K}|

|D′| (4)

Acc@K(D) can be easily retrieved from a per-
centile plot of the mapping distances.

We exclude other commonly used metrics such
as classification accuracy (Eisenstein et al., 2010),
since it is relatively weak metric because the pro-
posed method uses either 4-way or 49-way classifi-
cation, much less granular than the entries in Car-
men or GeoNames gazetteer. Cheng et al. (2010)
use Acc@K as a ranking metric, which is not ap-
plicable to models that only return one prediction,
like Carmen.

D Carmen 2.0 Comparison

TWITTER-WORLD This frequently used
dataset was collected via the Twitter Streaming
API over a span of 5 months (September 21 2011
to February 29 2012). It was filtered to English
tweets, non-duplicate tweets, and tweets from
users with at least 10 geo-tagged tweets. Locations
are assigned on a per-user basis, where the “ground
truth" is the city where the majority of a user’s
tweets originate. Since Carmen does not require
training, we only use the test split of 0.45M
tweets.12

The coverage and accuracy metrics are shown in
Table 5. Before performing ablations, we evaluate
all versions of Carmen on TWITTER-WORLD and
TWITTER-GLOBAL.

In general, all versions of Carmen per-
form significantly better on TWITTER-WORLD
than TWITTER-GLOBAL. We believe this is

11https://geopy.readthedocs.io
12Available for download from author’s website http://

tq010or.github.io/research.html
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Database Dataset Coverage mrcountry mradmin mrcity d Acc@10 Acc@100 Acc@1000

GeoNames-only
TWITTER-WORLD 93.82% 97.42% 73.59% 48.66% 522.6 0.866 0.906 0.907
TWITTER-GEO-STREAM 45.45% 99.37% 83.87% 32.69% 653.0 0.823 0.867 0.869

GeoNames-combined
TWITTER-WORLD 95.34% 97.73% 56.08% 49.07% 19.2 0.866 0.947 0.999
TWITTER-GEO-STREAM 45.48% 99.37% 83.30% 32.86% 83.6 0.824 0.902 0.989

Original
TWITTER-WORLD 91.54% 97.45% 49.12% 50.04% 40.3 0.796 0.929 0.995
TWITTER-GEO-STREAM 39.35% 99.16% 88.75% 32.70% 75.0 0.724 0.890 0.992

Table 5: Ablation over Carmen location database and performance on popular geolocation dataset
TWITTER-WORLD and new dataset, TWITTER-GLOBAL. “Acc@K" represents the ratio of tweets predicted
within K miles of the ground truth. Higher values are best for all metrics except distance (d).

due to the higher availability of metadata in
TWITTER-WORLD, since the data is from 2011-
2012. This change in metadata availability is dis-
cussed more in §5.3 and §6.

Within each dataset, we see a clear trend
in GeoNames-combined performing better than
GeoNames-only, and Original, with respect to cov-
erage.
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Abstract

We investigate different systems for extracting
mathematical entities from English texts in the
mathematical field of category theory as a first
step for constructing a mathematical knowl-
edge graph. We consider four different term
extractors and compare their results. This small
experiment showcases some of the issues with
the construction and evaluation of terms ex-
tracted from noisy domain text. We also make
available two open corpora in research mathe-
matics, in particular in category theory: a small
corpus of 755 abstracts from the journal TAC
(3188 sentences), and a larger corpus from the
nLab community wiki (15,000 sentences).1

1 Introduction

The majority of scientific research is communicated
using natural language, often in the form of papers
like this one. However, the volume of scientific
literature in any given field is too large to be com-
pletely understood by any one individual. So how
can expert researchers, let alone newcomers or out-
siders, come to terms with the breadth of scientific
knowledge in their field?

Recently, NLP tools have become stunningly
effective at making information that is relevant
to everyday concerns more accessible. Tools for
search, question answering, and summarization
have improved significantly on various general
benchmarks. To make research more effective and
accessible, similar tools are needed for specialized
domains. Some research communities might num-
ber only in the thousands of researchers, and have
specialized vocabulary and language usage, includ-
ing heavy use of symbols, diagrams and/or markup

1Certain commercial entities, equipment, or materials may
be identified in this document in order to describe an experi-
mental procedure or concept adequately. Such identification
is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it
intended to imply that the entities, materials, or equipment are
necessarily the best available for the purpose.

We define the notion of a torsor

for an inverse semigroup , which

is based on semigroup actions ,
and prove that this is precisely the
structure classified by the topos as-

sociated with an inverse semigroup .

Unlike in the group case, not

all set-theoretic torsors are

isomorphic : we shall give
a complete description of the

category of torsors ...

Figure 1: An example of extracting terms from a single
paragraph of text.

language, as in mathematics. These smaller com-
munities require a general methodology for con-
structing specialized tools themselves.

Knowledge graphs—networks of concepts
and their relations in a particular domain of
knowledge—have become the preferred technol-
ogy for representing, sharing, and adding knowl-
edge to modern AI applications (Ilievski et al.,
2020). The construction of such a graph begins
with the identification of central concepts in the
domain in question. Given a corpus of text, such
as a collection of papers, the task of identifying
these central concepts is sometimes known as term
extraction, and there are many generic toolkits
for performing this task. In this paper we study
four examples: TextRank (Mihalcea and Tarau,
2004), DyGIE++ (Wadden et al., 2019), OpenTapi-
oca (Delpeuch, 2020), and Parmenides (Bhat et al.,
2018).

A potential methodology to construct special-
ized, domain-specific knowledge management
tools would begin by running a generic term extrac-
tor over a suitable corpus of domain-specific text
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and assuming that it extracts a reliable set of terms.
However, each research community may wish to
evaluate these terms to test whether they meet the
community’s specific needs. This evaluation must
determine how well the underlying terms reflect
important concepts in the domain. Ideally, such
an evaluation would be made against a corpus an-
notated by human experts, which would provide a
gold standard reference for a representative sam-
ple of the domain. Such a corpus would ideally
capture all and only the relevant concepts present
in the corpus, allowing evaluation based on both
precision and recall.

However, obtaining a hand-annotated reference
corpus is not always practical, especially with noisy
data. First, hand annotation is time-consuming, and
may be infeasible for certain research communities.
Second, the specialized nature of the text means
that the annotators will need to be experts in the
domain. This makes hand annotation potentially
very expensive for highly specialized domains. In
particular, we are also seeking a methodology that
can be undertaken with little to no additional direct
effort from domain experts, and hand annotation
does not meet this criterion.

What, then, does a methodology for constructing
and evaluating extracted terms look like for special-
ized research domains? In this paper we propose
an evaluation methodology that combines informa-
tion from different ‘silver standard’ sources. In
our case, we study author-selected keywords from
paper abstracts, titles from a community-managed
wiki, and linguistically identified noun phrases. We
argue that, in the case that traditional F1 scores are
not informative enough when drawn from any in-
dividual source, the evaluation of several sources
nonetheless gives us valuable information about
the properties of terms extracted.

We apply this methodology to evaluate lists of
terms extracted from text in the mathematical field
of category theory. By analyzing the results, we
see that generic tools do not have their full efficacy
on the specialized domain of category theory, and
we have the grounds to infer some reasons why.
Nonetheless, this amalgamated evaluation method
provides a path forward for constructing and main-
taining a high quality list of domain-specific con-
cepts in category theory. A key result of this paper
is also the groundwork we lay, including two small
corpora and some basic experiments, for under-
standing how NLP tools can be used to build a

knowledge graph for mathematics.

1.1 Related work

Automatic terminology extraction (ATE) is a well-
studied task in natural language process that in-
volves the extraction of domain-specific phrases
from a corpus. ATE is somewhat distinct from key
phrase extraction, which operates at the document
level, though the two tasks have some similarities
(Zhang et al., 2018). ATE algorithms often rely on
two distinct levels: the identification of linguistic
units and the ranking of those units to identify the
most relevant and distinctive terms. Some algo-
rithms instead identify terms directly, though this
usually requires training on an annotated dataset
where relevant terms are explicitly identified (Wad-
den et al., 2019). Work on ATE has been done
using large corpora, such as the CiteSeerX library
containing millions of scientific documents from
many disciplines (Patel et al., 2020). However,
we are not aware of any specific work on ATE for
mathematics.

We are aware of two ACL-style competitions
related to mathematical text processing. Firstly,
the Math Tasks in NTCIR-10, 11, and 12 studied
the recognition of mathematical formulas (Aizawa
and Kohlhase, 2021)2. The second competition is
the 2017 SemEval Task 10 3, described in Augen-
stein et al. (2017). This task was about extract-
ing keyphrases and relations between them from
scientific documents: the domains chosen were
computer science, material science and physics4.
Though mathematics itself was not included, all of
these disciplines rely on mathematics.

There has also been a great deal of work on
technical language processing that is not related to
mathematics and does not explicitly involve ATE.
For example, Olivetti et al. (2020) reviews the use
of NLP for materials science, while Perera et al.
(2020) covers biomedical information extraction.
The latter is of particular interest due to their use of
named entity recognition (NER), which bears some
similarity to ATE, and the problems they discuss
with recognizing specialized terms. Generalized
approaches face challenges in these domains; as a
result, these pipelines make use of domain-specific
knowledge bases or expert annotations.

2https://ntcir-math.nii.ac.jp/
3https://alt.qcri.org/semeval2017/

task10/
4https://scienceie.github.io/resources.

html
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2 Category theory as a case study

Although we seek to develop a generic methodol-
ogy, we have chosen to ground these investigations
in the specific field of category theory. Category
theory is a branch of mathematics focused on re-
lationships and composition. It is often seen as a
way to organize mathematics as a whole (Marquis,
2021). While this choice is largely dictated by the
interests of the authors, category theory presents
a number of features which reflect the challenges
and potential of automatically constructing domain-
specific knowledge management tools.

Category theory as a field dates back to the
1940s (Eilenberg and MacLane, 1945). While the
field is well established, the volume of text avail-
able remains small compared to the corpora used
in other NLP applications. A leading journal in
the field, Theory and Applications of Categories
(TAC), published 55 papers in 2021, and a total
of 845 papers since its first issue in 1995. This is
small compared to, for example, the 3.27 million
materials science abstracts used to train the NLP
backend for the materials science search engine
MatScholar (Kim et al., 2017).

Most of category theory research is described
in natural language, especially English. However,
the language is specialized in ways that may pose
challenges to automatic systems:

• Many technical terms in CT redefine com-
mon English words. For example, ‘category’,
‘limit’, ‘group’, ‘object’, and ‘natural trans-
formation’ all have more specific, formalized
meanings in CT that they do not have in ev-
eryday English.

• Many technical terms involve vocabulary that
is not present in everyday English at all, such
as ‘groupoid’, ‘monoidal’, and ‘colimit’.

• Special symbols and even diagrams are often
interspersed with text, such as ‘Let C be a
category. . . ’. Often, LATEX markup is used,
and sometimes inconsistent.

• Abbreviations and shortcuts are used which
would not be common in everyday text, such
as the use of ‘(co)homology’ to refer simulta-
neously to both homology and cohomology.

Though the category theory community is rela-
tively small, it has a large online presence, which
has supported the creation of community-oriented

websites and blogs, including the nLab, a wiki for
notes, expositions, and collaborative work, with a
focus on category theory. The nLab was started in
2008, and as of May 2022, has over 16000 articles.

The authors’ own interest and expertise in cate-
gory theory also allows us to quickly analyze the
results of any experiments from the perspective of
a potential user.

3 Automatic Term Extraction Algorithms

We run a number of experiments to test four dif-
ferent automatic terminology extraction methods:
OpenTapioca (a simple entity linking system de-
signed specifically for category theory), DyGIE++
(a neural NER system that has been trained to ex-
tract scientific terms), TextRank (a graph-based
algorithm originally designed for key phrase ex-
traction, but adapted to ATE), and Parmenides (a
linguistically-motivated phrase extraction system
that combines symbolic processing and neural pars-
ing).

OpenTapioca: OpenTapioca (Delpeuch, 2020)
is a simple named entity linking system that links
phrases of natural language text to entities in Wiki-
Data (Vrandečić and Krötzsch, 2014). It cannot
identify new concepts—only those already repre-
sented in WikiData. OpenTapioca is a simple base-
line system that uses basic string matching to iden-
tify relevant phrases, built on the recognition that
powerful knowledge bases like WikiData has led
to recent success in other systems.

OpenTapioca is of particular interest, because it
is designed to link entities that are not just locations,
dates, or the names of people and organizations, but
a variety of technical concepts. OpenTapioca also
provides a filter that allows it to limit results to
entities that appear in nLab, effectively filtering out
concepts that are not related to category theory.

DyGIE++: DyGIE++ (Wadden et al., 2019) is a
span-based neural scientific entity extractor. The
system builds upon the older DyGIE (Luan et al.,
2019). Both systems were developed in collabo-
ration with the Allen Institute for Artificial Intel-
ligence, and use supervised methods to identify
relevant spans of text. DyGIE++ has been trained
on a variety of different corpora and subtasks, in-
cluding the identification of chemical compounds,
drug names, and mechanisms. Though DyGIE++
has not been trained or tested directly on category
theory, the similarities between the domains it has
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been trained on and CT, as well as its overall strong
performance, make it a good candidate to test for
extracting CT concepts.

TextRank: TextRank (Mihalcea and Tarau,
2004) is a graph-based ranking algorithm based
on PageRank, which has been applied to keyword
extraction and text summarization as well as auto-
matic terminology extraction. Though TextRank
is a somewhat older algorithm, it is still a com-
mon algorithm that has been implemented many
times. We use a modern Python implementation,
PyTextRank5.

Parmenides: Parmenides (Bhat et al., 2018)
takes a linguistic approach to terminology extrac-
tion. It uses spaCy6 to identify syntactic struc-
tures, then normalizes the syntactic structure and
identifies phrases for extraction. Parmenides is
highly customizable, but is designed primarily for
linguistic analysis and not for terminology extrac-
tion. Nevertheless, it can be used to identify key
linguistic phrases as an initial step for ATE.

4 Test Corpus

Automatic terminology extraction takes a corpus of
natural language text and produces a list of relevant
terms. To produce a list of terms for category the-
ory, we need to supply a corpus of category theory
text.

To create such a corpus, we take abstracts from
Theory and Applications of Categories (TAC). This
is the primary corpus that we use for our exper-
iments. We also provide a second corpus, using
a subset of the nLab wiki7. These corpora will
be made publicly available. We remove markup,
section headings, and LATEX expressions from the
text to create a cleaned version of the corpus. Both
corpora are written in English.

After cleaning the corpora, we run spaCy to pro-
duce automatic annotations in the style of CoNLL-
U. SpaCy is a free open-source library for natural
language processing in Python distributed since
2015. It features named entity recognition (NER),
part-of-speech (POS) tagging, dependency parsing,
and word vectors.

Note that these are the first publicly available cat-
egory theory corpora, and we are not aware of any

5https://pypi.org/project/pytextrank/
6https://spacy.io
7https://ncatlab.org/nlab/show/HomePage

other cleaned, open-source corpora of mathematics
research text.

5 Evaluation Methodology

The ATE systems described in Section 3, combined
with the TAC corpus described in 4, allow us to con-
struct candidate lists of category theory concepts,
which could be used as the basis for a knowledge
graph. We now arrive at the central question of this
paper: how do we assess the quality of such lists?

Again, our goal is not to assess the quality of the
extraction algorithms as generic tools, but rather
to assess the quality of the lists of category theory
concepts they produce. This is a key distinction:
our goal is not generality, but the evaluation of data
in a particular context.

More precisely, the usual methodology (Chuang
et al., 2012) would be to construct an expertly an-
notated corpus, labeling all the category theory con-
cepts contained within it. We could then compare
the list of terms produced by the term extractors
against the gold standard, to produce standard met-
rics such as precision, recall, and F1 score. As de-
scribed above, this methodology can be expensive
and impractical for small, highly technical research
communities.

Instead, we seek to evaluate against multiple,
imperfect sources of truth to discern different prop-
erties of the data. To compensate for the imperfect
nature of our reference lists, we must pair each one
with a qualitative description of the properties it
can reveal. This allows us to use the list to shed
light on the nature of the concepts under evalua-
tion, even if a single, representative score cannot
be constructed.

The reference lists we consider for this paper
are described in Table 1. The properties of each
reference list are determined based on how the ref-
erence list was constructed. Author-selected key-
words are constructed by human experts to capture
the most important concepts in a given abstract. As
a result, they have high precision: all of these ele-
ments will be concepts from the field of category
theory. However, they have relatively low recall,
because the authors have no incentive to include
all possible concepts, only the concepts which are
new, advanced, or distinctive. Thus, many simpler
or more common concepts will be excluded from
this list. The page titles from the community wiki,
in this case nLab, are similar: they are generally
chosen by experts, but will not cover every possi-
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Reference List Properties
Author-selected keywords High precision on advanced, new concepts; poor recall
Page titles from community wiki High precision on basic concepts; poor recall
Automatically extracted noun phrases High recall on noun phrases; low precision

Table 1: The different reference lists under consideration and their properties

ble concept. In this case, basic, common concepts
will be covered, but more advanced concepts will
not. Finally, we extract a list of noun phrases uses
a pre-trained spaCy model. This operates under
the assumption that many technical terms are noun
phrases (Chuang et al., 2012). This will capture
many of these technical terms, but will also capture
phrases that are not necessarily technical terms or
are only meaningful in context, such as ‘key results’
or ‘the aforementioned category’.

While each of these reference lists can give in-
sight on its own, the intersection or union of two
or more reference lists can also reveal properties
of the extracted terms. For example, concepts that
appear in both author keywords and wiki page ti-
tles can be understood to be central concepts in the
field, so for knowledge graphs, we should focus
on having high recall in this area. Choosing these
reference lists well (i.e., such that their evaluation
properties are balanced across desirable properties
of our knowledge graph), means we can discover
strengths and weaknesses of our extracted term
lists.

A key feature of the reference lists that we
have chosen is that they incorporate community-
maintained, evolving sources. This means that
our methodology will be able to improve with
increased community effort. This empowers re-
searchers in the domain to take simple actions that
will improve the quality of our term extraction sys-
tem and its evaluations.

Because the terminology extraction algorithms
that we use are all extractive, our reference lists
have to be extractive as well. To ensure this, we
filter the phrases in each reference list by compar-
ing them to the TAC corpus. First, we normalize
the phrases using spaCy to remove variations such
as morphological inflections and the presence of
stop words. This allows us to compare terms in the
reference list to strings in the corpus to determine
if each is present, and remove the terms that are not
found in the corpus.

Given an extractive reference list R, our eval-
uation process is fairly standard. For each term

extractor E describe above, we:

1. Run term extractor E on corpus C.

2. Normalize results using spaCy to get predica-
tion list P

3. Produce lists of true positives (appears in both
P and R), false positive (appears in P but not
R), and false negatives (appears in R but not
P ).

4. Calculate recall, precision, and F1 scores.

Note that this produces scores for each reference
list, and there is no generic score that covers the
extractor in the general case.

6 Reference Lists

We now discuss in more detail the properties of the
reference lists we have chosen for category theory.
Figure 2 shows the overlap of terms found between
the three reference lists.

6.1 Author Keywords
Our first reference list contains keywords selected
by the authors of articles in the journal TAC.

Authors are experts on their own papers. Author-
selected keywords are thus an important, reliable
source of truth describing concepts in papers. How-
ever, this reference list has a few complications.
For example, many of the author-selected keywords
never show up in the text as described—they are not
always extractive, and may be more abstract than
the terms actually used in the text. For example,
the phrase ‘topological quantum field theory’ could
describe the topic of an abstract, but due to its gen-
erality, does not necessarily appear in the abstract.
In addition, keywords may contain shortcuts and
abbreviations that are easily understood by humans,
but not by machines. For example, ‘(co)homology’
may be used to describe an abstract that is about
both ‘homology’ and ‘cohomology’. Though the
normalization described above accounts for author-
selected keywords that never show up in texts, it
may filter out relevant terms in some cases, such as

19



Figure 2: Unique and shared keywords identified by our three reference standards. Each column represents a set of
terms; the filled portions of each row represent that the given set of terms was identified by a particular method.
For example, the leftmost column shows that 2348 terms were identified only by simple noun phrases. The fourth
column shows terms that were identified by both nLab titles and author keywords.

the ‘(co)homology’ example above, which won’t
be recognized due to the unusual formatting. How-
ever, this reference list’s property of high precision
should be maintained due to the authors’ expertise.

One final note is that the author keywords are
abstract-specific, while ATE is concerned about
the corpus as a whole. Author-selected keywords
are still concepts in category theory, but this fact
contributes to the lower precision of this reference
list: the authors will only select concepts that distin-
guish their articles from others, and not all concepts
that they make reference to.

6.2 nLab page titles

Our second reference list is made using page titles
from the nLab, a community wiki for mathematics.

In the ideal case, an encyclopedic community
wiki would have an article describing every concept
in the field. In practice, this is not the case. First,
the wiki may be initially incomplete, and as the
field advances, will lag behind changes in the field.
Second, there may be pages in the wiki that do
not necessarily describe concepts per se: titles of
books, meta-pages, historical notes, and lists do not
necessarily belong in a knowledge graph. Since we
make each reference list extractive, this should not
be a significant problem.

This reference list is also very precise, but fo-
cuses on concepts that are more likely to be fun-

damental in category theory, as opposed to more
advanced or less common concepts. This comple-
ments the author keywords well, and shows how
well a list of extracted keywords reflects basic con-
cepts in category theory.

6.3 Noun phrases

Our third reference list consists of a noun-noun
compounds and adjective-noun phrases extracted
from the text by spaCy. These are all two-word
phrases as identified by spaCy’s part-of-speech tag-
ger, with LATEX markup automatically removed.

There is a considerable difference between this
reference list and the other two. Author keywords
and wiki articles are both constructed by experts,
and thus clearly belong to the field of category
theory. By contrast, automatically-identified noun
phrases, even those taken directly from category
theory articles, may not necessarily be mathemati-
cal concepts.

Chuang et al. (2012) suggests that around 9.04%
of all keywords chosen by humans are compounds,
so this reference list may identify new concepts that
are not picked up by other reference lists, though
it certainly contains invalid terms, such as ‘future
work’ and ‘next section’, as well.
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Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 391 236 979 600
False Positives 1105 522 13710 3231
False Negatives 684 839 96 475
Precision 0.26 0.31 0.07 0.16
Recall 0.36 0.22 0.91 0.56
F1 0.30 0.26 0.12 0.24

Table 2: Extracted terminology compared to author-selected keywords

Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 399 507 1160 684
False Positives 1097 251 13529 3147
False Negatives 873 765 112 588
Precision 0.27 0.67 0.08 0.18
Recall 0.31 0.40 0.91 0.54
F1 0.29 0.50 0.15 0.27

Table 3: Extracted terminology compared to nLab page titles

7 Results

Analyses of each corpus, with respect to all three
reference lists, can be found in our GitHub repo.
Summaries of the results of our experiments are
given in Tables 2, 3, and 4. We also evaluate the
results against the union of all three reference lists,
as shown in Table 5.

Further results are described in our repository8.
Overall, however, the general ranking of the term
lists remains the same, with few exceptions.

8 Discussion

Overall, the F1 scores presented here are very low
when compared to the results of SEMEVAL 2017
(Augenstein et al., 2017). DyGIE++ also reports
higher numbers on the datasets it has been trained
on (Wadden et al., 2019). Our results are, however,
similar to the results of Patel et al. (2020), which
considers the problems of terminology extraction
using papers indexed in CiteSeerX, which reports
F1 scores of 0.33.

Parmenides always outperforms the other mod-
els we consider on recall, but generally performs
poorly on precision. Conversely, OpenTapioca has
relatively high precision scores, resulting in the
highest F1 score for both author keywords and
nLab page titles. Parmenides was designed as a lin-
guistic analysis tool; it extracts all possible phrases,
with only limited power to rank those phrases by

8https://github.com/ToposInstitute/
tac-corpus

relevance. As a result, it extracts almost all of the
linguistic units that are available, including large
amounts of irrelevant text. OpenTapioca, on the
other hand, is designed to pull out only category
theory concepts, but is limited in its ability to ex-
tract novel terms and those not described in nLab.

The terms extracted by DyGIE++ are reasonable
in terms of F1 score. For author-selected keywords,
DyGIE++ performs the best, and it has the second-
highest F1 score for nLab page titles.

However, it is not enough to just consider F1

scores in this case. The reference lists that we con-
sider have limitations, and we cannot rely on them
all to be both complete and precise. As described
above, the author keywords and nLab titles have
limited recall—they do not contain all of the pos-
sible category theory terms in the text, because
they are designed for other purposes. For these
reference lists, we can only rely on the recall of the
extracted terms. Low recall on the author keywords
indicates that a list does not contain many of the
advanced concepts from category theory, while low
recall on the nLab titles indicates that a list does
not contain many of the basic concepts from cate-
gory theory. Low precision on these, however, may
indicate that a list contains terms which may still
be valid, but which do not appear in these reference
lists.

The proper conclusion, then, should not be that
OpenTapioca is the best option because it has the
best overall F1 score. Nor is DyGIE++ necessarily
ideal just because of its high performance on author-
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Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 378 216 2439 976
False Positives 1118 542 12250 2855
False Negatives 2549 2711 488 1951
Precision 0.25 0.28 0.17 0.25
Recall 0.13 0.07 0.83 0.33
F1 0.17 0.12 0.28 0.29

Table 4: Extracted terminology compared to noun phrases

Metric DyGIE++ OpenTapioca Parmenides TextRank
True Positives 748 547 3606 1653
False Positives 748 211 11083 2178
False Negatives 3518 3719 660 2613
Precision 0.50 0.72 0.25 0.43
Recall 0.18 0.13 0.85 0.39
F1 0.26 0.22 0.38 0.41

Table 5: Extracted terminology compared to the combined reference lists

selected keywords. OpenTapioca, as shown by
low recall on noun phrases, cannot extend well to
novel terms. DyGIE++ performs reasonably well
overall, but is outperformed by several extractors
in recall of nLab page titles and by Parmenides and
TextRank on recall of author-selected keywords.
Instead, TextRank appears to be the best candidates,
having high recall on author-selected keywords and
nLab page titles as well as high precision on noun
phrases, though a better measure of precision is
desirable.

9 Conclusions

We present the first computational work extracting
mathematical concepts from abstracts. We inves-
tigated four different term extractors, previously
described for other domains, and evaluated the re-
sults against the limited annotated data we had for
category theory. The results are somewhat lim-
ited as well, compared to previous results on more
generic domains. However, other domain-specific
analyses have some of the same problems, which
suggests that our results are still promising.

We also provide insight into the evaluation of
automatically-generated terminologies for limited-
resource domains. The usual F1 scores are not
entirely reliable unless the gold standard can be
assumed to include both all and only the relevant
terms, but partially-correct ‘silver standards’ may
still provide useful insight into the data.

In our case, we can draw some important con-

clusions about the terminology lists that we extract.
Because author keywords and nLab titles are most
reliable for recall, we can determine that tools such
as Parmenides and TextRank are able to extract
large quantities of both advanced and basic cat-
egory theory terms. However, the large number
of other terms extracted by Parmenides suggests
that it may need additional filtering to be useful
for automatic terminology extraction for our use-
case. Our evaluation can also be further improved.
The low relative recall of the noun phrase refer-
ence list itself suggests that additional phrase types
are common in our data. Adding verb phrases and
more complex noun phrases could help us identify
high-precision terminologies, as well as high-recall
ones.

Another possibility in our case is to continue
working toward our use-case. Since we have further
downstream uses of the terminology—namely, the
creation of a knowledge graph—we can use this
to further our evaluation. By extracting relations
between terms, we can identify which terms are the
most connected and which are isolated, under the
assumption that isolated terms are less likely to be
part of domain-specific language.

We have also constructed two publicly-available
corpora that can be developed into more sophisti-
cated datasets. Though there are still many limita-
tions to both evaluation and ATE in mathematics,
we hope that our work provides a basis for future
developments in the area, and that our insights on
evaluation and domain-specific research can be ap-

22



plied more generally.
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Abstract

A significant number of studies apply acoustic
and linguistic characteristics of human speech
as prominent markers of dementia and depres-
sion. However, studies on discriminating de-
pression from dementia are rare. Co-morbid de-
pression is frequent in dementia and these clin-
ical conditions share many overlapping symp-
toms, but the ability to distinguish between de-
pression and dementia is essential as depres-
sion is often curable. In this work, we in-
vestigate the ability of clustering approaches
in distinguishing between depression and de-
mentia from human speech. We introduce a
novel aggregated dataset, which combines nar-
rative speech data from multiple conditions,
i.e., Alzheimer’s disease, mild cognitive im-
pairment, healthy control, and depression. We
compare linear and non-linear clustering ap-
proaches and show that non-linear clustering
techniques distinguish better between distinct
disease clusters. Our interpretability analysis
shows that the main differentiating symptoms
between dementia and depression are acoustic
abnormality, repetitiveness (or circularity) of
speech, word finding difficulty, coherence im-
pairment, and differences in lexical complexity
and richness.

1 Introduction

Depressive disorder and dementia are clinical con-
ditions that both impose a substantial cost globally
in terms of mortality and morbidity and have a sig-
nificant negative impact on social and economic
productivity (Jaeschke et al., 2021). Distinguish-
ing between these conditions has proven to be a
challenging task (Murray, 2010) as they frequently
co-occur and have many overlapping symptoms
such as apathy (Lee and Lyketsos, 2003), changes
in sleep patterns (Thorpe, 2009), and concentration
issues (Korczyn and Halperin, 2009). However, de-

pression is generally curable by either psychother-
apy or medication, while dementia is a neurode-
generative disease, which is caused by irreversible
deterioration of the nervous system. It is hence cru-
cial to differentiate between these two conditions
(Fraser et al., 2016b).

Previous studies demonstrated that machine
learning methods and speech analysis are useful in
detecting dementia from depression (Fraser et al.,
2016b; Murray, 2010). However, the machine
learning methods used in prior studies suffer from
three main limitations:

Firstly, the datasets applied in prior literature
only comprise Alzheimer’s disease (AD), healthy
control (HC), and depression (Depr) samples of
senior participants with similar demographic distri-
butions and recording environments (Fraser et al.,
2016b; Murray, 2010). In real world settings, the
datasets are very noisy due to variations in the data
collection procedures. Additionally, dementia is
not necessarily of the AD type in all cases, and
other types of dementia like mild cognitive impair-
ment (MCI) can be included.

Secondly, to the best of our knowledge, previous
studies have only used classification approaches
to detect AD from HC (Pulido et al., 2020; Bal-
agopalan et al., 2021; Balagopalan and Novikova,
2021), Depr from HC (Wu et al., 2022), or AD
from Depr (Fraser et al., 2016b) using speech. This
might not be an ideal simulation of the real world
diagnosis procedure. In clinical diagnosis, the first
step is to detect the symptoms and explore the pat-
tern changes in patient records before diagnosing
the disease (Regier et al., 2013), while in classi-
fication, we first map the samples to the disease
labels and then, apply interpretability methods to
explore the differentiating features between the
classes (Gordon, 1999).

Lastly, prior studies demonstrated that acoustic
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and linguistic features extracted from spontaneous
speech provide valuable indicators of both mental
disorders such as depression (Low et al., 2020) and
cognitive impairment like AD or MCI (Fraser et al.,
2016a; Boschi et al., 2017). However, they did
not derive a strong conclusion about the main dis-
tinguishing speech-based symptoms in classifying
dementia from depression (Fraser et al., 2016b).

To address the first limitation, we generate a
novel aggregated dataset, which combines several
speech datasets comprising AD, MCI, HC, and
Depr labels with a variety of data collection pro-
cedures. To address the second and third limita-
tions, we introduce a novel approach, which applies
clustering techniques to inspect what data-driven
feature categories (symptoms) are the main differ-
entiators between AD, MCI, Depr, and HC sam-
ples. We then use the distinguishing symptoms as
a feature selection technique to classify AD, MCI,
and Depr. Our key findings indicate that 1) the
non-linear clustering approaches outperform the
linear techniques in terms of separability level of
distinct disease clusters; 2) acoustic abnormalities,
variations in lexical complexity and richness, repet-
itiveness (or circularity) of speech, word finding
difficulty, and coherence impairment are the main
differentiating symptoms to distinguish between
different types of dementia (e.g., AD and MCI),
and Depr; 3) data-driven differentiators are able to
substantially improve performance of classification
across diseases.

2 Related Work

There has been a substantial number of studies on
detecting either dementia (e.g., MCI or AD) or
depression from spontaneous speech. However,
little has been done to distinguish dementia from
depression using discourse patterns.

To discriminate dementia from depression,
Fraser et al. (2016b) applied speech data from the
Pitt corpus in the DementiaBank database (Becker
et al., 1994), elicited from elderly participants
through picture description task, with ‘Cookie
Theft’ (Goodglass et al., 2001) used as a picture.
The samples were labeled as either AD or HC based
on a personal history and a neuropsychological as-
sessment battery (Iverson et al., 2008). A subset
of the samples were labeled as depressed or non-
depressed based on the established threshold on
Hamilton Depression Rating Scale (HAM-D) test
scores (Bagby et al., 2004). To explore the distin-

guishing discourse patterns between AD and Depr,
Murray (2010) collected a speech dataset of elderly
participants (with Depr, AD, or HC labels) who
completed a picture description task, with Norman
Rockwell’s painting ‘The Soldier’ used as a picture.
Samples with Depr were diagnosed based on DSM-
IV criteria (Frances et al., 1995) and samples with
AD met NINCDS-ADRDA criteria (Tierney et al.,
1988) for probable AD. The datasets used in these
studies didn’t include other types of dementia such
as MCI, and all of their samples followed the same
data collection procedure, while we create an ag-
gregated dataset, which consists of AD, MCI, HC,
and Depr samples from different speech datasets
with various data collection procedures.

Murray (2010) examined whether elderly indi-
viduals with depression can be distinguished from
those at early stages of AD through distinct patterns
in narrative speech. Based on their findings, indi-
viduals with AD generated less informative speech
compared to the depressed patients in their pic-
ture descriptions, while there were no significant
differences in the informativeness of the narratives
between HC and Depr samples. Furthermore, quan-
titative and syntactic measures of discourse did not
differ across the three groups. However, Murray
(2010) did not attempt to make predictions using
the data.

Fraser et al. (2016b) investigated if the auto-
mated AD screening tools misclassify cognitively
healthy participants with Depr as AD when using
narrative speech. They also used linguistic and
acoustic features to classify non-depressed AD sub-
jects from those with comorbid depression from
speech elicited through picture description task. In
their study, they compared logistic regression (LR)
with support vector machines (SVM) classifica-
tion models. Their performance in distinguishing
between depressed and non-depressed AD sam-
ples was moderate (accuracy = 0.658) due to a
wide range of overlapping symptoms. In addi-
tion, they only applied classification approaches
and they didn’t derive the most informative fea-
tures discriminating between AD patients with and
without depression. In the present work, we apply
clustering approaches to cluster the diseases based
on the similarities in the discourse patterns, and
apply interpretability techniques to explore the dis-
tinguishing feature categories (symptoms) between
distinct diagnosis labels (i.e., HC, AD, MCI, and
Depr). We use the differentiating symptoms as a
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feature selection technique to classify the diseases.

3 Methods

3.1 Dataset
In this paper, we generated an aggregated su-
perset of the datasets listed in Table 1 that con-
tains speech recordings of English-speaking par-
ticipants describing pictures. All the audio record-
ings were manually transcribed by trained transcrip-
tionists, using the CHAT protocol and annotations
(MacWhinney, 2014).

Dataset AD MCI Depr HC
DementiaBank (Becker et al., 1994) 178 138 0 229
Healthy Aging 0 214 0 211
ADReSS (Luz et al., 2020) 54 0 0 54
DEPAC+ (Tasnim et al., 2022) 0 0 222 532
AD Clinical Trial 1616 0 0 0
Aggregated dataset 1848 352 222 1026

Table 1: Speech datasets used. For each dataset, the
number of samples with each diagnosis label is reported
in the following columns.

DementiaBank (Becker et al., 1994) and
ADReSS (Luz et al., 2020) are the datasets
of pathological speech elicited from participants
through picture description task, with ‘Cookie
Theft’ (Goodglass et al., 2001) used as a picture.
The recordings are labeled as AD, MCI, and HC.

Healthy Aging is the dataset of speech elicited
from community volunteers through picture de-
scription task, with ‘Family in the Kitchen’, ‘Man
in the Living Room’, ‘Food Market’, ‘Picnic’,
‘Grandmother’s Birthday’, and ‘Romantic Dinner’
proprietary images. The recordings are labeled as
possible HC and MCI. Soft labels are based on the
established threshold on Montreal Cognitive As-
sessment (Nasreddine et al., 2005) screening tool.

DEPAC+ is the extended version of the DEPAC
(Tasnim et al., 2022) dataset, with more samples
collected using the same data collection procedure.
This is a dataset of narrative speech elicited from
participants through picture description task, with
‘Family in the Kitchen’ and ‘Man Falling’ images.
The recordings are labeled as HC and Depr. Soft
labels are based on the established threshold on
Patient Health Questionnaire-9 (PHQ-9) (Kroenke
et al., 2001) test scores1.

AD Clinical Trial is a dataset of speech record-
ings from the baseline and screening visits of a clin-

1The participants with a PHQ-9 score ≤ 9 were labeled as
HC, and the remaining samples with a PHQ-9 score≥ 10 met
criteria for symptoms of depression.

ical trial elicited from participants through picture
description task, with ‘Family in the kitchen’, ‘Man
in the Living Room’, ‘Grandmother’s Birthday’,
‘Romantic Dinner’, and ‘Cookie Theft’ (Goodglass
et al., 2001) images. All the recordings are labeled
as AD according to the the National Institute on Ag-
ing/Alzheimer’s Association citeria (Frisoni et al.,
2011).

All images other than ‘Cookie Theft’ (Goodglass
et al., 2001) were designed to match the ‘Cookie
theft’ picture in style and the amount of information
content units according to picture design principles
described by Patel and Connaghan (2014).

3.2 Feature Extraction

We extracted 220 acoustic features from audio, and
325 linguistic features from the associated tran-
scripts. These features were classified into the fol-
lowing categories (the full list is in Appendix A):

Acoustic: This category includes spectral and
voicing-related features (e.g., Mel-Frequency Cep-
stral Coefficients (MFCC) (Rudzicz et al., 2012),
Fundamental frequency (F0), or statistical func-
tionals of Zero-Crossing Rate (ZCR) (Kulkarni,
2018)) describing the acoustic properties of the
sound wave.

Syntactic Complexity: This category comprises
variables like the frequencies of various production
rules from the constituency parsing tree of the tran-
scripts (Chae and Nenkova, 2009), or Lu’s syntac-
tic complexity features (Lu, 2010) enumerating the
rate of usage of different syntactic structures.

Discourse Mapping: This category consists of
features such as utterance distances, or speech-
graph features (Mota et al., 2012) like graph density
(Mirheidari et al., 2018) to calculate the repetitive-
ness or circularity of speech.

Lexical Complexity and Richness: This cate-
gory accounts for the variables like frequency of
words, or measures of vocabulary diversity such
as type-token ratio (Richards, 1987) describing the
lexical complexity and vocabulary richness of the
transcripts.

Information Content Units: This category in-
cludes variables such as the number of objects,
subjects, locations, and actions used to measure
the number of items correctly named in the picture
description task previously found to be associated
with memory impairment (Croisile et al., 1996).

Sentiment: This category contains features such
as valence, arousal, and dominance scores (War-
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riner et al., 2013) for all words and word types
describing the sentiment of the words used.

Word Finding Difficulty: This category con-
sists of features including speech rate, duration of
words, and number of filled (e.g., um, uh) and un-
filled pauses as signs of word finding difficulty,
which result in less fluid or fluent speech.

Coherence (Global and Local): This category
includes variables like average, minimum, and max-
imum cosine distances (Mirheidari et al., 2018) be-
tween subsequent utterances (local coherence) or
between utterances and key words (global coher-
ence) using word2vec (Church, 2017) representa-
tion of the utterances to calculate their semantic
similarity.

4 Proposed Novel Approach: Data-Driven
Approach to Detecting Differentiating
Speech-based Symptoms between
Dementia and Depression

4.1 Dimensionality Reduction and Clustering

We first applied dimensionality reduction tech-
niques to the preprocessed features (see Appendix
B). To explore linear dimension reduction ap-
proaches, we applied Principal Component Anal-
ysis (PCA) (Wold et al., 1987) as well as Lin-
ear Discriminant Analysis (LDA) (Izenman, 2013).
For non-linear dimensionality reduction techniques,
we used Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2018) and
T-distributed Stochastic Neighbour Embedding (t-
SNE) (Van der Maaten and Hinton, 2008) (See de-
tails of implementation and hyperparameter setting
in Appendix C).

Next, we clustered the low-dimensional data
points by K-Means clustering (Mysiak, 2020) to
group them in an unsupervised way into distin-
guishable clusters. Clusters were meant to repre-
sent groups associated with data labels - HC, AD,
MCI, and Depr.

4.1.1 Performance Metrics
The performance of the clustering methods was
measured based on the following metrics:

1. Optimal number of disease clusters deter-
mined by the elbow method (Yuan and Yang,
2019)) after training K-Means clustering on
the feature embeddings resulted from dimen-
sion reduction. The ideal case is to derive 4
distinct disease clusters in line with the 4 di-

agnosis labels in the aggregated dataset (i.e.,
HC, AD, MCI, and Depr).

2. Silhouette score (Rousseeuw, 1987) was used
to measure the level of cluster separability. Its
value ranges from -1 to 1. ‘1’ means clus-
ters are well apart from each other and clearly
distinguished. ‘0’ means that the distance be-
tween clusters is not significant. ‘-1’ means
clusters are assigned in the wrong way (Bhard-
waj, 2020). The results were recorded for K=4
(the number of labels in the dataset), where
K is the number of clusters generated by K-
Means clustering.

4.2 Analysis of the Differentiating Feature
Categories between the Disease Clusters

Analysis of the differentiating feature categories
across the disease clusters consists of 3 main steps:
LIME-based explanation of the low-dimentional
embeddings, analysis of feature contributions to
the non-linear components, and feature selection
using the differentiating feature categories in clas-
sification of AD vs MCI vs Depr.

4.2.1 Local Explanation of the Non-linear
Embeddings by LIME

We applied a LIME-for-t-SNE2 interpretability
method developed by Bibal et al., 2020 to find
the main differentiating feature categories between
AD, Depr, MCI, and HC diagnosis labels. This ap-
proach adapts Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016) to lo-
cally explain t-SNE components.

4.2.2 Analysis of Feature Contributions to the
Non-linear Components

In this experiment, we investigated what feature
categories are the main differentiating factors be-
tween the distinguishable disease clusters derived
by K-Means clustering. As the first step, we ran-
domly selected 10 HC samples from each cluster
and applied Lime-for-t-SNE model to explain the
local trends in their neighborhood. We also picked
10 Depr and 103 AD data points from the associated
disease clusters and followed the same procedure
to locally explain the low-dimensional components.

2Publicly available at https://github.com/
vu-minh/mlteam-lime-for-tsne

3We selected 10 samples from each disease cluster, since
each group must contain at least 5 samples for both Kruskal-
Wallis H-Test (Lomuscio, 2021) and Mann-Whitney U-Test
(Bedre, 2021) explained in 4.2.2.
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Dimension reduction
method

Is the optimal number of
clusters (K) equal to 4?

Silhouette score
(K = 4)

PCA (linear) - 0.2010
LDA (linear) - 0.4125
t-SNE (non-linear) x 0.4723
UMAP (non-linear) x 0.5580

Table 2: Summary of the performance of all dimensionality reduction techniques. The second column checks
if the optimal number of clusters is equal with the total number of labels (e.g., HC, MCI, AD, and Depr) in the
aggregated dataset. ‘K’ refers to the number of clusters in K-Means clustering applied on the embeddings in the
low-dimensional space.

Figure 1: Explanation of the local trends in the t-SNE
embeddings for a selected Depr instance. The figure at
the top indicates the weights of the highly-contributed
features explaining each local dimension (R2 score in-
dicates how well the local trends are linearly explained
per each axis.) The blue transparency in the scatter plot
represents the errors of the linear model applied locally
on the original instance. The figure at the bottom left
is a zoom on the zone of interest for local explanation,
with projected samples in red (Bibal et al., 2020)

Figure 1 depicts an example of the local expla-
nation of t-SNE embeddings for a selected Depr
instance. For each candidate sample, we generated
a vector of length 9 indicating the total number of
highly-contributed features explaining either quasi-
horizontal (e.g., W1 in Figure 1) or quasi-vertical
(e.g., W2 in Figure 1) trends per each feature cate-
gory including acoustic, syntactic complexity, dis-
course mapping, lexical complexity and richness,
information content units, sentiment, word finding
difficulty, coherence (global and local), and utter-
ance cohesion.

Overall Group Comparison (Kruskal-Wallis H-
Test): After calculating the feature frequency vec-
tors of the selected samples, we applied overall

group comparison per each feature category to test
the overall difference between the feature frequen-
cies across the disease groups. For this purpose,
we used Kruskal-Wallis H-test (Kruskal and Wal-
lis, 1952) using the scipy.stats.kruskal
library in python.

Pairwise Group Comparison (Mann-Whitney
U-Test): As a post-hoc comparison method,
we then applied pairwise Mann-Whitney U-
test (Mann and Whitney, 1947) using the
scipy.stats.mannwhitneyu python li-
brary to determine the distributions of which
feature categories are significantly different
between each pair of the selected disease groups.

4.2.3 Classification of AD vs Depr vs MCI
After analyzing the feature contributions to the non-
linear components, we used the main differentiat-
ing feature categories as a feature selection tech-
nique to investigate whether they improve the clas-
sification performance of AD vs Depr vs MCI. For
this purpose, we separately trained Multi-layer Per-
ceptron classifier (MLPClassifier) on the following
feature sets:

1. F : All the hand-crafted acoustic and linguistic
features

2. Fd: Only the feature categories that are shown
to be the main differentiators between AD and
Depr based on Mann-Whitney test

3. F − Fd: All the hand-crafted features exclud-
ing the main distinguishing feature categories

We implemented MLPClassifier by
neural_network.MLPClassifier pack-
age of Scikit-learn (Pedregosa et al., 2011) with all
the hyperparameters set to their default parameter
settings. We trained the models using grouped
10-fold cross validation to avoid overlapping
subjects between the train and test folds and
evaluated the performance of the models in terms
of macro average accuracy, precision, recall, and
F1 scores across the 10 folds.
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(a) PCA - Disease Clusters (b) PCA - K-Mean Clusters

(c) LDA - Disease Clusters (d) LDA - K-Means Clusters

Figure 2: Pairwise scatter plots of the linear dimensionality reduction techniques (Component-1 vs Component-
2). Left figures: 2-D representation of the samples colored based on their diagnosis labels. Right figures: 2-D
representation of the samples colored based on the data-driven clusters resulted from K-Means clustering for K=4.

5 Results and Discussion

5.1 Comparison of Linear and Non-linear
Dimensionality Reduction Approaches

Table 2 compares how the linear approaches (e.g.,
PCA, and LDA) perform versus the non-linear tech-
niques (e.g., t-SNE, and UMAP) in distinguishing
between distinct diagnosis labels (i.e., AD, MCI,
HC, and Depr). Their performance is compared ac-
cording to their optimal number of K-Means clus-
ters, and Silhouette score. The second column of
Table 2 represents whether the optimal number of
data-driven disease clusters in K-Means clustering
is equal to the total number of diagnosis labels in
the aggregated dataset, which is our ideal case.

Between the linear techniques, the Silhouette
score obtained by LDA is about twice in value com-
pared to PCA. This can be due to the fact that LDA
(Izenman, 2013) is a supervised dimensionality re-
duction technique which focuses on maximizing
the class separability by projecting the data points

on a new linear axis, while PCA (Wold et al., 1987)
tries to find the directions of maximal variance.
Based on Figure 2c and 2d, the clusters of different
diseases, as well as the K-Means clusters in LDA,
are more visually distinguishable when compared
to PCA (See Figure 2a and 2b). It is also inter-
esting to note how the clusters are placed in LDA
plots. MCI comes between AD and HC samples,
while depressed data points are positioned on the
right end of the figure. This visualization creates a
spectrum from AD to MCI, to healthy samples and
also, well-separated depressed data points from the
rest of the samples.

Interestingly, the optimal number of K-Means
clusters in t-SNE is exactly equal with 4 (the total
number of disease labels in our data set), which
is our ideal case. In addition, its Silhouette score
is higher than both PCA and LDA methods. Fig-
ure 3a illustrates how well the disease clusters are
separated in this model.

In Table 2, we observe that UMAP demonstrates
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(a) t-SNE - Disease Clusters (b) t-SNE - K-Means Clusters

(c) UMAP - Disease Clusters (d) UMAP - K-Means Clusters

Figure 3: Pairwise scatter plots of the non-linear dimensionality reduction techniques (Component-1 vs Component-
2). Left figures: 2-D representation of the samples colored based on their diagnosis labels. Right figures: 2-D
representation of the samples colored based on the data-driven clusters resulted from K-Means clustering for K=4.

the best performance among all clustering tech-
niques according to its optimal number of K-Means
clusters and Silhouette score. Its optimal number
of clusters determined by elbow method is exactly
the same as the original number of diagnosis la-
bels. In addition, its Silhoutte score is higher than
other approaches meaning that the level of separa-
bility of the data-driven disease clusters is higher
in UMAP. The associated cluster visualizations for
UMAP are also depicted in Figure 3c. We see de-
pressed samples are well-separated from AD, and
MCI, although AD and MCI themselves are not
easily distinguishable.

In summary, linear dimensionality reduction
techniques like PCA and LDA transform the data to
a low-dimensional space as a linear combination of
the original variables, while non-linear techniques
are applied when the original high-dimensional
data contains non-linear relationships (Sumithra
and Surendran, 2015). Consequently, our findings
suggest that the linearity assumption might be in-

correct for our aggregated dataset and hence, this
can be another reason why the non-linear dimen-
sionality reduction techniques outperformed the
linear ones.

5.2 Analysis of the Differentiating Feature
Categories between the Disease Clusters

As it is illustrated in Figure 3b, K-Means cluster-
ing derived four distinct disease clusters in a data-
driven way using t-SNE embeddings. Cluster 2
corresponds to the right-most cluster in Figure 3a,
which is a mixture of Depr and HC samples. Clus-
ter 3 associates with the AD green clump of points
on the left-most side of Figure 3a and clusters 0
and 1 match with the two zones in the middle com-
prising a combined set of AD, MCI, and HC data
points. We randomly selected 10 HC samples from
three distinct clusters 0, 1, and 2. We also picked
10 random Depr points from cluster 0 and 10 ran-
dom AD points from cluster 3. For each instance,
we applied LIME-for-t-SNE to explain its local
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Compare Acoustic Syntactic
Complexity

Discourse
Mapping

Lexical
Complexity

and
Richness

Information
Content

Units
Sentiment

Word
Finding

Difficulty

Coherence
(Global and

Local)

Utterance
Cohesion

AD vs HC x - x x x - x x -
Depr vs HC x - - x - x - x -
HC Variations x - - x - x - x -
AD vs Depr x - x x - - x x -

Table 3: Pairwise Mann-Whitney U-Test on frequency vectors of disease groups. For each pair of disease groups,
the feature categories with p-value < 0.05 are marked as differentiating symptoms.

Feature Set Precision Recall F1 Score Accuracy
F 0.88 ± 0.04 0.86 ± 0.04 0.87 ± 0.04 0.90 ± 0.02
Fd 0.90 ± 0.03 0.88 ± 0.03 0.89 ± 0.03 0.92 ± 0.02
F − Fd 0.74 ± 0.06 0.69 ± 0.07 0.71 ± 0.06 0.82 ± 0.03

Table 4: Performance of AD vs MCI vs Depr classi-
fication using different feature sets. Here, F denotes
all hand-crafted acoustic and linguistic features. Fd de-
notes differentiating feature categories between AD and
Depr. F − Fd denotes all features excluding differenti-
ating feature categories.

neighbourhood and derive its frequency vector of
feature categories (See Section 4.2). Overall group
comparison using Kruskal-Wallis H-Test on the
frequency vectors represents that the feature cate-
gories including acoustic, lexical complexity and
richness, and coherence are significantly different
(with p-value < 0.05) across the disease groups in-
cluding AD, Depr, and different variations of HC.

As post-hoc group comparison, we applied pair-
wise Mann-Whitney U-test on each pair of disease
groups to assess what feature categories are the
main differentiating symptoms across the disease
clusters. As it is shown in Table 3, acoustic, lexical
complexity and richness, sentiment, and coherence
are significantly different across different variations
of HC. These differences show variations within
the group of healthy samples that can root in the
data origin, and data collection procedures.

Our results indicate that some samples labeled
as Depr are similar to HC samples across all the
feature categories. This can be due to the distribu-
tion of PHQ-9 scores in DEPAC+ dataset with the
majority of samples with scores in the range of 5
to 14 from mild to moderate levels of depression
severity. Minor levels of depression does not meet
the full criteria of major depressive disorder and the
symptoms of minor forms of depression are less se-
vere compared to major depressive disorder (Shin
et al., 2021). This increases the risk of confusing
modest rates of depression with control samples
(Cummins et al., 2015).

Acoustic, discourse mapping (repetitiveness or
circularity of speech), lexical complexity and rich-

ness, word finding difficulty, and coherence are
found to be the main differentiating symptoms be-
tween AD and Depr disease clusters. To investigate
the effectiveness of our results, we used these fea-
ture categories as a feature selection method.

5.3 Change in Classification Performance

We reported the performance of classification of
AD vs MCI vs Depr in Table 4. According to paired
sample t-test, the expected value of the accuracy,
precision, recall, and F1 scores across 10 folds
are significantly different between each pair of F ,
Fd, and F − Fd feature sets, with p-value < 0.05.
Compared to when using all the features, feature
selection using only the differentiating feature cate-
gories significantly improved the classification per-
formance in terms of all metrics. Also, excluding
the differentiating feature categories significantly
worsened the performance of the model in classify-
ing the diseases. These observations support that
our proposed method shows a promising avenue
toward detecting the data-driven symptoms that can
successfully differentiate between Depr, AD, and
MCI diseases.

6 Conclusion

In this work, we generate a novel aggregated
dataset composed of a number of speech corpora
including a combination of different clinical condi-
tions (e.g., AD, MCI, HC, and Depr). We extract
a hand-crafted set of acoustic and linguistic fea-
tures derived from speech data, which are used as
model predictors for discriminating between the
diagnosis labels and we categorize these features
under data-driven feature categories in line with
the clinical symptoms of these diseases. We cluster
the samples into distinguishable disease clusters
and examine what speech symptoms are the main
differentiating factors between the diseases. Based
on our findings, non-linear clustering approaches
outperform the linear ones in terms of distinguish-
ing between distinct disease clusters. Our results
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signify that acoustic abnormality, repetitiveness, or
circularity of speech, word finding difficulty, co-
herence, and differences in lexical complexity and
richness are the main differentiating symptoms be-
tween different types of dementia (e.g., MCI and
AD), and depression.
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A List of the features

Detailed description of the linguistic and acoustic
variables in our conventional feature set is repre-
sented respectively in Table 5 and Table 6.

B Data Preprocessing

B.1 Standardization

In the data preprocessing step, the features with
constant values were removed and then, the feature
values were standardized by removing the mean
and scaling to unit variance. The standard score of
a sample x was calculated as:

y =
x− µ

σ
(1)

here µ and σ are the mean and standard deviation
of the sample x in all training samples.

B.2 Feature selection

To remove multicollinearity, one of each pair of the
features with Pearson correlation higher than 0.9
was removed.

C Implementation and Hyperparameter
Setting of the Dimensionality
Reduction Models

C.1 Linear Approaches

PCA: PCA was implemented by the
sklearn.decomposition.PCA pack-
age in Scikit-learn (Pedregosa et al., 2011) and
its number of components was set to the optimal
number of Principal Components (PCs) calculated
by Horn’s parallel analysis (Dinno, 2009), which
was equal to 46. After sorting the PCs based
on their explained variance ratio, the feature
loadings (Centellegher, 2020) were calculated to
measure the correlation between the features and
the low-dimensional components. According to
the distribution of the feature loadings, features
with absolute value of loadings ≥ 0.4 were
selected as the highly-correlated features in each
PC. The number of components with the largest
values of explained variance ratio and at least
one highly-correlated feature was chosen as the
optimal number of components. As a result, the
tuned number of components was equal with
8. This approach selects the components which
explain the most variance in data and include
features which are highly-correlated with PCs on a
linear scale.

LDA: LDA was implemented by the
LinearDiscriminimumantAnalysis
package of Scikit-learn (Pedregosa et al., 2011)
with its default parameter settings. The number
of components was set equal to 3 (the maximum
allowed value), which is the number of classes-1,
to achieve the highest total explained variance
ratio. The classes represent the diagnosis labels in
our study including HC, AD, Depr, and MCI.

C.2 Non-linear Approaches
t-SNE: t-SNE (Van der Maaten and
Hinton, 2008) was implemented by the
sklearn.manifold.TSNE package of
Scikit-learn (Pedregosa et al., 2011). Perplexity
was tuned by grid search to obtain the highest
Silhouette score (See Section 4.1.1) in K-Means
clustering trained on the t-SNE embeddings. The
rest of the hyper-parameters were left unchanged
with their default values. We used perplexity=30
to preserve both local and global structure of the
given data to an adequate level (Wattenberg et al.,
2016), in line with the recommended range of
perplexity values by Van der Maaten and Hinton
(2008). The number of components in t-SNE
was manually tuned to 2, which was the best
performing one based on the Silhouette score
metric (See Section Section 4.1.1).

UMAP: This algorithm was implemented using
the original UMAP4 library. Among different com-
binations of parameter settings, grid search indi-
cated that number of components=2, the number
of neighbours=50, and minimum distance=0.1 ob-
tained the highest Silhouette score (See Section
4.1.1) in K-Means clustering trained on the UMAP
embeddings. The remaining parameters were set
to their default values.

4https://umap-learn.readthedocs.io/en/latest/
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Linguistic Features
Feature Category #Features Brief Description
Syntactic complexity 143 Constituency-parsing based features: Scores based on the

parse tree (Chae and Nenkova, 2009) (e.g., the height of the
tree, the statistical functions of Yngve depth (a measure of
embeddedness) (Yngve, 1960), and the frequencies of various
production rules(Chae and Nenkova, 2009)).
Lu’s syntactic complexity features: Metrics of syntactic com-
plexity suggested by Lu (2010) such as the length of sentences,
T-units, and clauses, etc.
Utterance length: Statistical functionals of utterance length.

Lexical complexity and
richness

103 Grammatical constituents: The constituents of the parse tree
represented in a collection of context-free grammar variables.
Vocabulary richness: Type-token ratios; brunet (Brunet et al.,
1978); Honore’s statistic (Honoré et al., 1979).
Lexical norm-based: Average norms across all words, verbs
only, and nouns only for imageability, age of acquisition, famil-
iarity (Stadthagen-Gonzalez and Davis, 2006) and frequency
(Brysbaert and New, 2009).

Discourse mapping 18 Utterance distances quantifying the utterance similarity via
distance metrics and speech-graph (Mota et al., 2012) features
based on the graph representation of the transcripts.

Global coherence 15 Statistical functionals of cosine distance between GloVe (Pen-
nington et al., 2014) word embeddings of each utterance and its
nearest content unit centroid utterances.

Local coherence 15 Statistical functionals of the similarity between Word2Vec
(Mikolov et al., 2013) embeddings of the successive utterances.

Word finding difficulty 11 Pauses and fillers: Variables like hesitation, speech rate, word
duration, and number of filled and unfilled pauses as markers of
difficulty in finding words resulting in less fluent speech (Pope
et al., 1970).
Invalid words: The proportion of words not in the English
dictionary (NID).

Information units 10 The number of information content units including objects,
subjects, locations, and actions applied to quantify the number
of items correctly named through the picture description task.

Sentiment 9 Valence, arousal, and dominance scores for all words and word
types describing the sentiment of the words used (Warriner et al.,
2013).

Utterance cohesion 1 Proportion of the number of switches in verb tense across utter-
ances.

Table 5: List of all hand-curated linguistic features derived from transcripts. The number of features in each feature
category is indicated in the second column (titled ‘#Features’).
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Spectral and Energy Related Features

Feature #Features Brief Description

Mel-Frequency Cepstral Coefficients
(MFCC) 0-12

168 Statistical functionals of 42 MFCC coeffi-
cients.

Intensity 8 Statistical functionals of the perceived
loudness in dB (auditory model based).

Zero-Crossing Rate (ZCR) 4 Statistical functionals of zero crossing rate
across all the voiced frames.

Voicing Related Features

Harmonic-to-Noise Ratio (HNR) 12 Statistical functionals of the degree of
acoustic periodicity in dB using both auto-
correlation and cross-correlation methods.

Jitter and Shimmer 11 Jitter indicates the variability or perturba-
tion of fundamental frequency, while shim-
mer refers to the same perturbation, but it
is related to the amplitude of sound wave,
or intensity of vocal emission (Wertzner
et al., 2005).

Pauses and Fillers 8 Number and duration of short, medium,
and long pauses, fillers(um,uh), mean
pause duration, and pause-to-speech ratio.

Fundamental Frequency (F0) 6 Statistical functionals of the fundamental
frequency in Hz.

Durational features 2 Total sample and speech duration in the
audio record.

Phonation Rate 1 Number of voiced samples over the total
number of samples.

Table 6: List of all hand-curated acoustic features derived from audio records. The number of features in each
feature category is indicated in the second column (titled ‘#Features’).
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Abstract

In this paper, we utilize recent advancements
in social media natural language processing
to obtain state-of-the-art syntactic dependency
parsing results for social media English. We
observe performance gains of 3.4 UAS and
4.0 LAS against the previous state-of-the-art
as well as less disparity between African-
American and Mainstream American English
dialects. We demonstrate the computational so-
cial scientific utility of this parser for the task of
socially embedded entity attribute analysis: for
a specified entity, derive its semantic relation-
ships from parses’ rich syntax, and accumulate
and compare them across social variables. We
conduct a case study on politicized views of
U.S. official Anthony Fauci during the COVID-
19 pandemic.1

1 Introduction

Corpora of social media text contain wide ranges
of beliefs that researchers may seek to analyze. But
numerous studies have found significant challenges
in applying natural language processing (NLP)
techniques to social media, ranging from incon-
sistent spelling practices to continuously evolving
terminology (Baldwin, 2012; Eisenstein, 2013).

Under the now-ubiquitous modeling paradigm of
pretrained transformers (Peters et al., 2018; Devlin
et al., 2019; Bender et al., 2021; Bommasani et al.,
2021), it is crucial to include social media content
in a language model pretraining corpus. BERTweet
(Nguyen et al., 2020), a language model trained
entirely on English Twitter, has shown state-of-the-
art results in classification (Barbieri et al., 2020),
part-of-speech (POS) tagging (Nguyen et al., 2020),
and named entity recognition (NER) (Jiang et al.,
2022) on social media English.

In addition, treebanks have been annotated to
cover this specific variety of English. Tweebank v2

1Code for this paper is available at: https://github.
com/slanglab/TweetIE_WNUT2022

Figure 1: Examples of dependencies and TweetIE’s
entity attribute extraction system (§4).

(Liu et al., 2018) consists of 3,550 English tweets
annotated according to Universal Dependencies
(Nivre et al., 2020), and Jiang et al. (2022) add NER
tags following the four-class CoNLL 2003 guide-
lines (Tjong Kim Sang and De Meulder, 2003).

Other work has considered the impact of de-
mographic and dialectical factors on social me-
dia NLP. Blodgett et al. (2016, 2018) investigate
linguistic variation of African-American English
(AAE) on Twitter from aggregate user demograph-
ics, developing a small 500 tweet Universal De-
pendencies corpus half of which consists of tweets
heavily using AAE. On this AAE subset, depen-
dency parsers encounter worse performance than
on Mainstream American English (MAE), and a
similar AAE-MAE dialect disparity is widespread
in other areas of NLP (e.g. Koenecke et al., 2020;
Ziems et al., 2022).

Social media NLP advances could enable novel
techniques in computational social science. Re-
trieval and representation of the beliefs and opin-
ions of various groups and ideologies is of clear
importance to many social sciences, with applica-
tions ranging from misinformation studies (Ayoub
et al., 2021) to political science and economics
(Ash et al., 2021).

With these goals in mind, we train a state-of-
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the-art social media dependency parser, evaluat-
ing social media English performance, as well as
AAE dialect disparity, among eleven alternative
pretrained models (§3). To illustrate dependency
parsing’s utility for social media analysis, we im-
plement a rule-based semantic attribute extractor to
analyze authors’ views toward an entity (Figure 1;
§4), and evaluate it in a case study of political nar-
ratives surrounding the U.S. official Dr. Anthony
Fauci during the COVID-19 pandemic—we com-
pare extractions against the authors’ social variable
of geolocated election results (§5). We find our
TweetIE system has better yield and higher preci-
sion for this task, compared to using previous open
information extraction systems.

2 Related Work: Social Semantic
Extraction

Natural language processing has been used to ex-
tract social insight from corpora in humanistic and
social scientific study. Archak et al. (2007); Ghose
et al. (2007) analyze the economic impact of de-
pendency parse-extracted adjective modification
from product reviews and seller feedback, asso-
ciating perceived attributes with monetary prices.
Narrative analysis of fictional characters has used
dependency parses to extract attributes associated
with character archetypes (Bamman et al., 2013);
our semantic relation extractor follows and extends
their approach. These dependency-based systems
can be viewed as expanding on widely used collo-
cation methods that tabulate words appearing near
an entity (Baker, 2006); for example, Blinder and
Allen (2016) use words directly before an entity
(a rough adjective modifier extractor) to analyze
attributes ascribed to immigrants in political dis-
course.

In the NLP context, outside of computational so-
cial science, open information extraction (OIE) is
a related semantic approach that extracts relational
tuples without a predefined schema, often applied
to large heterogenous corpora, such as web data
(Banko et al., 2007), typically using off-the-shelf
NLP technologies such as part-of-speech (POS)
tagging, named entity recognition (NER), semantic
role labelling, and dependency parsing (Mausam,
2016). Our TweetIE information extractor uses
a rule system working directly from dependency
parses, following the approach of argument extrac-
tion and normalization systems PropS (Stanovsky
et al., 2016) and PredPatt (White et al., 2016); the

latter performs well on OIE benchmarks (Zhang
et al., 2017). We share PredPatt’s motivation to rely
on Univerisal Dependencies parses, which have
coverage and availability across many language va-
rieties, including social media English here. This
contrasts favorably to the domain-dependent limi-
tations of machine-learned semantic role labeling
(Carreras and Màrquez, 2005) and semantic depen-
dency parsing (Oepen et al., 2014).

3 Dependency Parsing

3.1 Approach

Dependency parsing is typically performed by
either transition-based (Covington, 2001; Nivre,
2003) or graph-based (Eisner, 1996) models, and
can utilize representations including word embed-
dings, recurrent neural networks (Kiperwasser and
Goldberg, 2016), and/or transformers (Grünewald
et al., 2021). For experiments we use SuPar,2 a
Python library for syntactic and semantic pars-
ing, to implement a graph-based transformer de-
pendency parser using a deep biaffine attention
(Dozat and Manning, 2017) layer, fine tuned from
a HuggingFace-compatible pretrained transformer
language model (Wolf et al., 2020). Due to its com-
parative performance (§3.3), we select BERTweet-
base for the pretrained model for our final parser,
fine-tuned3 on Tweebank v2. Our experiments
use the Tweebank v2 splits from its supplied
“converted” CoNLL-compatible variant. We use
“Twitter-Stanza (TB2)” for tokenization, since it
achieves state-of-the-art results on Tweebank v2
tokenization (98.64 F1) (Jiang et al., 2022).4

Overall performance results are averaged over
three seeds, shown in the last row of Table 1. Our
results outperform the BiLSTM baselines featured
in (Liu et al., 2018) by 3.4 unlabelled attachment
score (UAS) and 4.0 labelled attachment score
(LAS), as well as the previous state of the art,
spaCy-XLM-RoBERTa, a transition-based parser
using the multilingual transformer XLM-R (Con-
neau et al., 2020).

2https://github.com/yzhangcs/parser
3Hyperparameters tested (selections underlined):

epochs=(50, 75, 100), warmup rate=(0.1, 0.15, 0.2), lr =
(1e-5, 5e-6, 1e-4), projective=(false, true)

4SuPar provides an option to use either projective (Eisner,
2000; Zhang et al., 2020), or non-projective (matrix tree: Koo
et al., 2007; Ma and Hovy, 2017) parsing; we use projective
parsing, finding it attains slightly better performance (+0.3
UAS, +0.2 LAS from preliminary experiments), presumably
since non-projectivity is rare in English (Peng and Zeldes,
2018).
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This software platform easily allows us to com-
pare training treebanks and pretrained language
models, which we next explore for their impact on
overall social media performance as well as dialect
disparity.

System UAS LAS
TweeboParser 81.4 76.9(Kong et al., 2014)
Deep Biaffine 81.8 77.7(Dozat and Manning, 2017)
Ensemble Model 83.4 79.4(Liu et al., 2018)
spaCy-XLM-RoBERTa 83.8 79.4(Jiang et al., 2022)
SuPar-BERTweet 87.2 83.4(this work)

Table 1: Performance (in F1) of systems on Tweebank
v2 test set. First four rows are from Liu et al. (2018) and
Jiang et al. (2022).

3.2 Impact of Training Treebank
In order to measure the impact of treebanks on per-
formance in this domain, we fine-tune RoBERTa-
base (Liu et al., 2020) on three different treebanks,
and measure its respective performance on Twee-
bank v2’s test set using the CoNLL evaluation
script. In order to ensure compatibility with this
script and the ability to evaluate cross-treebanks,
we drop the corpora-specific dependency subtypes.

We select the Georgetown University Multilayer
Corpus (GUM) (Zeldes, 2017) and English Web
Treebank (EWT) (Silveira et al., 2014). These in-
clude user-generated content and are 2.5 and 4.5
times larger than Tweebank v2 respectively. De-
spite their increased size, both see significant per-
formance drops when evaluated on Tweebank v2
(Table 2).

In-Domain Tweebank v2
Fine-tuning Corpus UAS LAS UAS LAS
GUM 92.9 90.9 66.6 57.1
EWT 90.7 89.6 70.2 61.5
Tweebank v2 85.7 81.4 85.7 81.4

Table 2: Performance (in F1) of SuPar-RoBERTa when
trained on a given corpus, and its checkpoint with best
dev split performance evaluated against the associated
(in-domain) test split, as well as Tweebank v2.

3.3 Impact of Pretrained Model Selection
In addition to fine-tuning corpora, we observe a
noticeable performance impact with respect to the
models used, suggesting that pretraining has a role
as well.

We evaluate the performance of eleven trans-
former models on Tweebank v2. BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2020), ELEC-
TRA (Clark et al., 2020), XLNet (Yang et al., 2019),
and DeBERTa v3 (He et al., 2021) are general
purpose English transformers. XLM-R (Conneau
et al., 2020) adapts RoBERTa to multilingual cor-
pora, and InfoXLM (Chi et al., 2021) improves
upon XLM-R with mutual information-improved
loss function for cross-lingual context. TimeLMs
(Loureiro et al., 2022) fine-tunes RoBERTa, train-
ing continually with larger temporal range, yield
checkpoints for 2019 and 2019-2021 respectively.
BERTweet is a RoBERTa model trained from
scratch on Twitter. XLM-T (Barbieri et al., 2022)
fine-tunes XLM-R on multilingual Twitter.

Model UAS LAS
General Purpose Models

BERT-base-uncased 85.0 80.8
RoBERTa-base 85.7 81.4
ELECTRA-base 85.6 81.6
XLNet-base-cased 85.8 81.7
DeBERTa-v3-base 87.1 83.2

Multilingual Models
XLM-R-base 86.2 82.4
InfoXLM-base 86.5 82.7

Social Media Models
TimeLMs-2019 85.7 81.6
TimeLMs-2021 86.3 82.3
BERTweet-base 87.2 83.4
Multilingual Social Media Models

XLM-T-base 86.5 82.0

Table 3: Performance (in F1) of SuPar dependency
parsers using various pretrained transformers, fine-tuned
and evaluated on the Tweebank v2 train and test splits,
with the epoch of the best dev split performance being
selected.

Table 3 indicates that stronger performance can
be achieved through either better representations
in modeling or through more social media pretrain-
ing, as seen respectively with DeBERTa v3 and
BERTweet, one having the highest GLUE score
(Wang et al., 2018; He et al., 2021), and the other
trained entirely on Twitter.

3.4 Performance on Non-Majority English
One key challenge of working with social media
text is the lack of adherence to any standardized
dialect of a language, and the inclusion of signif-
icant minority dialects, such as high prevalence
of African American English (AAE) (Jones, 2015;
Blodgett et al., 2016). AAE dependency parsing in-
cludes significant challenges from recognizing null
copulas to correctly understanding phonologically
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Tweebank v2 TwitterAAE Deps
Model MAE AAE R.E. MAE AAE R.E.

General Purpose Models
BERT 84.03 78.93 1.32 74.24 67.31 1.27
RoBERTa 84.40 78.61 1.37 75.46 67.50 1.32
ELECTRA 84.35 80.73 1.23 74.18 67.31 1.27
XLNet 84.41 79.85 1.29 75.72 69.75 1.25
DeBERTa-v3 85.63 82.44 1.22 77.08 71.90 1.23

Multilingual Models
XLM-R 85.14 81.56 1.24 74.07 68.06 1.23
InfoXLM 85.17 82.11 1.21 74.44 68.19 1.24

Social Media Models
TLMs19 84.22 81.33 1.18 76.23 72.22 1.17
TLMs21 84.87 82.30 1.17 76.91 72.38 1.20
BERTweet 85.42 84.38 1.07 78.10 76.55 1.07

Multilingual Social Media Models
XLM-T 84.86 82.62 1.15 76.14 72.94 1.13

Table 4: MAE/AAE Performance (in LAS F1) and Rel-
ative Error of the models from Table 3, trained on Twee-
bank v2, and evaluated on Tweebank v2 test split and
TwitterAAE deps.

driven alternative spellings (Blodgett et al., 2018).
We evaluate the ability of the previously listed

dependency parsing models by using the relative er-
ror of their performance on Mainstream American
English (MAE) and AAE test sets,

LASRelErr =
1− LASAAE

1− LASMAE
(1)

which attains 1 if accuracy is equal across dialects.
We have found this to be always greater than 1.0 in
our experiments, indicating performance is worse
for the minority dialect, AAE.

In order to measure disparity on the fine-tuning
source, we measure the relative error of both the
TwitterAAE dependencies and use the Twitter-
AAE demographic dialect inference model to par-
tition the Tweebank v2 test set into splits based
on whether there was higher proportion MAE or
AAE, yielding 951 and 249 tweets respectively. We
also measure this on the TwitterAAE dependencies,
which provides 250 tweets of both MAE and AAE
respectively.

Table 4 and Figure 2 display the disparities be-
tween MAE and AAE performance on Tweebank
v2 and TwitterAAE dependencies. This form of de-
mographic evaluation offers insight on a key ques-
tion that is not visible in the UAS / LAS scores
alone: whether the performance gains come from
overfitting on the majority dialect or increased per-
formance across dialects.

We observe the social media models to have less
LAS relative error than the general purpose models,
with BERTweet, the model exposed to the most so-
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Figure 2: Graph of the performance of the models pre-
sented in Table 3 in LAS and macro-average of the
relative error on the MAE/AAE split Tweebank v2 test
set and TwitterAAE dependencies.

cial media content, having less relative error than
any model. As seen in Table 4, its state-of-the-art
performance in Tweebank v2 does not suggest that
it has the best performance with the syntax of stan-
dard English; it actually underperforms DeBERTa-
v3, and only outperforms in total due to the 2 LAS
difference on AAE. The relative error suggests that
BERTweet’s performance only adds on average 7%
more error to a AAE sample compared to standard
English, while general purpose models like De-
BERTa v3 and RoBERTa add around 22.5% and
34.5% more, despite being fine-tuned on the same
corpora.

The implications suggest that social media trans-
formers capture the syntax not only better than
their general purpose counterparts, regardless of
architecture improvements, but also do it in a more
equitable manner. This is important for applica-
tions sensitive to demographic effects.

4 TweetIE: Belief Extraction from
Dependencies

A well-performing social media dependency parser,
along with pre-existing POS and NER taggers, en-
able novel applications for computational social
science. We apply these technologies for a belief
extraction system, which decodes these syntactic
structures into simple semantic representations and
presents information applicable for computational
social scientific purposes, specifically the delin-
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eation of beliefs to communities represented by
social variables. We call this system TweetIE.

4.1 Design Principles

In order to preserve the benefits of the domain-
specific dependency parsing system while main-
taining a simple overall system, we seek to:

• Infer relations using dependency parses,
NER tags, and POS tags, not through lexi-
cons that might only cover standard English.

• Focus on relations regarding a named entity
and its attributes.

• Minimize the number of arguments for rela-
tions to allow for accumulation and compari-
son across social variables.

4.2 Target Entities and Pronoun Coreference

We focus our extraction based on the attributes of
a single named-entity in a given tweet, through
either specifying a name, or using an @ mention
of that user’s account. In the case of names of
persons or organizations, we take into account the
specified token, and expand it using the flat rela-
tion and the span of any BIO NER tags. If the
root of this span is a conj dependency or if any
relevant predicates have conj dependencies, we dis-
tribute dependency relations over them, as done in
the CCprocessed/Enhanced++ variants of Stanford
(De Marneffe and Manning, 2008) and Universal
(Schuster and Manning, 2016) Dependencies.

In order to capture common forms of anaphora
such as possessive pronoun usage, we implement
a simple precision-oriented coreference system for
binary gendered target entities. The user specifies
the target’s gender, and the system seeks any per-
sonal pronouns with the target as the antecedent. It
first determines whether the target’s mention(s) are
in second person (denoted by the vocative relation)
or third person (otherwise). It attributes pronouns
of the determined person and specified gender to
the target if there are no other entities (denoted by
“PER” NER tags) mentioned in the text before it
that are potentially applicable (as in they agree with
regards to grammatical person).

To evaluate this system, we annotated a random
sample of 100 tweets for whether their POS-tagged
pronouns refer to the target entity of our later case
study, Dr. Anthony Fauci (see Section 5). Our
system achieved 33/39 (84.6%) precision and 33/52
(63.5%) recall.

4.3 Relations

We limit our focus to the following semantic rela-
tions:

4.3.1 IS_A
The IS_A relation covers any nominal or adjectival
properties stated to directly pertain to the target
entity, represented using the following patterns:5

1. target
nsubj←→ propertynom

2. propertyadj
nsubj−−−→ target

3. target
appos←→ propertynom

4. target
compound−−−−−−→ propertynom

5. target amod−−−→ propertyadj

6. target
nsubj←→ propertynom

amod−−−→ propertyadj

7. target
appos←→ propertynom

amod−−−→ propertyadj

Patterns 1 and 2 detect subject-complement linking
through copular clauses, even when explicit copu-
las are omitted. Pattern 3 detects appositions, and
Pattern 4 detects titles that do not make up fully
formed appositions (ex: “President Obama”).

Pattern 5 detects adjective modifiers. Patterns
6 and 7 detect adjective modifiers of previously
captured nominal properties, hoping to capture in-
tersective adjectives (ex: “Trump is a famous per-
son”).

4.3.2 HAS_A
The HAS_A relation pertains to any object pos-
sessed the target entity, implemented through pos-
sessive modification.

1. objectnom
nmod:poss−−−−−−→ target

4.3.3 AS_AGENT, AS_PATIENT
The AS_AGENT and AS_PATIENT relations
pertain to actions performed by the target entity
and performed upon the target entity respectively.

1. active verb
nsubj−−−→ targetagent

2. active verb
obj−−→ targetpatient

3. passive verb
nsubj:pass−−−−−−→ targetpatient

4. passive verb obl−−→ targetagent

5. active verb obl−−→ targetpatient
case−−→ prep.

5H→D represents a relation from a head H to its depen-
dency D, while X←→Y indicates a relation in either direction.
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Patterns 1 and 2 account for active tense verbs,
while 3 and 4 account for passive tense verbs,
which are distinguished from active tense by the
presence of a nsubj:pass dependency.

Pattern 5 consists of when the target acts as an
adjunct of the verb using a preposition, and is lex-
icalized through appending the preposition to the
verb (ex: “I stand with Obama”, “He listens to Bill
Gates”).

4.3.4 AS_CONJUNCT
The AS_CONJUNCT relations pertains to any
nominal conjoined with the target entity. If this
nominal consists of a named-entity, it is expanded
in the same manner as the target entity (through
flat dependencies and BIO NER spans).

1. target
conj←→ conjunct

Although this has no explicit semantic meaning, it
suggests that the two hold a latent semantic relation-
ship, such as co-hypernymy (Snow et al., 2004).

4.4 Negation

A theoretical concern for this mode of semantic ex-
traction deals with the presence of negative polarity
adverbs. Intuitively when comparing these extrac-
tions across social variables, this form of negation
should not be accumulated in the same case as the
original clause.

However, dependency relations describing nega-
tive polarity do not exist in the current version of
Universal Dependencies, with the neg relation be-
ing removed in Universal Dependencies v2 (Nivre
et al., 2020). In order to account for this, we check
previous version of treebanks for user-generated
content with this relation: specifically EWT v1.4.
In this treebank, the neg relation only covers the
following tokens: [‘no’, ‘not’, ‘never’, ‘nt’, ‘n’t’].

We utilize this list by adding a negative polarity
to any relation extracted that is modified by any of
those tokens. This is implemented by prepending
the extraction’s argument with ‘not_’, an approach
used in sentiment analysis (Das and Chen, 2007).
A word list in this vein has clear limitations - it
does not cover social media variations in spelling,
yet it allows us to capture this quality on its most
common variants.

4.5 Evaluation

TweetIE can either be evaluated through the accu-
racy of each component, or qualitatively through
how well its outputs model the social variables. On

a component level, its accuracy depends foremost
upon the performance of its dependency parsing,
NER, and POS models.

The performance of the dependency parsing has
been described in Section 3. For POS and NER
tagging use Jiang et al. (2022)’s state-of-the-art-
models: “HuggingFace-BERTweet (TB2+EWT)”
for POS (which achieved 95.38 UPOS accuracy
on Tweebank v2) and “HuggingFace-BERTweet
(TB2+W17)” for NER (which achieved 74.35 F1
on Tweebank-NER).

Finally, we examine externally validity by inves-
tigating the model’s ability to capture social context
in the following case study.

5 Case Study: COVID-19 Polarization

A key source of variation in opinion is with respect
to political ideology, and social media is rife with
arguments about political figures specifically. In
this section, we show TweetIE’s ability to capture
the ideological attributes of said figures, specifi-
cally the attributes social media users ascribe to
Dr. Anthony Fauci, director of the National Insti-
tute of Allergy and Infectious Diseases, who is a
key figure in United States COVID-19 discourse.
While TweetIE could be used to study a network of
entities and their relations, we find focusing on a
single entity is a useful and insightful first step.

5.1 Corpora Design and Configuration

We collect a corpus of tweets from Twitter Deca-
hose with the token ‘fauci’ spanning from March
1, 2020 to December 31, 2021. We filter to mes-
sages with geographic location information: either
from a tweet’s official API geotag, or from its au-
thor having a self-described user.location text field
consisting of a city and state in postal code nota-
tion (e.g. “Minneapolis, MN”). We look up these
fields using the US Census Bureau’s Place bound-
ary shapefiles,6 and as a proxy for political valence,
each valid place is paired with its county’s Biden-
Trump margin, the difference of Joe Biden’s ver-
sus Donald Trump’s percentage votes won in the
2020 U.S. presidential election (MIT Election Data
& Science Lab, 2018).7 Additionally, we discard
any tweets from verified users or users with over
10,000 followers in order to capture conversational

6https://www.census.gov/geographies/mapping-
files/time-series/geo/tiger-line-file.2020.html

7For Alaska we use the state-level result, since it does not
provide county-level results.
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Relation Trump-Leaning (t < −2) Biden-Leaning (t > 2)
IS_A(fauci, propertynom) murderer**, joke**, hack*, fraud*, rat*, flip*, id-

iot, flop, state, prison, fake, jail
nih**, hero, md, director,
president

IS_A(fauci, propertyadj) fake*, little*, deep, liberal, wrong, corrupt beloved, optimistic, best

AS_AGENT(fauci, verb) sweat**, force**, need*, help*, read*, lie*, know*,
let*, not_fund*, not_understand*, flip, predict,
write, make, stick, hold, prove, want, not_say,
admit, not_get, demand, issue, laugh, state, put,
spread, pull

speak**, join*, warn*, throw,
not_recommend, offer, pro-
vide, respond, consider, de-
bunk, fail, reveal

AS_PATIENT(fauci, verb) not_trust***, screw, prosecute, grill, keep to, ar-
rest, expose, lock, do to, remove, accord to, look
like, mean, blast, read

know*, feature, discredit,
threaten, worship, join, insult

HAS_A(fauci, object) friend*, nih*, family, mind, hand, ex-employee,
involvement, fraud, mask

guidance, time

AS_CONJUNCT(fauci, conj.) gates***, obama**, bill gates*, biden*, brix, cdc,
rest, covid, nih, company, government

director, experts

Table 5: TweetIE extractions with at least 20 unique users with a county-level political valence t-statistic outside of
[-2, 2]. Results are reported in decreasing absolute value t-statistic. * |t| > 3, ** |t| > 4, *** |t| > 5.

dialogue rather than statements by reporters and
officials.

5.2 Results and Qualitative Evaluation

We obtain 75,325 tweets, which have an electoral
margin average of 22.8 and standard deviation of
33.9. TweetIE yields 13,532 unique triples of re-
lation(Fauci, token), which we call unique extrac-
tions. The counts of these sum to 99,633 total ex-
tractions overall. In order to improve aggregation,
we lowercase and normalize the token terms with
NLTK’s WordNetLemmatizer (Loper and Bird,
2002), and remove stopwords from NLTK’s En-
glish stopword list.

For each tuple that is expressed by at least 20
unique users, we use a one-sample student’s t statis-
tic to determine if the mean author-geography polit-
ical sentiment of the tuple is significantly different
than the corpus population’s. We require |t| > 2 as
a rough filter for traditional statistical significance.8

This method for term ranking is appropriate for the
continuous variable of political sentiment. Since
words’ frequencies greatly vary, rare terms tend
to be sentiment average outliers; the t statistic’s
normalization by standard error helps control for
an expression’s sample size.9

8Under the central limit theorem, |t| > 1.96 corresponds
to p-value < 0.05. Given multiple hypothesis testing issues
we do not propose a formal significance test interpretation,
though false discovery rate or other methods could be applied
(Bamman et al., 2012).

9Social science NLP has often ranked terms by analogous
confidence measures of term frequency versus a discrete social
variable, such as χ2 (Gentzkow and Shapiro, 2010) or log-
odds posterior confidence (Monroe et al., 2008).

This results in 110 expressions have test statis-
tics greater than 2 or less than -2, shown in Table
5. These reflect common political narratives con-
cerning Fauci and his COVID-19 response. Polit-
ical scientific work has found liberal respondents
to be more trusting in COVID-19 experts such as
Fauci than conservatives (Kerr et al., 2021), as well
as more hesitant towards COVID-19 vaccination
(Khubchandani et al., 2021), whose development
and production Fauci was involved with.

The notable considerations of Fauci as a joke or
a fraud, or that he lies or is not trusted, reflect lack
of trust in Fauci by the Trump-leaning. Likewise,
suggesting that Fauci is a hero or beloved, as well
as emphasizing what he says or his warnings show
trust in Fauci from the Biden-leaning.

There are elements of COVID-19 related right-
wing conspiracism in the Trump-leaning extrac-
tions as well. Common antecedents of COVID-19
conspiracism include the notions of a fraudlent pan-
demic, vaccination as a weapon, suspicions of the
government, pharmaceutical industry, Democrats,
and Bill Gates (van Mulukom et al., 2022). In our
analysis this theme surfaces in Gates’ appearance
as a frequent conjunct; furthermore, many Trump-
leaning extractions indicate Fauci as a murderer for
his involvement in vaccination, or as someone who
should be prosecuted, arrested, or put in prison.
A shortcoming of our token-based approach can
be seen with the bigram “deep state”, a key nar-
rative element, being split into two separate IS_A
statements, which would be better viewed together.
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5.3 Alternative Systems

To demonstrate TweetIE’s value over open infor-
mation extraction (OIE) systems for this task, we
evaluate two other systems against the Fauci corpus.
These are ReVerb, a lexical pattern and POS-based
system (Fader et al., 2011), and ClausIE, a Stan-
ford Dependencies based system (Del Corro and
Gemulla, 2013). ReVerb was selected to represent
systems that do not require a parser, while ClausIE
is the state-of-the-art system on the BenchIE OIE
benchmark (Gashteovski et al., 2022). Like other
OIE systems, these extract <Arg1, Relation, Arg2>
tuples where relations and arguments are (normal-
ized) strings from the sentence. While some work
has sought to use OIE triples for social insight (Ash
et al., 2021), we map them to IS_A, AS_AGENT,
and AS_PATIENT for comparability.10

ReVerb is an OIE system that extracts relations
using POS tags, noun phrase chunks, and lexical
constraints; its output OIE triples have normalized
values. If the relation is normalized to “be”, and the
target entity is in one of the arguments, we extract
the other argument as IS_A. Otherwise if the target
entity is in Argument 1, the relation is extracted as
AS_AGENT, and if in Argument 2, AS_PATIENT.

ClausIE parses a sentence using Stanford Depen-
dencies, using pattern detectors to eventually arrive
at final OIE triples (“propositions”). While the re-
lations are short, unfortunately the arguments can
be very long phrases, and cannot be accumulated
for counts or social variable aggregates. For a fair
and generous comparison, we utilize ClausIE’s in-
termediate representation of “clause” tuples, which
are based on one of seven syntactic patterns such as
copular clauses (SVC) or monotransitives (SVO);
these are tuples of syntactic head words.11 For
IS_A, we take all detected copular clauses with
the target entity in the subject or complement role,
recording the remaining of the two as an IS_A
extraction. For AS_AGENT, we extract the verb
argument of any non-copular clause with the tar-
get entity in the subject role. We do the same for
AS_PATIENT if the target entity is in the comple-

10While IS_A requires adaptation from the OIE frame-
work, AS_AGENT and AS_PATIENT relations can be viewed
as a Davidsonian-style binarization of an OIE triple: e.g.
<Fauci, hate, us> is equivalent to AGENT(hate, Fauci) ∧
PATIENT(hate, us), at least assuming a Dowty (1991)-style
proto-role theory of what OIE Arg1 and Arg2 mean.

11A shortcoming of this approach is that ClausIE only ap-
plies coordination handling to the final OIE triples; it was not
clear to us if it was possible to backport this feature to the
clause tuples.

ment or object roles. We normalize these outputs
in the same way as TweetIE.

As neither ReVerb nor ClausIE use coreference
resolution, we present TweetIE with and without
coreference enabled for comparison.

The systems share common extractions; the top
ten IS_A share fraud, one, liar, expert, doctor, man,
the top five AS_AGENT share say and tell, and the
top five AS_PATIENT share fire and trust.

This suggests that they all can capture similar
phenomena in the dataset, yet the amount of infor-
mation they actually extract (total yield) varies sig-
nificantly. Over these three patterns, ReVerb yields
16,980 total extractions, ClausIE yields 43,097,
TweetIEno-coref yields 61,484, and TweetIE yields
74,572. TweetIE’s superior yield is important, as
the statistical inference over social variables is re-
liant on the ability to extract on a scale large enough
to be representative; the smaller yield from ReVerb
is likely to be inadequate. This occurs in our social
analysis criteria of requiring terms to have at least
20 unique users and a t-statistic outside of [-2,2].
For IS_A, AS_AGENT and AS_PATIENT respec-
tively, ReVerb yields 1/1/2, ClausIE yields 12/22/6,
TweetIEno-coref yields 23/28/22, and TweetIE yields
26/39/22.

In addition, ClausIE struggled to understand @
mentions, and they appeared as extractions of ev-
ery variety instead of extraneous vocative men-
tions (second most common IS_A and AS_AGENT,
most common AS_PATIENT). We attribute this
to ClausIE’s reliance on a parser not trained on a
social media domain without the benefit of trans-
former modeling.

Finally, we perform a precision evaluation to
judge which systems’ extractions more accurately
reflect semantic implications of the text. We ran-
domly sample 250 tweets and annotate whether
each semantic tuple from ReVerb, ClausIE, and
TweetIE is present in or directly implied by the
text. The annotator (first author) was presented
with the text of the tweet, along with the outputs of
all systems in a random order (with system names
hidden). Each output was labelled as implied or not
implied; for each system we report the precision
and its 95% confidence interval from bootstrapped
standard errors, from 100,000 simulations of resam-
pling at the tweet level. This results in ReVerb hav-
ing a precision of 73.8± 12.5% (31/42), ClausIE
having a precision of 66.1 ± 8.5% (84/129), and
TweetIE having the highest precision at 83.5±4.7%
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(187/222).
The difference between TweetIE and ClausIE is

statistically significant (p < 0.001). Thus TweetIE
is able to achieve its higher yield but without any
cost to precision, presumably due to its modeling
and rule improvements.

6 Conclusion and Future Work

The annotations from Tweebank v2 and the perfor-
mance improvements from BERTweet have lead
to significant advancements in social media depen-
dency parsing, with performance gains of 3.4 UAS
and 4.0 LAS, as well as significantly lessening how
much performance lags for the non-standard lan-
guage variety of African-American English.

These achievements enable downstream applica-
tions of syntactic parsing on social media data, of
which we note information extraction as being espe-
cially utilizable for computational social scientific
means. We outline a process to decode these depen-
dency parses into aggregatable semantic structures,
for comparisons with social variables that one may
seek to study.

We show how one can model political narratives
with respect to named entities with a case study
on elements and actions attributed to Dr. Anthony
Fauci on social media during the COVID-19 pan-
demic. Through this, we replicate findings in social
scientific literature on the topic, and we have sim-
ilar extractions to pre-existing open information
extraction yet with increased yield, enabling more
substantial computational social scientific analyses.

Future work can build upon these foundations
by extending these techniques to beliefs spanning
multiple entities, by considering additional social
variables, or by taking into account temporal ef-
fects through timestamps. This could allow for the
observation of more complex phenomena, such as
actions from an entity towards another entity or the
adoption and decline of beliefs over time.
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Abstract

Research related to automatically detecting
Alzheimer’s disease (AD) is important, given
the high prevalence of AD and the high cost of
traditional methods. Since AD significantly
affects the acoustics of spontaneous speech,
speech processing and machine learning (ML)
provide promising techniques for reliably de-
tecting AD. However, speech audio may be
affected by different types of background noise
and it is important to understand how the noise
influences the accuracy of ML models detect-
ing AD from speech. In this paper, we study the
effect of fifteen types of environmental noise
from five different categories on the perfor-
mance of four ML models trained with three
types of acoustic representations. We perform
a thorough analysis showing how ML models
and acoustic features are affected by different
types of acoustic noise. We show that acoustic
noise is not necessarily harmful - certain types
of noise are beneficial for AD detection models
and help increasing accuracy by up to 4.8%.
We provide recommendations on how to utilize
acoustic noise in order to achieve the best per-
formance results with the ML models deployed
in real world.

1 Introduction

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disease that affects over 40 mil-
lion people worldwide (Prince et al., 2016). Cur-
rent forms of diagnosis are both time consuming
and expensive (Prabhakaran et al., 2018), which
might explain why almost half of those living with
AD do not receive a timely diagnosis (Jammeh
et al., 2018). Studies have shown that ML meth-
ods can be applied to distinguish between speech
from healthy and AD participants (Fraser et al.,
2016; Balagopalan et al., 2018; Zhu et al., 2019;
Eyre et al., 2020). Currently, speech recording for
AD-related research typically takes place in a quiet
room with a guiding clinician. Given that smart-

phone technology is rapidly advancing, speech as-
sessments using ML models trained on recordings
obtained by smartphones offer a potentially simple-
to-administer and inexpensive solution, scalable to
the entire population, that can be performed any-
where, including the patient’s home (Kourtis et al.,
2019; Mc Carthy and Schueler, 2019; Fristed et al.,
2021). However, the problem of model robustness
to acoustic noise becomes increasingly important
when deploying ML models in real world (Robin
et al., 2020).

Current popular approaches to dealing with
acoustic noise in AD detection models involve:
1) eliminating noise using various audio pre-
processing techniques (Luz et al., 2021), 2) se-
lecting features that are resilient to ASR er-
ror/noise (Zhou et al., 2016), 3) minimizing the
effects of noise with multimodal fusion of fea-
tures (Rohanian et al., 2021). All these approaches
share a common assumption of acoustic noise be-
ing definitely harmful for ML models detecting AD
from speech. However, in other ML research areas,
such as computer vision or NLP, adding a certain
level of natural and artificial noise to data is consid-
ered a valid and advantageous practice that helps
achieving better performance in tasks like image
recognition (Koziarski and Cyganek, 2017; Stef-
fens et al., 2019), text generation (Feng et al., 2020)
and relation classification (Giridhara et al., 2019),
among others. The recent studies in AD classi-
fication from transcribed speech show that small
levels of linguistic noise do not negatively affect
performance of BERT-based models (Novikova,
2021), although there is a difference in predictive
power between lexical and syntactic features, when
it comes to AD detection from speech (Novikova
et al., 2019).

Motivated by the previous work, in this paper we
study the effect of acoustic noise on performance of
the ML models trained to detect AD from speech.
The contributions of this paper are:
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1. we analyze the effect of environmental acous-
tic noise on the values of acoustic features
extracted from speech;

2. we perform a thorough study on the effect
of acoustic noise on AD classification perfor-
mance across ML models, extracted acoustic
features and noise categories;

3. we provide recommendation to ML re-
searchers and practitioners on how to utilize
acoustic noise in order to achieve the best per-
formance results.

2 Related Work

2.1 Environmental Noise and Speech Quality

Multiple previous studies attempted to investigate
the influence of the environment background noise
on speech quality. For example, Naderi et al. (2018)
conducted a study in which participants rated the
quality of speech files first in the laboratory and
then in noisy speech collection settings, such as
cafeteria and living room. They found that the pres-
ence of a “cafeteria" or a “crossroad" background
noise would decrease the correlation to speech qual-
ity ratings.

Furthermore, multiple studies have addressed the
issue of speech intelligibility under certain back-
ground noise conditions. To name some, Meyer
et al. (2013) tackled the problem of speech recog-
nition accuracy in ecologically valid natural back-
ground noise scenarios and showed the relation
between the levels of noise and confusion of vow-
els, lexical identification and perceptual consonant
confusion.

Jiménez et al. (2020) investigated the influence
of environmental background noise on speech qual-
ity, where the quality of speech files was assessed
under the influence of two types of background
noise at different levels, i.e., street noises and tv-
show. The authors found there was a certain thresh-
old of the environment background noise level that
impacted the quality of speech, and different types
of noise had a different effect on the quality.

Motivated by the previous studies, in this work
we analyze fifteen different types of environmental
background noise in order to figure out differences
in their impact. We also compare the impact of
short and continuous noise to follow up on the
findings of the impact threshold.

2.2 Alzheimer’s Disease Detection in Noisy
Settings

Given the number of people with AD is growing
and the population is aging fast in many countries
(Brookmeyer et al., 2018), it becomes more and
more important to have tools to help identify the
presence of cognitive impairment relating to AD
that can be deployed frequently, and at scale. This
need will only increase as effective interventions
are developed, requiring the ability to identify pa-
tients early in order to facilitate prevention or treat-
ment of disease (Vellas and Aisen, 2021). Most of
the current AD screening tools represent a signifi-
cant burden, requiring invasive procedures, or in-
tensive and costly clinical testing. However, recent
shifts toward telemedicine and increased digital
literacy of the aging population provide an oppor-
tunity for using digital health tools that are ide-
ally poised to meet the needs for novel solutions.
Recently, automated tools have been developed
that assess speech and can be used on a smart-
phone or tablet, from one’s home (Robin et al.,
2021). Digital assessments that can be accessed
on a smartphone or tablet, completed from home
and periodically repeated, would vastly improve
the accessibility of AD screening compared to cur-
rent clinical standards that require clinical visits,
extensive neuropsychological testing or invasive
procedures.

The pervasiveness of high-quality microphones
in smart devices makes the recording of speech
samples straightforward, not requiring additional
equipment or sensors. However, there is a lack
of control over the participants performing digital
assessments in home environment, and often not
enough information is collected about their play-
back system and background environment. Partici-
pants might be exposed to different environmental
conditions while executing specific tasks, and as
such, their recorded speech quality may be dis-
turbed with some background noise.

In the speech community, the active ongoing
effort is focused on solving the problem of auto-
mated speech enhancement with the methods of
noise suppression that are based on machine learn-
ing and deep learning (Zhang et al., 2022; Braun
et al., 2021; Choi et al., 2018; Odelowo and An-
derson, 2017, among many others). However, this
problem is not considered to be solved, and the
research community continues developing methods
for effective noise elimination from audio record-
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ings (Dubey et al., 2022).
These challenges motivate us asking a question

whether noise suppression is absolutely necessary
when it comes to the specific task of AD detection
from speech. In this work, we perform a thorough
study on the effect of acoustic background noise,
standard for home environments, on AD classifica-
tion performance across a range of ML models.

2.3 Speech Quality and Alzheimer’s Disease
Detection

Speech is a promising modality for digital assess-
ments of cognitive abilities. Producing speech sam-
ples is a highly ecologically valid task that requires
little instruction and at the same time is instrumen-
tal to daily functioning. Advances in signal pro-
cessing and natural language processing have en-
abled objective analysis of speech samples for their
acoustic properties, providing a window into moni-
toring motor and cognitive abilities. Most impor-
tantly, previous research has extensively shown that
speech patterns are affected in AD, demonstrating
the clinical relevance of speech for detecting cog-
nitive impairment and dementia (Martínez-Nicolás
et al., 2021; de la Fuente Garcia et al., 2020; Slegers
et al., 2018).

Some of the features employed to describe acous-
tic characteristics of the voice applied to AD detec-
tion, include conventional acoustic features, such as
fundamental frequency, jitter and shimmer, as well
as pre-trained embeddings from deep neural mod-
els for audio representation, such as wav2vec (Bal-
agopalan and Novikova, 2021). Quality of speech,
which may be influenced by environmental noise,
inevitably affects the values of these acoustic fea-
tures extracted from speech and as a result may po-
tentially influence the performance of ML models
that use these features as internal representations
of human speech.

However, in other research areas, such as com-
puter vision or NLP, adding a certain level of natu-
ral or artificial noise to data is considered a valid
and advantageous practice that helps achieving
better performance in tasks like image recogni-
tion (Koziarski and Cyganek, 2017; Steffens et al.,
2019), text generation (Feng et al., 2020) and rela-
tion classification (Giridhara et al., 2019), among
others. Moreover, deep neural acoustic models,
such as wav2vec, that are used to generate acoustic
embeddings used in AD detection, are pre-trained
on healthy speech. As such, it is possible that the

Figure 1: Cookie Theft picture used to collect speech
for the ADReSSo dataset.

subparts of the embeddings that are affected by
environmental noise are not used for the task of
AD detection directly and as a result, they do not
influence the performance of such detection.

In this work, we make an attempt to understand
how different types of environmental noise are im-
pacting the values of different types of acoustic
features extracted from speech, as well as how this
affects performance of ML models relying on these
features.

3 Methodology

3.1 Dataset

We use the ADReSSo Challenge dataset (Luz et al.,
2021), which consists of 166 training speech sam-
ples from non-AD (N=83) and AD (N=83) English-
speaking participants. Speech is elicited from par-
ticipants through the Cookie Theft picture from
the Boston Diagnostic Aphasia exam (Figure 1).
In contrast to the other datasets for AD detec-
tion such as DementiaBank’s English Pitt Cor-
pus, the ADReSSo challenge dataset is well bal-
anced in terms of age and gender. In addition,
the pre-processing step of ADReSSo recordings
were acoustically enhanced with stationary noise
removal and audio volume normalisation applied
across all speech segments to control for variation
caused by recording conditions such as microphone
placement. Such enhancements make this dataset
a great source of the noise-clean audio, which is
important for our experiments.

3.2 Feature Extraction

The following groups of features were extracted for
the further use in the experiments:
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1. CONVFEAT : We extract 182 acoustic fea-
tures from the unsegmented speech audio files.
Those include several statistics such as mean,
std, median, etc. of mel-frequency cepstral co-
efficients (MFCCs), onset detection, rhythm,
spectral and power features, following prior
works in AD classification (Fraser et al., 2016;
Zhu et al., 2018; Balagopalan et al., 2020).

2. EGEMAPSV02 : The extended Geneva Mini-
malistic Acoustic Parameter Set (eGeMAPS)
features are a selected standardized set of
statistical features that characterize affective
physiological changes in voice production.
We extracted these features for the entire
recording, as this feature set was shown to be
usable for atypical speech (Xue et al., 2019)
and was successfully used for classifying AD
from speech (Gauder et al., 2021; Pappagari
et al., 2021).

3. WAV2VEC : In order to create audio repre-
sentations using this approach, we make use
of the huggingface1 implementation of the
wav2vec 2.0 (Baevski et al., 2020) base model
wav2vec2-base-960h. This base model is
pretrained and fine-tuned on 960 hours of
Librispeech on 16kHz sampled speech au-
dio. Closely following (Balagopalan and
Novikova, 2021) that used these representa-
tions for AD classification, we extracted the
last hidden state of the wav2vec2 model and
used it as an embedded representation of au-
dio.

3.3 Adding Noise

We used the audiomentations2 library to add two
types of audio noise that are common when record-
ing audio with smart devices - 1) background noise,
and 2) short noise (Vhaduri et al., 2019; Dibbo
et al., 2021). We use a reduced version of the ESC-
50 dataset (Piczak, 2015) to generate noisy audio,
where we select three classes of noise from all the
five presented major categories:

1. Animal sounds: dog, cat, crow

2. Natural soundscapes: rain, wind, chirping
birds

1https://huggingface.co/models
2https://github.com/iver56/audiomentations

3. Human sounds: crying baby, sneezing,
coughing

4. Domestic / interior sounds: clock ticking,
washing machine, vacuum cleaner

5. Urban / exterior noises: train, car horn, siren

3.4 Experiments
We first analyze how significantly addition of noise
changes the values of acoustic features CONVFEAT

and EGEMAPSV02 . We calculate the ratio of fea-
tures that are impacted significantly by noise, with
the Mann–Whitney U test used to estimate signifi-
cance of difference.

Next, we experiment with the effect of noise
addition to the performance of AD classification
models. Following multiple previous studies on
AD classification from speech (Balagopalan et al.,
2020, 2021; Balagopalan and Novikova, 2021), we
use a set of linear and non-linear ML models: Lo-
gistic regression (LR), Support Vector Machines
(SVM), Neural Network (NN), and Decision Tree
(DT).

We use 10-fold cross-validation approach to eval-
uate the performance of classifiers, with the F1
score being the main classification performance
evaluation metric.

4 Results and Discussion

4.1 Effect of Noise on the Values of Acoustic
Features

The results in Table 1 show that different types of
noise have very different impact on the acoustic
features, where sneezing sound introduced several
times within recordings for short periods only af-
fects 10% of CONVFEAT , while continuous back-
ground sound of rain significantly changes more
than 90% of these features. Unsurprisingly, back-
ground noise affects recordings much stronger than
short noise. Notably, conventional acoustic features
are on average more vulnerable than EGEMAPSV02
to both short noise (12.5% higher ratio of signif-
icantly affected features) and background noise
(19.8% higher ratio), with the categories of natural
sounds, domestic/interior and urban/exterior bring-
ing the strongest difference between the CONVFEAT

and EGEMAPSV02 .
Both CONVFEAT and EGEMAPSV02 are quite ro-

bust to the human non-speech noise, especially the
sound of sneezing. Out of all the noise types an-
alyzed in this work, sneezing is the only one that
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Ratio of sign diff features
Noise
category Subcategory Features Short

noise
Background
noise

Animals

cat
CONVFEAT 32.42% 68.68%
EGEMAPSV02 32.95% 50.00%

crow
CONVFEAT 55.49% 80.22%
EGEMAPSV02 45.45% 59.09%

dog
CONVFEAT 23.08% 63.19%
EGEMAPSV02 23.86% 50.00%

Natural

chirping
birds

CONVFEAT 69.23% 71.43%
EGEMAPSV02 44.32% 54.55%

rain
CONVFEAT 67.58% 90.11%
EGEMAPSV02 32.95% 69.32%

wind
CONVFEAT 48.35% 78.02%
EGEMAPSV02 42.05% 60.23%

Human

coughing
CONVFEAT 37.36% 52.20%
EGEMAPSV02 27.27% 32.95%

crying
baby

CONVFEAT 53.30% 68.68%
EGEMAPSV02 40.91% 67.05%

sneezing
CONVFEAT 10.44% 41.21%
EGEMAPSV02 27.27% 25.00%

Domestic/
interior

clock
ticking

CONVFEAT 48.35% 63.74%
EGEMAPSV02 23.86% 30.68%

vacuum
cleaner

CONVFEAT 63.19% 87.36%
EGEMAPSV02 42.05% 60.23%

washing
machine

CONVFEAT 51.10% 82.97%
EGEMAPSV02 28.41% 65.91%

Urban/
exterior

car
horn

CONVFEAT 39.01% 81.32%
EGEMAPSV02 27.27% 45.45%

siren
CONVFEAT 53.30% 74.73%
EGEMAPSV02 42.05% 62.50%

train
CONVFEAT 56.04% 83.52%
EGEMAPSV02 39.77% 57.95%

Table 1: Impact of noise addition on the value of CONVFEAT and EGEMAPSV02 . Ratio of sign. diff. features
shows the percentage of all the features that is significantly (p < 0.05) different from the original values as a result
of adding short noise and background noise to original audio samples. Lighter cell color indicates higher than 50%
ratio, darker - higher than 80% ratio.

only affects up to 50% of acoustic features, both in
a format of short and background noise. Natural
sounds, such as rain, wind or chirping birds, affect
the acoustic features the strongest.

The above results suggest that noise strongly dis-
turbs the quality of audio samples, as represented
by both CONVFEAT and EGEMAPSV02 . Next, we
analyze whether such a disturbance is beneficial
or harmful when it comes to AD detection from
disturbed speech.

4.2 Effect of Noise on Performance of AD
Classification

Four types of ML models (SVM, neural network /
NN, logistic regression / LR and decision tree / DT)
were trained on noisy and original audio recordings
represented using CONVFEAT , EGEMAPSV02 and
WAV2VEC . Each set of features was extracted from
both original audio recordings and the recordings
with added 20 subcategories of noise. Each ML
model was evaluated with the F1 score on three
different random seeds. As such, it is possible to
analyse the mean classification performance level
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Figure 2: AD classification performance by feature type.

per feature type, where performance is averaged
across all the seeds, for each model, noise subcate-
gory and feature type.

4.2.1 Analysis Per Feature Type
The best mean F1 score represents the model that
performs the best on average (across three random
seeds) for some specific noise subcategory. Based
on the best mean F1 score, the WAV2VEC -based
model outperforms substantially the EGEMAPSV02
-based model, while the CONVFEAT -based model
achieves the lowest best mean level of performance
(see Figure 2). Interestingly in all three cases, the
best mean level of performance is achieved by the
models trained on the original audio without noise
addition.

The best maximum F1 score represents the best
possibly achievable performance across all the
seeds, i.e. the model that performs the best on
a single best seed. The difference between the best
mean level and the best maximum level shows the
potential of the models to achieve higher level of
performance. Figure 2 shows that such a potential
is the strongest for the CONVFEAT -based models
(+6.3%), and there is not that much room for im-
provement for the WAV2VEC -based models (+2.3%).
However, given the strong starting point, i.e. the
strong best mean level, the absolute best maximum
level of performance is achieved by the WAV2VEC

-based model. Interestingly, this best maximum
level is achieved by the model trained on the noisy
data, not the original audio. The same is true for
the second-best maximum performance, i.e. of the
CONVFEAT -based model.

4.2.2 Analysis Per Model Type
The best mean F1 score is achieved by the LR
model, while SVM and NN both share the low-
est level of the best mean performance (Figure 3).
The growth potential of both linear models (LR

Figure 3: AD classification performance by model.

and SVM) is weaker than that of the non-linear
models (DT and NN), with the NN model show-
ing the strongest potential across all model types.
Once again, the best mean level of all the models
is achieved when training the models on the origi-
nal noise-free recordings, while the best maximum
level is always achieved by training the models on
the noisy audio recordings.

To overview, the results strongly suggest that
noise has a beneficial effect on performance of AD
classifiers, both linear and non-linear and utilizing
different sets of features. However, all these per-
formance results are aggregated across different
categories and subcategories of noise. Next, we
investigate in more detail how each specific noise
category affects AD classification model perfor-
mance.

4.2.3 Analysis Per Noise Type

The results of classification experiments with mod-
els trained on the noise-free and noisy audio show
that best average classification performance is
achieved when models are trained on clean noise-
free audio recording (Best mean F1 w/o noise and
Mean F1 w/ noise columns in Table 2). However,
the maximum performance is consistently higher
for the models trained on the noisy audio (columns
Max F1 w/ noise vs Best max F1 w/o noise in Ta-
ble 2).

Out of all the noise categories, domestic/interior
sounds seem to be the least beneficial for the AD
classification models - none of the noise subcate-
gories helps consistently improving classification
performance. In the other categories, such as an-
imal sounds, natural sounds, and urban/exterior
noise, at least one noise subcategory consistently
achieves substantially higher performance with the
models trained on the noisy recordings, with all the
tested audio features. The human noise is the most
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Noise
category Subcategory Features Count Mean F1

w/ noise
Max F1
w/ noise

Best mean F1
w/o noise

Best max F1
w/o noise

Animals

cat
CONVFEAT 24 0.6232 0.6842* 0.6557 0.6557
EGEMAPSV02 24 0.6284 0.6907* 0.6557 0.6557
WAV2VEC 24 0.6222 0.7006 0.7111 0.7200

crow
CONVFEAT 24 0.6217 0.6591 0.6557 0.6557
EGEMAPSV02 24 0.6345 0.6800* 0.6557 0.6557
WAV2VEC 24 0.6400 0.6878 0.7111 0.7200*
CONVFEAT 24 0.6255 0.6704 0.6557 0.6557

dog EGEMAPSV02 24 0.6318 0.7014* 0.6557 0.6557

Natural

chirping
birds

CONVFEAT 24 0.6273 0.7018* 0.6557 0.6557
EGEMAPSV02 24 0.6443 0.6995* 0.6557 0.6557
WAV2VEC 24 0.6275 0.6966 0.7111 0.7200*
CONVFEAT 24 0.6229 0.6882* 0.6557 0.6557

rain EGEMAPSV02 24 0.6506 0.7135* 0.6557 0.6557

wind
CONVFEAT 24 0.6156 0.6480 0.6557 0.6557
EGEMAPSV02 24 0.6138 0.7019* 0.6557 0.6557

Human

CONVFEAT 24 0.6182 0.6923* 0.6557 0.6557
coughing EGEMAPSV02 24 0.6387 0.7120* 0.6557 0.6557

CONVFEAT 24 0.6182 0.6816* 0.6557 0.6557
crying baby EGEMAPSV02 24 0.6472 0.7079* 0.6557 0.6557

WAV2VEC 24 0.6344 0.7345* 0.7111 0.7200

sneezing
CONVFEAT 24 0.6071 0.6444 0.6557 0.6557
EGEMAPSV02 24 0.6406 0.6800* 0.6557 0.6557

Domestic/
interior

clock
ticking

CONVFEAT 24 0.6013 0.6557 0.6557 0.6557
EGEMAPSV02 24 0.6284 0.6990* 0.6557 0.6557

vacuum
cleaner

CONVFEAT 24 0.5775 0.6292 0.6557 0.6557
EGEMAPSV02 24 0.5937 0.6561 0.6557 0.6557

washing
machine

CONVFEAT 24 0.6254 0.6919* 0.6557 0.6557
EGEMAPSV02 24 0.6391 0.6990* 0.6557 0.6557
WAV2VEC 24 0.6194 0.6816 0.7111 0.7200*

Urban/
exterior

car horn
CONVFEAT 24 0.6324 0.7111* 0.6557 0.6557
EGEMAPSV02 24 0.5868 0.6832 0.6557 0.6557
WAV2VEC 24 0.6069 0.6631 0.7111 0.7200*

siren
CONVFEAT 24 0.6274 0.7191* 0.6557 0.6557
EGEMAPSV02 24 0.6098 0.6919* 0.6557 0.6557
WAV2VEC 24 0.5961 0.6667 0.7111 0.7200*
CONVFEAT 24 0.6112 0.6818* 0.6557 0.6557

train EGEMAPSV02 24 0.6382 0.6866* 0.6557 0.6557

Table 2: Change in AD classification performance when models are trained on the noisy audio recordings, by
noise category, subcategory and feature type. Bold denotes best performance per noise subcategory+features, bold
italic denotes best overall performance, green background denotes noise subcategory that has consistently highest
performance when models are trained on the noisy recordings. * indicates significant difference of p < 0.05 on
McNemar’s test.

beneficial noise category for getting high AD classi-
fication results: 1) the overall best classification per-
formance is achieved by the model trained on the
noisy recording of this category (model trained on
wav2vec embeddings of the audio with the crying
baby noise), 2) two out of three noise subcategories
(coughing and crying baby) consistently achieve
higher performance level across all the audio fea-

tures. The best overall performance motivates us
to investigate in more detail the classification per-
formance of the models trained on the audio with
the crying baby noise.

4.2.4 Analysis of the Crying Baby Noise
All the CONVFEAT -based models trained on the
audio recordings with the sounds of crying baby
present as short noise, perform better than those

57



Original noise-free audio Short noise Background noise
F1 Model CONVFEAT EGEMAPSV02 WAV2VEC CONVFEAT EGEMAPSV02 WAV2VEC CONVFEAT EGEMAPSV02 WAV2VEC

Mean

SVM 0.6557 0.6480 0.6857 0.6816 0.6484 0.6885 0.6096 0.7079 0.6067
LR 0.5698 0.6630 0.7111 0.6441 0.6413 0.7159 0.6243 0.6369 0.5914
NN 0.6289 0.6541 0.6857 0.6355 0.6603 0.7061 0.6206 0.6595 0.5901
DT 0.5882 0.5567 0.6908 0.6142 0.6004 0.6113 0.5154 0.6234 0.5653

Max

SVM 0.6557 0.6480 0.6857 0.6816 0.6484 0.6885 0.6096 0.7079 0.6067
LR 0.5698 0.6630 0.7111 0.6441 0.6413 0.7159 0.6243 0.6369 0.5914
NN 0.6519 0.7177 0.7200 0.6705 0.6832 0.7345 0.6484 0.6634 0.6034
DT 0.6250 0.5795 0.7045 0.6292 0.6077 0.6328 0.5263 0.6292 0.5843

Table 3: Classification performance of the models trained on the noisy audio recordings with the sounds of crying
baby. Mean F1 is averaged across three random seeds. Bold denotes the best performance per noise type (short and
background), green background denotes performance that is higher than the analogous one for the model+feature
set trained on the original noise-free audio.

same models trained on the original noise-free au-
dio recordings (see Table 3 for details). Same is
true for the majority of WAV2VEC -based models,
with WAV2VEC -based NN achieving the overall best
performance.

When it comes to the sound of crying baby to
be introduced as a continuous background noise,
the overall performance level of WAV2VEC and
CONVFEAT -based models decreases substantially.
WAV2VEC -based models are not able anymore to out-
perform any of noise-free models, and only linear
CONVFEAT -based models are still able to outper-
form their noise-free analogues. The EGEMAPSV02
-based SVM model is able to achieve its best per-
formance with this type of noise.

4.3 Recommendations

Based on the results of our analysis, we outline a
set of recommendations for the ML researchers and
practitioners interested in deploying AD classifica-
tion models in real world.

First, if acoustic features are extracted using
conventional and not deep learning-based features,
such as CONVFEAT or EGEMAPSV02 , it is impor-
tant to use the noise removal speech pre-processing
techniques to normalize the audio dataset that is
used for training ML models. As explained in Sec-
tion 4.1, even short segments of unwanted noise,
such as accidental siren, craw caw or a short vac-
uum cleaner sound, may significantly change more
than 50% of acoustic features. Having the training
dataset where otherwise similar datapoints are rep-
resented by significantly different acoustic features,
introduces many unnecessary challenges in model
development.

Second, it is important to make sure the deployed
models are not be used in certain types of real world
environments where certain noises are common. As

explained in Section 4.2, domestic noise, such as
washing machine or vacuum cleaner, may decrease
classification performance. As such, it is important
to recommend the real world users of the AD clas-
sification model to avoid this type of noise when
recording audio in order to expect better accuracy
of the model. Other noises, such as baby cry, cough
or dog bark, are not harmful and there is no need to
avoid them. This is also important to know because
these types of noise are much more difficult to se-
curely avoid in real world scenarios than sounds of
a vacuum cleaner or washer.

Third, model developers should expect different
effects of noise on the AD classification perfor-
mance depending on the type of audio represen-
tation and model used. Deep features, such as
WAV2VEC , are affected less strongly by the presence
of noise comparing to more conventional acoustic
features, such as CONVFEAT and EGEMAPSV02 , al-
though models utilizing all three types of features
may benefit from certain noises in audio. More sim-
plistic linear models, such as SVM and LR, may
be impacted positively but not very strongly (up to
2.5%) by the presence of appropriate noise in the
recordings. The more complex non-linear models,
such as DT and NN, may experience twice stronger
positive effect (+4.8%) due to appropriate noise.

5 Conclusions

In this paper, we study the effect of fifteen types
of acoustic noise, standard in home environments,
on AD classification from speech. We perform a
thorough analysis showing how four ML models
and three types of acoustic features are affected by
different types of acoustic noise. We show that nat-
ural environmental noise is not necessarily harmful,
with certain types of noise even being beneficial for
AD classification performance and helping increase
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accuracy by up to 4.8%. We provide recommenda-
tions on how to utilize acoustic noise in order to
achieve the best performance results with the ML
models deployed in real world in order to facilitate
the use of scalable digital health tools for AD de-
tection from speech. Further research is necessary
to investigate the effect of more types of acoustic
noise common in real world scenarios.
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Abstract

Social media platforms, such as Twitter, of-
ten provide firsthand news during the outbreak
of a crisis. It is essential to process these
facts quickly to plan response efforts in a man-
ner that minimizes loss. In this paper, we
present an analysis of various multimodal fea-
ture fusion techniques to analyze and classify
disaster tweets into multiple crisis events via
transfer learning. In our study, we utilized
three image models pre-trained on ImageNet
dataset and three fine-tuned language models
to learn the visual and textual features of the
data and combine them to make predictions.
We have presented a systematic analysis of
multiple intra-modal and cross-modal fusion
strategies and their effect on the performance
of the multimodal disaster classification sys-
tem. In our experiment, we used 8,242 disaster
tweets, each comprised of image and text data
with five disaster event classes. The results
show that the multimodal with transformer-
attention mechanism and factorized bilinear
pooling (FBP)(Zhang et al., 2019) for intra-
modal and cross-modal feature fusion respec-
tively achieved the best performance.

1 Introduction

The sudden breakout of crisis events, like natural
disasters, creates high-stakes circumstances that
are coupled with great uncertainty as well as the
need to make quick decisions, often with limited
official newscasts. Research in recent years has
uncovered the importance of social media commu-
nication in disaster situations and shown that infor-
mation broadcast via social media can improve sit-
uational awareness during an emergency (Vieweg
et al., 2010). Social media has proven to be an
active communication channel, especially during
crisis events such as natural disasters including
earthquakes, floods, and typhoons ( (Hughes and
Palen, 2009), (Imran et al., 2016)) or other emer-
gencies such as accidents. These events spur a

sudden surge of attention followed by reactive ac-
tions from both the general public and the media.
The quick detection and analysis of such events
are critical to swiftly disseminate information and,
more importantly, prepare the relief team. Such
situational awareness and tactical information en-
ables the team effectively estimate early damage
and launch relief efforts accordingly.

An automated system for crisis-related informa-
tion retrieval from social media is imperative to
rapidly and systematically classify disasters. Infor-
mation regarding crises is best sourced from the
social media site Twitter, which is a real-time, open,
and public communication platform. The develop-
ment of a system requires the extraction of relevant
tweets to then classify them into different types of
information: affected individuals, infrastructural
damages, casualties, donations, caution, or advice.
However, because the messages generated during
a disaster vary greatly in value and since Twitter
is a highly diverse platform, an automatic system
needs to filter out messages that are irrelevant and
do not contribute to situational awareness. As a
result, we designed a system for detecting infor-
mative messages that classifies them to decide the
type of information to extract (e.g., donation offers,
casualty reports).

Information on social media mainly consists of
textual messages and images. Past research has
mainly focused on using textual content to aid dis-
aster response. However, recent studies have re-
vealed that images shared on social media during
a disaster event can also help the relief team in
several ways. For example, (Nguyen et al., 2017)
incorporated images shared on Twitter to assess
the severity of infrastructure damage in their work.
Similarly, (Jing et al., 2016) investigated the useful-
ness of images and text for their study on flood and
flood aid. Our work follows this method of taking
into account both texts and images.

Previous works (Ofli et al., 2020), (Agarwal
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et al., 2020), (Kumar et al., 2020), (Abavisani
et al., 2020) have proposed a multimodal system
for analyzing disaster tweets that utilizes feature
fusion. However, not much exploration has been
done for the enhancement of the extracted visual,
textual and their combined multimodal feature rep-
resentation. In this paper, we present an anal-
ysis of various multimodal fusion strategies for
intra-modal fusion and cross-modal fusion. We
investigate relation-attention, self-attention, and
transformer-attention for intra-modal fusion. For
the cross-modal fusion, we explore three methods,
namely, Factorized Bilinear Pooling (Zhang et al.,
2019), Compact Bilinear Gated Pooling (Kiela
et al., 2018) and Compact Bilinear Pooling (Fukui
et al., 2016). Along with this, we evaluate state-
of-the-art models which were three pretrained im-
age models (VGG19 (Simonyan and Zisserman,
2014), ResNet-50 (He et al., 2016) and AlexNet)
and three pretrained language models (BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019) and
ALBERT (Lan et al., 2019)) for the disaster tweet
analysis and classification task. In our analysis, we
utilize multimodal CrisisMMD (Alam et al., 2018)
dataset. We found that the ResNet-50 outperformed
other image models and among the textual models
RoBERTa achieved the best performance. We fur-
ther utilize these two models for the evaluation of
intra-modal and cross-modal fusion strategies.

Figure 1: Feature fusion pipeline with textual sub-model
(RoBERTa) and visual sub-model (ResNet-50)

2 Methodology

2.0.1 Textual feature extractor:
We employed three pretrained language mod-
els, namely, BERT-base (Devlin et al., 2018),
RoBERTa-base (Liu et al., 2019) and ALBERT-
base (Lan et al., 2019) to extract a high quality text
feature vector. We finetuned them with a custom
classification head with updatable weights. The
averaged pool of sequential output from 12 encod-
ing layers of each model was used as the custom
classifier head’s input. Once the model was fine-
tuned, each of the language models was fed with a
sequence of text inputs (reprocessed tweets) which
then went through all of the stacked encoding lay-
ers, thereby extracting essential features from the
context.

2.0.2 Visual Feature Extractor:
For image feature extraction, we use three image
models, namely, VGG19 (Simonyan and Zisser-
man, 2014), ResNet-50 and AlexNet pretrained
on Imagenet-21k (Deng et al., 2009). Each of the
pre-trained image models was supplied with a pre-
processed image; a visual representation was then
extracted from the final finetuned FC layer of each
model. The output is a vector of the dimension
of 4096, 1000, 1000 for VGG19, ResNet-50 and
AlexNet respectively.

2.1 Multimodal fusion

2.1.1 Intra-modal feature fusion
We have developed functions using different
attention-based methods, namely, self-attention,
relation-attention and transformer-attention meth-
ods. These functions can convert a variable number
of features into a fixed dimension feature. For an
"n" number of features, we denote the ith feature as
fi where i ∈ [1, n]. We applied fusion techniques
as follows:

• Self − attention: For each feature we apply
a 1-dimensional fully connected layer W 0

d×1

and a sigmoid function σ, resulting to the
weight ai of the ith feature fT

i as follows:

αi = σ(fT
i ·W 0

d×1) (1)

We combined these weights from self-
attention (Vaswani et al., 2017) for every fea-
ture into a global representation fs as follows:
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fs =

n∑
i=1

αifi

n∑
i=1

αi

(2)

• Relation− attention: The function derives
the relationship between the features and
generates relevant features. Since fs holds
global representation of these features, we
use sample concatenation of each feature
and global representation to shape the global-
local relation[fi:fs]. Next, we apply the 1-
dimensional fully connected layers W 1

d/times1
with the sigmoid function σ. For relation-
attention weight β of ith feature [fi : fs]

T is
computed as:

βi = σ([fi : fs]
T ·W 1

d/times1) (3)

Using aggregated weights from self-attention
function and relation-attention function, we
combine all the features to get a new feature
fr:

fr =

n∑
i=1

αiβi[fi : fs]

n∑
i=1

αiβi

(4)

• Transformer − attention: Based on the
works in (Zhang et al., 2019) and (Yang et al.,
2016), we compute the attention weight as
follows:

f ′
i = W 2

m×d · fi + bγi (5)

= exp(utd×1 · tanh(f ′
i)) (6)

To reshape the the dimension of feature fi, we
feed it through a w × d dimensional FC layer
6. The weight of ith feature fi is processed
through the tanh function which is then fed
to the exp function along with dot product of
utd×1. We pass the output from the exp func-
tion to a 1-dimensional FC layer stated in 6.
From the transformers attention we formulate
all the features into a single feature fi, as

fs =

n∑
i=1

γifi

n∑
i=1

γi

(7)

2.1.2 Cross-modal feature fusion
• FactorizedBilinearPooling(FBP )

(Zhang et al., 2019): The two feature vectors
obtained via different modalities are fused
together by applying FBP function.

• CompactBilinearPooling(CBP ): Origi-
nally proposed (Fukui et al., 2016) for VQA
task, we modified this feature fusion technique
for the classification task.

• CompactBilinearGatedPooling(CBGP ):
With an additional attention gate applied on
top of the compact bilinear pooling module,
we adopted the CBGP (Kiela et al., 2018)
fusion technique for the cross-modal feature
fusion.

3 Dataset

We have used the CrisisMMD (Alam et al., 2018)
dataset for training and testing our model. Each text
and image pair in the dataset have two annotations:
(task_1) humanitarian categories (eight classes),
(task_2) informative vs. not-informative (two
classes). Since the number of labels across differ-
ent classes was uneven, following (Ofli et al., 2020),
we compressed the number of humanitarian cate-
gories to five- namely, (i) Not-humanitarian (4312),
(ii) other_relevant_information (1764), (iii) res-
cue_volunteering_or_donation_effort (1195), (iv)
infrastructure_and_utility_damage (842) and (v)
affected_individuals (129). In the CrisisMMD
dataset, tweet text and image in a pair were an-
notated separately, as a result, few pairs had a
different label for text and it’s associated image.
We removed those pairs and performed the experi-
ment only those data who have the same label for
text and image. Finally, we have 8,242 pairs and
split the data in 70%:15%:15% ratio for training
(5770), development (1236), and test (1236) sets.
For the informative and not-informative, we had
7875 (train), 1687 (development) and 1688 (test).

4 Experiment

4.1 Exploring Visual feature

In the visual modal, we compared three image
models, namely: AlexNet (Krizhevsky et al.,
2012),ResNet-50 (He et al., 2016) and VGG19
(Simonyan and Zisserman, 2014); pretrained on
large ImageNet (Deng et al., 2009) dataset. In
the visual unimodal for each of the image model,
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the extracted feature vector was passed through
two consecutive fully connected layers of dimen-
sion 512 and 256. The feature vector was then
passed into a batch normalization layer and dropout
layer(with dropout probability = 0.4), followed by
a 5-dimensional dense layer with a softmax ac-
tivation function in order to make the final class
prediction of the disaster event. Relu activation
function and L2 regularization of 0.01 was applied
at each dense layer. All of the image models were
trained on the training dataset(learning rate = 1e-
4) using Adam (Kingma and Ba, 2014) optimizer
and with cross-entropy as the loss function. The
model’s hyperparameter fine-tuning was done on
the validation set. We also conducted an evaluation
of three models over the test dataset. As shown in
table 1, out of all three image models, ResNet-50
achieved the best F1 score of 68.35 as compared
to ResNet-50 (He et al., 2016) and AlexNet. This
shows that the ResNet-50 was able to understand
the image feature more clearly and generate better
image representation. The reason behind this could
be the residual module based ResNet-50’s deeper
architecture which lacks in VGG19 and AlexNet
models.

Model Precision Recall F1-score
AlexNet 74.42 56.74 64.38
VGG19 76.39 55.01 63.96
ResNet-50 79.23 60.11 68.35

Table 1: Performance of image unimodal on task_1

4.2 Exploring Textual feature

Similar to the visual modal, the textual modal uti-
lizes transfer-learning for learning the textual data
representation. For the textual unimodal, we ap-
plied the bidirectional transformers with the self-
attention mechanism to extract resourceful features
from text in the disaster tweets. In our analysis, we
use ALBERT-base (Lan et al., 2019), BERT-base
(Devlin et al., 2018) and RoBERTa-base (Liu et al.,
2019) pretrained language models. These models
are mainly known for their pretrained weights over
different domain data. For our task, we fine-tuned
all of the models on the disaster dataset. As we
discussed above, the input text sequence was struc-
tured, tokenized and pre-processed according to
the language model’s input format. From each of
the language models, we extracted the [CLS] (for
BERT and ALBERT) or < s > (for RoBERTa)

which represents the entire input sentence and is
used as the aggregate sequence representation for
classification tasks. Similar to the visual unimodal,
the classification token was then passed through a
series of the fully connected layer of size 512 and
256. This was followed by a batch normalization
layer, dropout layer(dropout probability = 0.4), and
a 5-dimensional dense layer with a softmax acti-
vation function. All the dense layer in the model
has a relu activation function and L2 regularization
of 0.01. All of the models were trained with the
learning rate of 1e-4, using Adam (Kingma and
Ba, 2014) as optimizer and cross-entropy as the
loss function. On analyzing the performance of
all the three models on the test data, we observed
(table 2) that the performance of RoBERTa-base
unimodal was the most optimal. BERT and AL-
BERT achieved the F1 score of 72.92 and 71.23
respectively.

Model Precision Recall F1-score
ALBERT-base 77.34 66.02 71.23
BERT-base 79.34 67.47 72.92
RoBERTa-base 85.36 66.2 74.56

Table 2: Performance of Text Unimodal on task_1

4.3 Exploring Fusion Strategies
Feature extraction: We extracted the feature
maps from the preprocessed visual and textual data
and utilized them for the intra-modal fusion. For
a given 3 dimension feature map, the size is repre-
sented as H×W×C, where H and W represented the
height and width of the feature map, respectively.
The number of channel in the feature map was rep-
resented as C. For the intra-modal fusion process,
we sliced the feature map into n vectors such that n
= H × W. Therefore, n number of C-dimensional
vectors were obtained. For the image data, we ex-
tracted the feature map from the layer before the
final average polling layer of the ResNet-50. For
the RoBERTa model, instead of using classification
token, we extracted the vector sequence consisting
of each input token’s vector representation. The
size of each output token sequence was 768 x 42
(max_length). This vector was split into 768 fea-
ture vector (42-dimensional) before intra-modal
fusion.

Intra-modal Fusion: As we discussed above in
the section Multimodal Fusion, we utilized 3 intra-
modal attention fusion methods: relation-attention,
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self-attention, and transformer-attention. Both the
visual and textual feature vector were subjected to
each of the attention methods before performing
the cross-modal fusion. The n split feature vec-
tors from each of the visual and textual modalities,
when passes through the attention layer, condenses
to form respective unique representations which
are then use for the cross-modal fusion.

Cross-modal Fusion: For the cross-modal fu-
sion, we investigated 3 methods: factorized bilinear
pooling, compact bilinear pooling and compact bi-
linear gated pooling. The visual and textual feature
vector generated after the intra-modal fusion is then
subjected to cross-modal fusion to produce a com-
bined multimodal representation. The multimodal
vector is then passed through a classification layer
of size 5 with a softmax activation function to make
predictions. The model is trained on a batch size
of 64 with cross-entropy loss function and Adam
(Kingma and Ba, 2014) optimizer for training the
model. During the training of the model, we use
an initial learning rate of 1e-5, two callback API-
early-stopping conditions and reduce the learning
rate on the plateau (reducing factor = 0.5, patience
= 5).

Textual
Visual Self

attention
Relation
attention

Transformers
attention

Self-attention 78.7% 79.4% 81.7%
Relation-attention 79.9% 81.1% 82.2%
Transformers-attention 80.0% 81.2% 85.1%

Table 3: Multimodal performance (macro F1 %) on
task_1 with FBP

Textual
Visual Self

attention
Relation
attention

Transformers
attention

Self-attention 82.8% 83.1% 84.9%
Relation-attention 81.8% 84.3% 85.1%
Transformers-attention 82.1% 85.2% 89.5%

Table 4: Multimodal performance (macro F1 %) on
task_2 with FBP

5 Results

In this section, we discuss and analyze the multi-
modal performance with various fusion techniques.
Table 3 and 4 show the Macro F1-score of FBP
fusion methods on task_1 and task_2 respectively.
We have shown the result of the best cross-model
fusion method: FBP applied with various intra-
model fusion methods.

For task_2, we observed that by using the FBP
(Zhang et al., 2019) and Transformer attention layer

in the pipeline, the performance of multimodal was
remarkably better (around 12%) than the other
cross layer fusion methods (CBP and CBGP). We
also noticed that in either of the cross-modal fusion
method, the transformer attention intra-modal fu-
sion performed the best. For task_1 (refer 3) and
task_2 (refer 4), FBP with transformers-attention
based multimodal model gave the best result of
85.1% and 89.5% respectively. We can also see
that models having transformer-attention combined
with relation-attention outperformed the model
with transformer-attention and self-attention.

Coming to the multimodal baseline (Ofli et al.,
2020) and (Abavisani et al., 2020), our model out-
perform it by 7.99% and 1.10% on the task_1 and
for task_2 it is 5.92% and 0.78%. The reason be-
hind the superior performance of our model lies
behind the underlying feature representation gener-
ated by the pre-trained language and image models.
Moreover, we were able to capture intra-modality
information using attention mechanism which pro-
duced a denser feature representation before the
cross-modal fusion. Therefore using transfer learn-
ing and attention-based fusion techniques, we were
able to blend together with powerful language and
image models and build a more robust multimodal.

6 Conclusion

In this paper, we present an extensive analysis of
multiple feature fusion strategies for developing a
multi-modal framework for detecting and classi-
fying tweets into various crisis events accurately
based on the textual and visual features. In our
study, we compared various image and language
models and found that the ResNet and RoBERTa
outperformed the other models. We also presented
a comparative study of various fusion methods;
through that, we can conclude that the selection
of effective intra-modal and cross-modal method
plays a crucial role in developing a more accurate
and efficient multimodal framework for classifying
the events for faster relief efforts. We observed
that the transformer-attention mechanism outper-
formed the other intra-modal fusion methods. We
also showed that by using factorized bilinear pool-
ing, the multimodal feature representation can be
improved. The results of the experiments show
that one application of the multimodal framework
can be the identification and filtration of disaster-
related information available on social media plat-
forms.
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Abstract

On social media, additional context is often
present in the form of annotations and meta-
data such as the post’s author, mentions, Hash-
tags, and hyperlinks. We refer to these an-
notations as Non-Textual Units (NTUs). We
posit that NTUs provide social context beyond
their textual semantics and leveraging these
units can enrich social media text represen-
tations. In this work we construct an NTU-
centric social heterogeneous network to co-
embed NTUs. We then principally integrate
these NTU embeddings into a large pretrained
language model by fine-tuning with these addi-
tional units. This adds context to noisy short-
text social media. Experiments show that utiliz-
ing NTU-augmented text representations signif-
icantly outperforms existing text-only baselines
by 2-5% relative points on many downstream
tasks highlighting the importance of context to
social media NLP. We also highlight that in-
cluding NTU context into the initial layers of
language model alongside text is better than us-
ing it after the text embedding is generated. Our
work leads to the generation of holistic general
purpose social media content embedding.

1 Introduction

Understanding the social context is crucial to
the semantic understanding of a social media
post (Nguyen et al., 2016; Kulkarni et al., 2021;
Mishra and Diesner, 2018; Hovy, 2015). This is
especially true for short-text social media such as
Twitter where the textual content available for se-
mantic understanding is inherently limited. As
such, pretrained language models that ignore non-
textual context can demonstrate sub-optimal per-
formance when utilized for social-media NLP.

Fortunately, on social media, there are many
available non-textual units (NTUs), which provide
social contexts for any written text. For example,

§Equal Contribution. Corresponding Author:
smishra@twitter.com

the author of a post provides a social prior as to the
content written by that author. Additionally, the
author may annotate their post with meta-data such
as Hashtags, user mentions, or URLs and other me-
dia. These units can frame the content of a post
by providing social context, a stance, or additional
supporting material.

Previous research has investigated augmenting
pretrained language model representations with ad-
ditional signals. These include enrichments by
incorporating image features (Sun et al., 2020),
better-segmented Hashtags (Maddela et al., 2019),
URL understanding (Yasunaga et al., 2022), or
temporal-spatial contexts (Kulkarni et al., 2021).

However, these existing works are type-specific
and require a specialized technique to integrate
just one type of non-textual signal (e.g., requiring
an image encoder to extract image features). We
claim that this added complexity makes it difficult
to incorporate different non-textual signals and ef-
fectively train a joint model.

In this paper, our NTU enriched Language
Model (NTULM) can easily, without loss of gen-
erality, train and integrate graph embeddings (El-
Kishky et al., 2022a) for multiple types of NTUs.
NTULM can do this through the use of heteroge-
neous information network embeddings of NTUs.
This allows us to not only co-embed multiple NTU
types, but also incorporate a variety of interac-
tion types as edges in our network (e.g., author-
ing posts, favoriting Hashtags, and co-mentioning
users). This general embedding framework is sim-
ple and does not require specialized feature en-
coders for different NTU types. After obtaining
the NTU knowledge embeddings, NTULM deeply
integrates them with the language model at the to-
ken level and simply applies the default attention
mechanism used in the BERT encoder. To ensure
our alignment with (Kulkarni et al., 2021) which
allows only inclusion of a single context embed-
ding to BERT, we take the average of NTU embed-
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Figure 1: The framework of NTULM model. In the Knowledge Graph Embedding module, we use the engagement
data to build the heterogeneous graph and train large-scale NTU embeddings. In the NTU enriched LM pre-training,
we incorporate the mean NTU embedding at the end of the sequence. We compute the tweet embedding as the
average of the last hidden states and use it for multiple downstream tasks.

dings and attach the unified embedding at the end
of token embedding sequence. The framework of
NTULM is shown in Figure 1.

To ensure high coverage of the NTU vocabulary
across tweets, we construct a large-scale heteroge-
neous NTU graph ensuring high overlap with all
tweets. With the scalability of our graph embed-
dings, we can rapidly embed NTUs ensuring high
coverage across tweets.

We state and analyze the problem in Section 2,
followed by our proposed solution involving NTU
embedding and BERT integration in Section 3. In
Section 4 we evaluate our proposed solution com-
pared to text-only baselines. We go over related
works in Section 6 and conclude in Section 8.

2 Task Formulation

In this section, we formulate the task of enriching
pretrained language models with additional NTU
embeddings.

2.1 Non-Textual Units (NTUs)
Social media posts are composed of textual con-
tent and non-textual units (NTUs) which provide
additional context to the text. These include: the
author of a post, any mentioned users, annotated
topics via Hashtags, shared URLs, etc. While some
of these units are encoded textually within a post,
their meaning is not fully encapsulated by their
textual semantics. Instead, this meaning can be bet-
ter derived by understanding the social community
that engages with the NTUs. Take for example the
Hashtag nlproc which is used by the Natural Lan-
guage Processing community; this differs from nlp

which is used by the natural language processing
community and the Neuro-linguistic programming
community. While both Hashtags contain the sub-
word nlp, the real meaning is dependent on the
social context they occur (e.g., from the author and
social Hashtag embedding). This problem is more
difficult with user mentions which convey no lin-
guistic information in their textual form but can be
more informative if mentions are considered by the
social graph context of the user mentioned. We rep-
resent these NTUs using the heterogeneous social
graph where each NTU is a node, and multi-typed
edges represent their relation to other NTUs.

2.2 Integrating NTUs in Language Models

We extend the work introduced by LMSOC (Kulka-
rni et al., 2021), which demonstrates that the in-
tegration of temporal and geographical context in
Tweet texts leads to better performance on cloze
tasks. Similar to LMSOC, we take a base language
model and integrate the NTU information in this
model as additional context. Our goal is that each
token in the text should not just be contextualized
by other tokens in the text but also by the NTUs as-
sociated with the text. This approach is generic and
we describe the exact choice of language model
and NTU integration in detail later.

We improve on LMSOC by: (i) learning richer
representations for NTUs using Heterogeneous In-
formation Network embedding approaches (El-K-
ishky et al., 2022c), (ii) usage of social engagement
signals, (iii) utilizing multiple tweet contexts via
multiple NTU embeddings, (iv) assessing the per-
formance of these models on a wide variety of
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downstream Tweet classification tasks.
Finally, we propose a holistic and end-to-end

pipeline for training models with NTUs.

3 NTU enriched Language Model

The framework of NTULM is shown in Figure 1.
In this section, We first introduce how we learn
high-quality NTU embeddings by embedding an
NTU-centric heterogenous social graph. We then
describe how we principally integrate these NTU
embeddings in a standard BERT-style language
model yielding Tweet embeddings that utilize both
text and NTU information.

We will use the Tweet in Table 1 as an example
for the following sections.

Author: user1
Tweet: Our paper was accepted at @WNUT
with @user2 @user3 #nlproc #socialmedia
Favorited by: user4, user5

Table 1: Example tweet with engagement data of author,
mentions, Hashtags, and favorites

3.1 NTU Graph Construction and Embedding
We seek to understand NTUs based on the social
context in which they’re engaged and construct a
dense NTU representation such that similar NTUs
are close in this dense embedding space.

Constructing Heterogeneous Network: We
start by constructing a large-scale heterogeneous
graph G which models engagement between users
and a set of NTU-observed Tweets (any language
from 2018 till 2022). This heterogeneous graph
consists of nodes and edges where multiple edges
of different types can exist between a pair of nodes.
For this work, we focus on users and Hashtags
as NTUs, because they are the most accessible
NTUs and are available or retrievable on most
datasets. We construct the graph by taking a sample
of Tweets, extracting the mention users, Hashtags,
and the Tweet author. We also include a list of
users who have favorited the Tweet. This leads to a
graph where the nodes are either users or Hashtags.
We include an edge between a user and a Hashtag
if the user has either favorited a Tweet with the
Hashtag, authored a Tweet with the Hashtag, or is
co-mentioned with a Hashtag. One example of con-
structed graph is provided in Figure 2. Our choice
of edges is based on the easy availability of the user
Hashtag data via the Twitter API.

user5

user4 

user3

user1

#socialmedia

#nlproc

co-mentioned
authored

favorited
WNUT

user2

Figure 2: Graph construction with the example data in
Table 1 for training NTULM user-Hashtag embeddings.

We construct this graph using data from January
1st, 2018 to July 1st, 2022. This leads to a graph
with 60M Hashtags, 255M users, 5B authorship
edges, 3B favorite edges, and 0.9B co-mention
edges. We then learn heterogeneous graph em-
beddings by following the approach outlined in
TwHIN (El-Kishky et al., 2022c). This gives us a
set of embeddings for Users and Hashtags which
exist in the same embedding space.

Heterogeneous Graph Embedding: We learn
embedding vectors by applying a similar scheme
to TransE (Bordes et al., 2013). For a pair of nodes
in the graph (ui), (vj), we denote their embeddings
as ui and vj respectively. We denote an edge as a
triplet e = (ui, rk, vj) which consists of head and
tail nodes (ui, vj) connected by a specific relation
(rk). We score these triplets with a scoring function
of the form f(ui, rk,vj) where rk is the relation
embedding. Our training objective seeks to learn
e parameters that maximize a log-likelihood con-
structed from the scoring function for e ∈ G and
minimize for e /∈ G.

For simplicity, we apply a simple dot product
comparison between node representations. For an
edge e = (ui, rk, vj), this operation is defined by:

f(e) = f(ui, rk, vj) = ui
⊺(vj + rk) (1)

As seen in Equation 1, we co-embed all nodes
in G by translating the tail node by the specific
relation vector and scoring their respective embed-
ded representations via dot product. The task is
then formulated as an edge (or link) prediction task.
We consume the input graph G as a set of (node,
relation, node) triplets of the form (u, r, v) which
represent a link between nodes in the graph. The
embedding training objective is to find node and re-
lation representations that are useful for predicting
which nodes are linked via that specific relation.
While a softmax is a natural formulation to edge
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prediction, it is impractical due to the cost of com-
puting the normalization over a large vocabulary
of nodes. Following previous methods (Mikolov
et al., 2013; Goldberg and Levy, 2014), negative
sampling, a simplification of noise-contrastive es-
timation, can be used to learn the parameters. We
therefore maximize the following negative sam-
pling objective,

argmax
u,r,v

∑

e∈G
[log σ(f(e))+

∑

e′∈N(e)

log σ(−f(e′))]

(2)
where: N(u, r, v) = {(u, r, v′) : v′ ∈ I} ∪
{(u′, r, v) : u′ ∈ U}. Equation 2 represents the
log-likelihood of predicting a binary “real" or “fake”
label for the set of edges in the network (real) along
with a set of the “fake” negatively sampled edges.
To maximize the objective, we learn u, r, and
v parameters to differentiate positive edges from
negative, unobserved edges. Negative edges are
sampled by corrupting positive edges via replac-
ing either the user or item in an edge pair with a
negatively sampled user or item. As user-item inter-
action graphs are very sparse, randomly corrupting
an edge in the graph is very likely to be a ‘negative’
edge absent from the graph.

3.2 Enriching Language Model with NTU
Embeddings

In this section, we explain how we integrate these
embeddings into a language model. We build on
the LMSOC framework (Kulkarni et al., 2021) to
append NTU embeddings into the MLM model.
However, unlike LMSOC, which has only one
context embedding, we now may have multiple
NTU embeddings for a given Tweet. Taking the
example above, the NTUs for the Tweet are user1,
WNUT , user2, user3, user4, user5, #nlproc,
#socialmedia. For our experiments we only limit
ourselves to author and hashtag NTUs, i.e. user1,
#nlproc, #socialmedia. This leads to a choice
we have to make for integrating these NTU embed-
dings into the Tweet text. For this work we simply
utilize the average of the NTU embeddings to keep
it aligned with the LMSOC framework. In future
we also plan to experiment with the social contexts
used in LMSOC.

Our final NTU embedding for the Tweet be-
comes the average embeddings of all NTUs in the
Tweet. Let us denote it by entu. We concatenate
this embedding to the BERT’s subword embedding.
For NTUs not present in our NTU embeddings

we use the average embedding of all the NTUs
in our embedding table as a placeholder embed-
ding. We found using the average as opposed to
a zero embedding was much more beneficial for
downstream task improvements. Furthermore, for
Tweets which have no NTUs we also use the aver-
age NTU embedding as a placeholder embedding.
Given a Tweet text, we tokenize it using the lan-
guage model tokenizer into a list of subwords, we
extract the subword embeddings from the model to
get a list of subword embeddings. Lets call these
subword embeddings [s0, s1, s2, ..., sn].

Since, entu and si are of different embedding
sizes, we use a linear layer to project entu in the
space of si and get sntu. This linear layer is jointly
trained during MLM fine-tuning. We do not add
a position embedding to the NTU and we do not
add a type embedding to the NTU. Finally, we
get a new list of embeddings of the Tweet i.e.
S = [s0, s1, s2, ..., sn, sntu]. We feed these embed-
ding to the next layers of a pre-trained Language
model. We call this model a NTU enriched Lan-
guage Model (NTULM).

The above model is then trained using the
Masked Language Modeling (MLM) task similar
to BERT model (Devlin et al., 2018). We use the
same setup for training via the MLM objective by
masking 15% of the tokens. This translates to the
model learning to predict the missing words by
using the NTU’s context.

While our approach is agnostic to the choice of
encoder, for all our experiments we train based on
a bert-base-uncased model using the Hug-
gingFace Transformers library.1 We train the mod-
els till convergence for a max of 15 epochs on a
dataset of 1M English Tweets (see appendix B).

3.3 NTU-enriched Text Embeddings

Once the above model is trained, we use it in down-
stream tasks. Traditionally pre-trained language
models are utilized in downstream tasks is by fine-
tuning. However, this setup is not suitable for low-
cost inference where multiple downstream models
utilize the Tweet features, as doing inference on
the full large-scale language model is expensive
and doing inference of multiple BERT models is
prohibitive. Furthermore, having a single Tweet
embedding for all downstream tasks trades off ac-
curacy for computing cost and allows the usage of

1https://huggingface.co/
bert-base-uncased
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caching of these Tweet embeddings for multiple
downstream tasks. Motivated by this we gener-
ate fixed-size Tweet embedding which integrates
Text and NTU information. We compare it with
a text-only Tweet embedding. We refer to these
embeddings as embedntulm embeddings. Given
input embeddings S = [s0, s1, s2, ..., sn, sntu] we
pass it through a language model which outputs
Z = [z0, z1, z2, ..., zn, zntu] embeddings. Our
NTULM embedding is the average of zi embeddings,
i.e. embedntulm =

∑
i zi

size(Z) . We feed these embed-
ding as input to the downstream models and add a
set of MLP layers on top to get the final prediction
for each downstream model discussed in the exper-
iments below. Note, that during downstream task
training the NTULM is frozen and not updated.

4 Experiments

We conduct experiments on a variety of datasets
and downstream tasks to highlight the utility of
NTULM. Additionally, we perform an ablation to
measure the contribution of each type of NTU to
the overall NTULM performance.

4.1 Downstream Datasets
In order to evaluate the performance of our models,
we select the following downstream datasets. We
choose classification datasets for all our evaluations.
The statistics about our datasets can be found in
Table 5 in appendix.

Topic Prediction We use a dataset of Tweets
annotated with Topics as described in (Kulkarni
et al., 2022). This dataset consists of each Tweet
annotated with a set of topics. The task is defined
as: given a topic-based Tweet, retrieve tweets from
the same topic. The final evaluation is based on
Mean Average Precision (MAP).

Hashtag Prediction We use a dataset of 1M
Tweets with Hashtags. The Hashtag prediction
task is formulated as removing a single Hashtag
from the Tweet and trying to predict using the re-
maining information in a multi-class classification
task. For this task, we consider the top 1000 Hash-
tags as prediction classes and remove them from
the Tweets containing these Hashtags. We use an
equal number of Tweets for each Hashtag for our
training and test sets. We evaluate the performance
of NTULM and baselines using Recall @ 10.

SemEval Sentiment We use the SemEval Senti-
ment dataset from 2017. This dataset is released

in the form of Tweet Ids and labels. We hydrate
the Tweet ids using the public Twitter Academic
API and fetch the author, Hashtags, and Tweet text
from the API response. Because of the deletion
of many Tweet ids we can not compare our results
with previous baselines hence our only compari-
son is with the BERT-based baseline we consider.
We use the macro F1 score as well. The SemEval
dataset consists of three tasks. Task A consists of
multi-class sentiment classification where given a
Tweet we need to predict the label among positive,
negative, and neutral. Task BD consists of topic-
based sentiment prediction using only two classes
positive, and negative. Task CE consists of Tweet
quantification where we need to predict sentiment
across a 5-point scale. For topic-based sentiment,
we concatenate the topic keyword at the end of
the Tweet text to convert it into a text-based clas-
sification problem. SemEval comes in data split
across years from 2013 to 2017. We evaluate our
models on train test splits from each year to as-
sess the temporal stability of our model. We mark
yearly evaluation as SemEval 1 and aggregate task
evaluation as SemEval 2 in our results.

SocialMediaIE Social Media IE (Mishra, 2021,
2019, 2020) (SMIE) is a collection of datasets spe-
cific for evaluation of Information Extraction Sys-
tems for Social Media. It consists of datasets of
classification and sequence tagging tasks (Mishra,
2019). We utilize the classification tasks from So-
cial Media IE and use them for our evaluation. We
use the macro-F1 score for each task. Similar to
SemEval this dataset is also released as a set of
Tweet IDs and labels, hence we hydrate it using the
same approach as SemEval dataset.

TweetEval TweetEval (Barbieri et al., 2020) was
released as a benchmark of classification tasks for
Tweets. It consists of anonymized Tweet texts with-
out Tweet Ids. The Tweet text has been anonymized
by removing user mentions. This limits us to only
use Hashtag-based NTUs for this dataset but we
include this dataset to highlight the utility of our
approach on this standard benchmark.

4.2 MLM Fine-tuning

We start by fine-tuning the BERT and NTULM mod-
els on 1M Tweet data randomly sampled from lat-
est English tweets posted between 2022-06-01 and
2022-06-15. We experiment with training using
different contexts. We only consider the inclusion
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Model NTUs Perplexity Topic TweetEval SemEval 1 SemEval 2 Hashtag SMIE
bits MAP mean F1 mean F1 mean F1 Recall@10 mean F1

BERT - 4.425 0.327 0.577 0.527 0.515 0.689 0.548

NTULM author 4.412 0.325 0.579 0.527 0.548 0.693 0.548
NTULM Hashtag 4.391 0.339 0.586 0.534 0.545 0.711 0.539
NTULM author+Hashtag 4.344 0.343 0.590 0.534 0.545 0.720 0.549

Table 2: NTULM compared with BERT (MLM fine-tuned, section 4.2). We report the perplexity, mean average
precision (MAP) in Topic, Recall@10 in Hashtag Prediction, and mean F1 score in the rest.

of author and Hashtag contexts as they are the high-
est coverage contexts across all the datasets. User
mentions are few and, in most datasets, they are
anonymized. In MLM fine-tuning, we keep all the
hyperparameters of NTULM model the same as the
BERT baselines.

4.3 Downstream Task Evaluation
For each task we feed the unified NTULM embed-
ding embedNTULM into a 2-layer perceptron (MLP)
with the final layer being a softmax over possible la-
bels. For topic classification, we use a sigmoid acti-
vation for multiple labels. We use the task-specific
evaluation to compare the model. We report ag-
gregate improvement on each dataset using the av-
erage of metrics for each task in the dataset. Of-
ten we report the percentage gains over the BERT
model, i.e. scoreNTULM−scoreBERT

scoreBERT
∗ 100, this is posi-

tive when NTULM is better than BERT. It denotes
the percentage NTULM is better or worse than the
BERT model. Absolute scores are in table 3. In the
experiments of downstream tasks, we keep MLP
architectures and hyper-parameters the same for
NTULM and baselines.

5 Evaluation Results

5.1 Perplexity Experiments
As highlighted in Table 2 we find that the MLM per-
plexity (lower is better) of all the NTULM models is
much better than the perplexity of the BERT-based
model. In terms of percentage change, NTULM
(author+Hashtag) has about 2% gain in perplexity
than the BERT model. This highlights that using
contextual information helps improve the MLM
task performance. This result is aligned with the
findings of LMSOC (Kulkarni et al., 2021) that
also found that using temporal and geographic con-
text leads to better language modeling. Our work
highlights that the graph context of authors and
Hashtags encodes additional information which

-2.50%
0.00%
2.50%
5.00%
7.50%

Overall Overlap Non-Overlap

TweetEval SemEval 1 SemEval 2
SocialMediaIE Hashtag Topic

NTULM (user+Hashtag) % improvement over BERT 

Figure 3: NTULM versus BERT (MLM fine-tuned see
section 4.2) on Tweets with and without NTU overlap
with NTU embeddings. See Table 4 for details.

can help in better modeling of the text. We also
observe that the Hashtag and author information
alone is helpful in lowering the perplexity of the
model with Hashtags being more effective. This is
also aligned with the usage of Hashtags. Authors
on Twitter often use Hashtags to supply topical or
community information to a Tweet. Hence, using a
Hashtag’s graph information improves the model’s
prediction of the masked words.

5.2 Downstream Classification
Now we look at how the NTULM model performs
across various downstream tasks. As highlighted
in Table 2 (detailed numbers in Table 3), we see
that enriching text with NTU information from au-
thor+Hashtag always leads to significant perfor-
mance improvement over BERT fine-tuned using
MLM pre-training on the same dataset as NTULM
as explained in section 4.2. Specifically, the au-
thor+Hashtag NTULM model is 5% better than
BERT on Topic prediction, 2% better on TweetEval,
6% better on SemEval 1, 4.5% better on SemEval
2, and 0.2% better on SocialMediaIE.

Furthermore, we assess how the model’s per-
formance changes compared to BERT for Tweets
which have NTUs overlapping (Overlap) with our
NTU embeddings versus those which do not have
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Dataset Sub-Dataset
or Metric BERT NTULM

user
NTULM

hashtag
NTULM

user+hashtag
BERT

post-concat Best

Topic topic 32.65% 32.49% 33.91% 34.32% 38.76% BERT-post-concat

Hashtag recall@10 68.88% 69.26% 71.09% 71.99% 72.23% BERT-post-concat

TweetEval emoji 18.02% 18.10% 18.44% 18.55% 19.07% BERT-post-concat
TweetEval emotion 67.70% 67.65% 66.61% 67.31% 67.60% BERT
TweetEval hate 59.50% 58.59% 56.87% 58.16% 57.83% BERT
TweetEval irony 60.37% 62.03% 66.67% 66.17% 58.88% NTULM (hashtag)
TweetEval offensive 72.51% 72.73% 73.71% 73.63% 71.52% NTULM (hashtag)
TweetEval sentiment 60.66% 61.40% 60.66% 61.43% 58.65% NTULM (user+hashtag)
TweetEval stance 64.88% 65.11% 67.48% 67.56% 66.89% NTULM (user+hashtag)

SemEval 1 2013-A 67.75% 67.61% 67.94% 68.38% 67.54% NTULM (user+hashtag)
SemEval 1 2014-A 26.80% 26.06% 27.96% 26.91% 27.48% NTULM (hashtag)
SemEval 1 2015-A 53.70% 53.73% 54.63% 54.63% 53.31% NTULM (hashtag)
SemEval 1 2015-BD 41.17% 41.36% 40.45% 41.08% 41.61% BERT-post-concat
SemEval 1 2016-A 51.38% 52.52% 53.01% 53.70% 51.50% NTULM (user+hashtag)
SemEval 1 2016-BD 92.60% 92.65% 92.71% 92.56% 92.58% NTULM (hashtag)
SemEval 1 2016-CE 35.58% 35.20% 36.86% 36.74% 35.25% NTULM (hashtag)

SemEval 2 task-A 48.02% 47.91% 47.54% 49.72% 48.71% NTULM (user+hashtag)
SemEval 2 task-BD 71.56% 71.92% 71.95% 72.59% 71.33% NTULM (user+hashtag)
SemEval 2 task-CE 34.83% 34.69% 34.95% 33.92% 34.71% NTULM (hashtag)

SMIE abusive 1 55.84% 56.27% 55.08% 55.69% 54.04% NTULM (user)
SMIE abusive 2 47.36% 47.04% 44.82% 48.00% 37.01% NTULM (user+hashtag)
SMIE sentiment 1 76.01% 74.52% 74.73% 75.14% 73.93% BERT
SMIE sentiment 2 61.86% 62.20% 61.70% 61.92% 61.61% NTULM (user)
SMIE sentiment 3 58.69% 58.73% 58.80% 58.43% 58.70% NTULM (hashtag)
SMIE sentiment 4 53.78% 54.75% 55.68% 56.48% 57.23% BERT-post-concat
SMIE sentiment 5 60.22% 59.65% 59.86% 59.77% 57.99% BERT
SMIE sentiment 6 59.66% 59.58% 60.15% 59.81% 59.43% NTULM (hashtag)
SMIE uncertainity 1 55.37% 55.81% 51.52% 56.00% 57.14% BERT-post-concat
SMIE uncertainity 2 19.03% 19.05% 16.80% 17.63% 19.11% BERT-post-concat

Table 3: Absolute metrics across all tasks and their subtasks. Best score and Second best score.
SMIE=SocialMediaIE, BERTC=BERT-post-concat with user+Hashtag NTUs, BERT=BERT (MLM fine-tuned,
section 4.2).

Dataset Overall Overlap Non-Overlap

NTULM BERTC NTULM BERTC NTULM BERTC

TweetEval 2.27% -0.80% 2.73% -3.33% 0.31% 0.65%
SemEval 1 1.36% 0.08% 2.59% 0.21% 0.65% 0.02%
SemEval 2 5.93% 0.22% -0.07% 0.58% 2.62% 0.07%
SocialMediaIE 0.20% -2.12% -0.27% -4.12% 1.98% -22.22%
Hashtag 4.51% 4.87% 5.61% 7.46% 1.01% -3.37%
Topic 5.10% 18.72% 6.92% 34.72% 0.71% -4.17%

Table 4: % improvement over BERT (MLM fine-tuned see section 4.2) by using user+Hashtag NTUs in NTULM
versus BERT-post-concat (BERTC) across datasets, and split across overlapping and non-overlapping subsets.
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Figure 4: Performance on Tweets with and without NTU
overlap with NTU embeddings on Topic prediction task.
BERT is MLM fine-tuned see section 4.2.

Tweets overlapping with the NTU embeddings
(Non-overlap). Our focus here is that for Tweets
with NTU overlap we should see significant im-
provement wherease for Tweets without NTU over-
lap we should not change our performance com-
pared to BERT as we are back to the text-only
setting. As highlighted in Figure 3 and Figure 4 we
see that the improvement over BERT on the over-
lap case is higher than the overall improvement
for the author+Hashtag NTULM across most tasks.
Furthermore, in the no-overlap case, we do not
see any significant loss in performance, in fact au-
thor+Hashtag is slightly better compared to BERT
(0.7%). This highlights that the NTU contexts are
really helping in the downstream tasks whenever
the NTUs are available.

5.3 Case-study: Concatenation vs Attention

Next, we consider the setting of concatenating the
NTU embeddings to BERT embeddings. This is
a simple setting where the language model is not
able to generate a Text specific embedding based
on NTUs. This is a simple baseline which is of-
ten adopted when integrating signals from multiple
sources. We name this model BERT-post-concat
and compare it with our best model NTULM (au-
thor+Hashtag). Here again we compare these mod-
els against the BERT model which only uses text
and was was MLM fine-tuned as explained in sec-
tion 4.2.

Figure 5 (detailed numbers in Table 3) high-
lights that using the NTULM approach is much
better than BERT-post-concat for most tasks, ex-
cept for topic and Hashtag prediction. For Hashtag
dataset NTULM is only 0.34% worse in relative per-
formance compared to BERT-post-concat. How-
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Figure 5: NTULM versus BERT-post-concat as measured
in improvement over BERT (MLM fine-tuned see sec-
tion 4.2) across tasks.

ever, in the topic prediction task NTULM is -11.5%
worse. We hypothesize that the improved perfor-
mance of BERT-post-concat is a result of the direct
relevance of Hashtag embeddings to the dowstream
task of Topic and Hashtag relevance as NTULM’s
frozen embedding dilutes this information. We
confirm this by inspecting the performance (see Ta-
ble 4) of BERT-post-concat on the overlapping and
non-overlapping slices of the data, where BERT
post-concat is better than NTULM on the overlap-
ping slice of the data but is worse than NTULM and
even BERT on the non-overlapping slice. This high-
lights that BERT post-concat is overfitting to the
NTU signal in the data which is not the case with
NTULM. We reason that fine-tuning NTULM for the
downstream task may address this issue and plan
to explore this in a future work given that the focus
of this work is to generate high quality general pur-
pose Tweet embeddings. Furthermore, for TweetE-
val and SocialMediaIE BERT post-concat performs
even worse than BERT. This can be attributed to the
indirect relevance of author and Hashtag identity
to the downstream tasks in these datasets which the
BERT-post-concat cannot capture.

6 Related Work

Knowledge Graph and Language Models: Pre-
vious work has investigated language models with
knowledge graphs. KI-BERT (Faldu et al., 2021)
extracts and computes the embedding of concepts
and ambiguous entities from text and appends them
to the end of the sentence to enrich a language
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model. K-BERT (Liu et al., 2020) uses an exter-
nal knowledge graph to build a sentence tree and
integrates the knowledge graph before the embed-
ding layer of BERT. KEPLER (Wang et al., 2021)
incorporates knowledge embedding of text enti-
ties as an auxiliary objective alongside the tradi-
tional MLM objective for BERT. While these mod-
els have shown improvements on some domain-
specific tasks, they only consider the textual entities
from the text itself, which limits their performance
in modeling language with rich contextual informa-
tion (e.g. social networks). Different from existing
works, the NTULM framework can incorporate the
contextual information of multi-type non-textual
units and therefore has a better performance in
understanding contexts. There are also some ex-
isting works that use social contexts to enrich the
language model, such as LMSOC (Kulkarni et al.,
2021). However, instead of considering the non-
text units such as author, Hashtag, URL, and men-
tion, LMSOC only considers time and location. In
addition, LMSOC only supports incorporating one
type of social context, which limits its performance
on texts with rich contexts.

Representation Learning of Social Graph:
Learning the representation of social entities such
as tweets and users has been a popular research
topic over the past few years. InfoVGAE (Li et al.,
2022) constructs a bipartite heterogeneous graph
and designs an orthogonal latent space to learn
explainable user and tweet embeddings. In kNN-
Embed (El-Kishky et al., 2022b), a bi-partite Twit-
ter follow graph is embedded for account sugges-
tion. TIMME (Xiao et al., 2020) uses multi-task
learning of link prediction and entity classifica-
tion to jointly learn the representation of tweets.
SEM (Pougué-Biyong et al., 2022) creates a top-
ical Twitter agreement graph and embeds nodes
via a random-walk approach to detect user stances
on given topics. (Zhang et al., 2022) proposes a
second-order continuous GNN to improve the so-
cial network embeddings. Most of these models
do not consider textual information of social graph.
Only the interaction data is applied to learn the
representation of social entities, which limits their
performance on downstream tasks.

Language Model for Social Networks: Many
existing works have explored the training of
language models in the social network domain.
Tweet2vec (Vosoughi et al., 2016) proposes a

character-level CNN-LSTM encoder-decoder to
improve the tweet embeddings. DICE (Naseem
and Musial, 2019) leverages contextual text to ad-
dress polysemy and improve the tweet embedding
quality. TweeTIME (Tabassum et al., 2016) pro-
poses a minimally supervised method to address
the time recognition problem from Twitter texts.
TweetBERT (Qudar and Mago, 2020) models are
trained on the domain-specific data of tweet texts
and outperform traditional BERT models. How-
ever, most of these language model does not take
NTUs into consideration and cannot benefit from
the interaction and engagement data.

7 Limitations

One major limitation of our work is the averaging
of heterogenous embeddings. This approach works
because the embeddings trained using TransE lie in
the same space but is less expressive as we are not
including explicit information around which type
of NTU an embedding is coming from. In future we
plan to address this by including type specific em-
bedding transformation before doing an averaging.
However, given the results, this naive averaging of
user+Hashtag still works well across tasks it shows
the utility of our approach. Next, our training data
is relatively small and less diverse with only 1M
Tweets as budgetary and computational constraints
influenced our experimental setup. In this paper,
our goal has been to demonstrate the effectiveness
of our approach paving the way for future work
that scales up the training and uses a much larger
and more diverse dataset. Finally, our results are
on English specific datasets and models. While the
utilization of NTU embeddings make our approach
language agnostic, in future we plan to demonstrate
its impact across multiple languages.

8 Conclusion

In this paper we introduced NTU enriched Lan-
guage Model (NTULM), a method of enriching a
pretrained BERT model by adding graph embed-
dings of non-textual units. We experimentally
demonstrate that including NTU representations
alongside text yields superior representations vs
a text-only language model. On several down-
stream tasks, we show significant improvment us-
ing NTULM representations compared to BERT-
based sentence embeddings.
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A Appendix: Dataset Statistics

Here we provide the statistics of our datasets for downstream evaluation experiments in Table 5.

Hashtag User
dataset task split Tweets NTUs >1 NTUs >1 ∈ E ∈ E NTUs >1 NTUs >1 ∈ E ∈ E

TweetEval emoji train 45,000 28,251 46.37% 42.82% 92% 0 0.00% 0.00% 0%
TweetEval emoji test 50,000 30,989 43.10% 39.68% 92% 0 0.00% 0.00% 0%
TweetEval emotion train 3,257 1,652 43.94% 43.14% 98% 0 0.00% 0.00% 0%
TweetEval emotion test 1,421 1,071 47.29% 46.94% 99% 0 0.00% 0.00% 0%
TweetEval hate train 9,000 2,375 25.69% 25.10% 98% 0 0.00% 0.00% 0%
TweetEval hate test 2,970 1,615 50.20% 49.70% 99% 0 0.00% 0.00% 0%
TweetEval irony train 2,862 2,132 38.36% 36.09% 94% 0 0.00% 0.00% 0%
TweetEval irony test 784 857 72.19% 71.30% 99% 0 0.00% 0.00% 0%
TweetEval offensive train 11,916 1,937 14.40% 14.10% 98% 0 0.00% 0.00% 0%
TweetEval offensive test 860 1,276 73.26% 71.28% 97% 0 0.00% 0.00% 0%
TweetEval sentiment train 45,615 6,956 18.35% 16.63% 91% 0 0.00% 0.00% 0%
TweetEval sentiment test 12,284 3,933 39.14% 37.63% 96% 0 0.00% 0.00% 0%
TweetEval stance 1 train 587 455 95.91% 95.91% 100% 0 0.00% 0.00% 0%
TweetEval stance 1 test 280 277 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 2 train 461 423 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 2 test 220 251 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 3 train 355 416 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 3 test 169 201 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 4 train 597 353 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 4 test 285 198 100.00% 100.00% 100% 0 0.00% 0.00% 0%
TweetEval stance 5 train 620 407 97.10% 97.10% 100% 0 0.00% 0.00% 0%
TweetEval stance 5 test 295 201 100.00% 100.00% 100% 0 0.00% 0.00% 0%

Topic topic train 100,000 57,873 38.59% 38.25% 99% 89,091 100.00% 14.05% 14%
Topic topic test 20,000 17,122 38.26% 37.90% 99% 19,006 100.00% 14.19% 14%

Hashtag hashtag train 899,606 282,603 70.92% 70.49% 99% 392,751 100.00% 9.76% 10%
Hashtag hashtag test 100,372 64,939 70.64% 70.23% 99% 67,903 100.00% 9.65% 10%

SemEval 2013-A train 7,110 1,599 20.03% 17.86% 89% 9,069 100.00% 23.52% 24%
SemEval 2013-A test 2,284 573 20.53% 18.13% 88% 2,814 100.00% 24.87% 25%
SemEval 2014-A train 30 14 100.00% 96.67% 97% 49 100.00% 16.67% 17%
SemEval 2014-A test 1,253 254 16.12% 13.89% 86% 1,563 100.00% 26.18% 26%
SemEval 2015-A train 318 71 22.33% 20.75% 93% 412 100.00% 20.75% 21%
SemEval 2015-A test 1,461 329 20.88% 19.37% 93% 1,887 100.00% 21.15% 21%
SemEval 2015-BD train 316 71 22.47% 20.89% 93% 408 100.00% 20.57% 21%
SemEval 2015-BD test 1,454 333 21.05% 19.46% 92% 1,887 100.00% 21.18% 21%
SemEval 2016-A train 6,180 1,230 17.52% 15.95% 91% 7,775 100.00% 21.13% 21%
SemEval 2016-A test 12,754 1,932 19.53% 17.88% 92% 14,822 100.00% 20.31% 20%
SemEval 2016-BD train 4,404 977 18.35% 16.53% 90% 5,586 100.00% 22.48% 22%
SemEval 2016-BD test 6,494 1,079 19.16% 17.51% 91% 7,776 100.00% 21.40% 21%
SemEval 2016-CE train 6,180 1,230 17.52% 15.95% 91% 7,775 100.00% 21.13% 21%
SemEval 2016-CE test 12,754 1,932 19.53% 17.88% 92% 14,822 100.00% 20.31% 20%
SemEval task-A train 31,019 5,296 19.32% 17.50% 91% 37,154 100.00% 21.82% 22%
SemEval task-A test 4,609 1,483 28.77% 26.93% 94% 5,919 100.00% 17.40% 17%
SemEval task-BD train 11,675 2,143 19.08% 17.40% 91% 14,245 100.00% 21.72% 22%
SemEval task-BD test 2,324 656 26.25% 24.44% 93% 3,234 100.00% 16.70% 17%
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Table 5 continued from previous page
Hashtag User

dataset task split Tweets NTUs >1 NTUs >1 ∈ E ∈ E NTUs >1 NTUs >1 ∈ E ∈ E

SemEval task-CE train 18,887 3,009 18.88% 17.25% 91% 22,223 100.00% 20.59% 21%
SemEval task-CE test 4,606 1,485 28.90% 27.05% 94% 5,914 100.00% 17.41% 17%

SMIE abusive 1 train 32,997 11,177 30.06% 27.98% 93% 48,619 100.00% 23.81% 24%
SMIE abusive 1 test 9,070 3,619 29.49% 27.67% 94% 14,272 100.00% 23.24% 23%
SMIE abusive 2 train 8,859 1,015 36.12% 35.22% 98% 4,109 100.00% 21.01% 21%
SMIE abusive 2 test 2,442 377 37.84% 36.45% 96% 1,602 100.00% 20.64% 21%
SMIE sentiment 1 train 6,543 999 15.77% 13.48% 85% 4,269 100.00% 27.31% 27%
SMIE sentiment 1 test 1,813 378 15.00% 12.58% 84% 1,607 100.00% 27.74% 28%
SMIE sentiment 2 train 20,679 4,430 18.48% 16.18% 88% 30,566 100.00% 28.58% 29%
SMIE sentiment 2 test 5,719 1,398 18.57% 16.49% 89% 8,566 100.00% 28.66% 29%
SMIE sentiment 3 train 3,601 775 100.00% 100.00% 100% 3,829 100.00% 15.16% 15%
SMIE sentiment 3 test 1,007 299 99.90% 99.90% 100% 1,276 100.00% 14.60% 15%
SMIE sentiment 4 train 558 194 98.75% 98.03% 99% 491 100.00% 21.15% 21%
SMIE sentiment 4 test 557 161 99.64% 99.64% 100% 522 100.00% 15.26% 15%
SMIE sentiment 5 train 1,575 27 95.11% 95.05% 100% 720 100.00% 23.94% 24%
SMIE sentiment 5 test 444 17 97.52% 97.52% 100% 317 100.00% 22.75% 23%
SMIE sentiment 6 train 9,616 2,052 19.21% 17.34% 90% 12,165 100.00% 22.56% 23%
SMIE sentiment 6 test 17,347 2,879 19.66% 17.89% 91% 20,456 100.00% 21.05% 21%
SMIE uncertainity 1 train 1,058 389 57.84% 56.71% 98% 1,390 100.00% 30.62% 31%
SMIE uncertainity 1 test 314 128 59.55% 58.28% 98% 402 100.00% 25.80% 26%
SMIE uncertainity 2 train 534 206 44.76% 43.07% 96% 620 100.00% 19.29% 19%
SMIE uncertainity 2 test 145 65 36.55% 36.55% 100% 187 100.00% 15.86% 16%

Table 5: Downstream Data Statistics: NTUs means unique NTUs in the dataset, >1 NTUs means % Tweets with
more than 1 NTU, >1 ∈ E is % Tweets with more than 1 NTU which exist in our Embeddings E, and ∈ E is %
Tweets having an NTU in E only across Tweets with an NTU. SMIE = SocialMediaIE.
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B Training Details

All models were trained on NVIDIA A100 GPUs.
Our context embedding size was 200. Models were
trained for maximum of 15 epochs, using eary stop-
ping via the eval dataset. We used the adam_hf
optimizer in HuggingFace library 2 with default
learning rate of 5e-5.

Downstream models were trained with an 2
layer MLP on top of BERT or NTULM embed-
dings. MLP hidden layer has weight matrix of
size 768 ∗ 768 with a tanh activation. Final layer
has size 768 ∗ num_classes.

NTU embeddings were trained on 8 NVIDIA
A100 GPUs using the following config: dimen-
sion=200, learning rate=0.05, epochs=10, batch
size=100,000, batch negatives=500, uniform nega-
tives=500, num partitions=1.

2https://huggingface.co/docs/
transformers/main_classes/trainer#
transformers.TrainingArguments.optim
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Abstract

Entity Linking (EL) is the gateway into Knowl-
edge Bases. Recent advances in EL utilize
dense retrieval approaches for Candidate Gen-
eration, which addresses some of the shortcom-
ings of the Lookup based approach of matching
NER mentions against pre-computed dictionar-
ies. In this work, we show that in the domain
of Tweets, such methods suffer as users often
include informal spelling, limited context, and
lack of specificity, among other issues. We in-
vestigate these challenges on a large and recent
Tweets benchmark for EL, empirically evalu-
ate lookup and dense retrieval approaches, and
demonstrate a hybrid solution using long con-
textual representation from Wikipedia is neces-
sary to achieve considerable gains over previ-
ous work, achieving 0.93 recall.

1 Introduction

Entity Linking (EL) is the task of linking men-
tions to their corresponding entities in a Knowl-
edge Base (KB) such as Wikidata. EL is commonly
formulated in three sequential steps: Named En-
tity Recognition (NER), where mentions are identi-
fied, Candidate Generation, where a list of possible
entity candidates is generated, and Entity Disam-
biguation, where a final candidate is selected.

Earlier EL works relied on alias tables (dictio-
nary from strings to possible Wikidata entities; of-
ten associated with a score) and key-word based re-
trieval methods (Spitkovsky and Chang, 2012; Lo-
geswaran et al., 2019; Pershina et al., 2015). How-
ever, these approaches suffer on noisy text, such
as short-form Tweets. An example of a difficult
Tweet would be "Liam is a gr8 ML Researcher"
where the desired span to link would be "Liam".
Here, an alias-based approach would only retrieve
entities based on the span "Liam", of which there
are 8,350 different Wikidata entities containing that
name. Without the context of "gr8 ML Researcher",
it quickly becomes unfeasible to find the correct

candidate. Furthermore, alias based approaches
are also heavily dependent on the spans retrieved,
where the retrieved span must be exactly present in
the alias table in order to be found (Spitkovsky and
Chang, 2012; Logeswaran et al., 2019; Pershina
et al., 2015). This presents a challenge due to the
difficulties of NER systems on noisy social media
text (Lample et al., 2016; Mishra et al., 2020).

More recently, BERT-based dense entity re-
trieval approaches have shown to produce SOTA re-
sults on news datasets such as TACKBP-2010 and
Mewsli-9 (Wu et al., 2020; FitzGerald et al., 2021;
Botha et al., 2020). Dense retrieval approaches
rely on relevant context around the mention, which
is abundant in long and clean documents such as
news, but often absent or brief in noisy and short
user-generated text, such as that found on Twitter.

Prior works that focus on social media linking,
such as Tweeki (Harandizadeh and Singh, 2020),
used small, annotated datasets and did not study
the more recent dense retrieval approaches.

Recently, Twitter researchers released an end-
to-end entity linking benchmark for Tweets called
TweetNERD. It is the largest and most temporally
diverse open-sourced dataset benchmark on Tweets
(Mishra et al., 2022). Excited by the availability
of this benchmark, we study the application of re-
cent linking methods on this large and noisy user
generated data. We empirically evaluate sparse and
dense retrieval approaches on this data and describe
the challenges and design choices of building a ro-
bust linking system for Tweets.

Our main contributions are as follows: (A) To
the best of our knowledge, we are the first study
to compare dense retrieval, sparse retrieval, and
lookup based approaches for Entity Linking in a so-
cial media setting, which makes our work relevant
for the research community interested in process-
ing noisy user generated text. (B) We assess the
robustness of dense retrieval techniques in the pres-
ence of span detection errors coming from NER
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systems for social media text. This is a common
problem for social media datasets as the top NER
F1 score for social media datasets is significantly
lower than other domains (Strauss et al., 2016).
(C) We assess the impact of using short Wikidata
entity descriptions against the longer Wikipedia
descriptions for representing candidates, and high-
light the significant loss in performance from using
shorter descriptions for social media text. This is
relevant as many recent dense retrieval methods
for generic Entity Linking have proposed using
short descriptions from Wikidata for candidate rep-
resentations. (D) Our analysis is the first to ex-
plore sparse and dense retrieval on the largest and
most temporally diverse Entity Linking dataset for
Tweets called TweetNERD (Mishra et al., 2022).
(E) Finally, through quantitative and qualitative
analysis, we assert the complimentary nature of
candidates generated by lookup and dense retrieval
based approaches. This asserts the validity of our
hybrid approach towards candidate generation and
is reflected in significant performance improvement
by using hybrid candidate generation for Entity
Linking.

2 Methodology

2.1 Knowledge Base

To represent our KB, we followed prior work
and retrieved a July 2022 download of English
Wikipedia1 (Wu et al., 2020; De Cao et al., 2020).
However, Wikipedia also includes miscellaneous
pages or pages that refer to multiple entities, such
as disambiguation pages and "list of" pages. An ex-
ample of such a page is "List of Birds of Canada" 2,
which describes 696 distinct birds, each with their
own respective Wikipedia page. To detect these
pages, we retrieve the "instance of" category of
each entity from Wikidata, which classifies each
Wikipedia entity into distinct categories. Using this
information, we reduce the entity set from 56.8M
to 6.5M Wikidata entities.

2.2 Span Detection

We observe the performance of our systems uti-
lizing the Gold Spans provided by TweetNERD
(Table 1) and compare that to using NER-based
spans that reflect a more realistic use-case. The
NER model is trained on Tweets from TweetNERD

1This was the latest version at the time of writing
2https://en.wikipedia.org/wiki/List_of_birds_of_Canada

and is similar to the models described in Lample
et al. (2016); Mishra et al. (2020).

2.3 Candidate Generation

2.3.1 Dense Retrieval

Our dense retrieval approach retrieves candidates
based on the similarity of tweet and entity embed-
dings. This is done by utilizing two separate lan-
guage models to encode the semantic content of
Tweets and Entities respectively. Our approach is
motivated by Wu et al. (2020), which utilized a
similar strategy on a clean news corpus. Given
a Tweet t with mention span s and entity ei, we
create dense embeddings as

T s = BERTT ([CLS] tsl [M1] span
s [M2] t

s
r)
(1)

Ei = BERTE([CLS] titlei [M3] desc
i) (2)

where BERTT and BERTE are two separate lan-
guage models, tsl and tsr refer to the text to the
left and right of the desired mention span s, and
titlei and desci are the Wikipedia title and first
ten sentences of the respective entity page. Finally,
[M1], [M2], [M3] are special tokens to denote the
separation of each of the fields in the input.

Given these dense embeddings, we rank the pair-
ing of entities e to Tweet t by computing the dot
product between their corresponding CLS repre-
sentations. During inference, we pre-compute the
embeddings for every entity in our knowledge base
and index them using fast k nearest neighbour
search provided by FAISS (Johnson et al., 2021).
We refer to this approach as Dense.

2.3.2 Sparse Retrieval

We utilize a traditional lookup-based approach
for finding candidates as used by many prior
works (Harandizadeh and Singh, 2020). Specif-
ically, we map surface forms to Wikipedia page
candidates from the English Wikipedia parse of
DBPedia Spotlight and rank candidates given
p(entity|surfaceForm). We also include Wiki-
data aliases and labels as both have been found
previously to be beneficial for identifying named
entities (Mishra and Diesner, 2016; Singh et al.,
2012; Mendes et al., 2011) and entity candidates
in text (Mendes et al., 2011; Mishra et al., 2022;
Singh et al., 2012). We refer to this approach as
Lookup.
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Table 1: Candidate Generation using Gold Spans
(R@16)

Data Split Dense Lookup BM25 Hybrid

Academic 0.783 0.741 0.221 0.916
OOD 0.772 0.847 0.556 0.933
Overall 0.779 0.717 0.362 0.930

3 Results

3.1 Experimental Setup

We use TweetNERD for training and evaluation. It
consists of 340K+ Tweets linked to entities in Wiki-
data (Mishra et al., 2022). We follow the authors’
setup and evaluate on TweetNERD-Academic and
TweetNERD-OOD (out of domain), while the rest
of the data is used for training. For Dense retrieval
we use pre-trained BLINK3 encoders which are
trained on Wikipedia text and FAISS (Johnson
et al., 2021) for indexing candidate embeddings.
We compare that to a Lookup based system (Sec-
tion 2.3.2) and a BM25 baseline (Yang et al., 2018).
For BM25, we utilize Wikipedia abstracts as candi-
date documents and mention spans as queries.

In all experiments, we limit our retrieved candi-
dates set for Dense and BM25 to the top 16 entities
due to observed diminishing returns (Figure 1). For
Lookup, we retrieve all exact match candidates
since they are not explicitly ranked. As a result, the
performance of Lookup reflects an upper-bound
of the performance of that method. The average
number of retrieved Lookup candidates is 19 while
the median of 4, reflecting the long tail distribution
of retrieved candidates per span.

3.2 Candidate Generation

We begin by evaluating the impact of dense re-
trieval on Candidate Generation. Since we con-
strain our dense retrieval methods to 16 candidates,
we measure Recall @16 of our various systems.

3.2.1 Gold Spans
We first observe the performance of our systems
utilizing the Gold Spans provided by TweetNERD
(Table 1). Contrasting Lookup and Dense, we can
see that Dense outperforms on the Academic split
by 4 points whereas Lookup outperforms on the
Out-of-Domain split by 7.5 points. In addition, we
see that our trivial BM25 baseline falls significantly

3https://github.com/facebookresearch/BLINK
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Figure 2: Overlap and Distinction of Dense v/s Lookup
using Gold Spans

behind with 0.221 recall on the Academic set and
0.556 on the OOD set.

Upon further investigation, we find that Dense
and Lookup methods produce mutually exclusive
results. On the Academic dataset, we find that
Dense retrieved 7719 unique correct candidates
whereas lookup retrieved 5268 unique correct can-
didates (Table 2 and Table 3). Leveraging these
differences and inspired by van Hulst et al. (2020),
we take the union of both methods as a Hybrid ap-
proach. This approach yielded a significant +17.5
recall increase over Lookup and +13.3 recall in-
crease over Dense on the Academic split. In Figure
1, we show the change in Recall for all approaches
as K increases. We can see that the benefit of re-
trieving more Dense candidates plateaus after 16

Table 2: Unique Correct Candidates using Gold Spans

Data Split Dense Lookup BM25

Academic 7,719 5,268 1,043
OOD 1,055 2,664 1,495
Overall 8,774 7,932 2,538
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Table 3: Candidate Overlap Across Lookup, Dense and
BM25 using Gold Spans

Lookup Dense BM25 counts prop

Y Y Y 16,310 0.30
Y Y N 19,810 0.36
Y N Y 2,190 0.04
Y N N 3,566 0.06
N Y Y 1,079 0.02
N Y N 8,298 0.15
N N Y 361 0.01
N N N 3,386 0.06

Table 4: Candidate Generation using NER Spans
(R@16)

Data Split Dense Lookup BM25 Hybrid

Academic 0.761 0.613 0.164 0.880
OOD 0.754 0.757 0.440 0.903
Overall 0.759 0.715 0.245 0.887

candidates. However, we also find that candidates
retrieved by Lookup and Dense continue to be mu-
tually exclusive despite the larger candidate set
(Figure 2). This illustrates that the performance
plateau is not due to overlap in candidate sets but
rather that both methods produce vastly different
candidates. We investigate these differences in Sec-
tion 3.2.3.

3.2.2 NER Spans
Next, to reflect a real-life use-case, we investigate
performance of our system on NER spans. Here,
we annotate each Tweet using the NER service
described in Section 2.2. We capture the recall
performance of our systems by evaluating the set
of all retrieved candidates against the set of gold
entities (Table 4). Here, we can see the benefits
of Dense retrieval where Dense achieved similar
performance on NER spans as utilizing gold spans.
This is contrasted by Lookup, which realized a sig-
nificant drop in performance. This is likely due

Table 5: Unique Correct Candidates using NER Spans

Data Split Dense Lookup BM25

Academic 8,362 4,711 983
OOD 1,263 2,448 1,496
Overall 9,625 7,159 2,479

to inaccuracies in our NER system, which can re-
turn spans that do not have exact entries in our
pre-computed table.

We also see a continuing trend of complementary
results between Dense retrieval and Lookup. Here,
Dense and Unique retrieved 8362 and 4711 unique
correct entities on the Academic set, respectively
(Table 5). By combining the retrieved candidates
from both sets, we can increase the performance of
Lookup by ≈ 26.7 points on all splits.

3.2.3 Qualitative Analysis

During our experiments, we found significant dif-
ferences between the candidates retrieved by Dense
retrieval and Lookup retrieval. We find that these
differences can largely be categorized into span
ambiguity, spelling, and the presence of context.

An example of a TweetNERD Tweet requiring
context due to span ambiguity would be "Wiz and
Amber, Rihanna and Chris, Beyonce and jay-z
#grammyscouples" where the desired span is the
word "Amber".

In our results, we found that Lookup returned
many entities containing the name "Amber", such
as "AMBER Alert" (Q1202607) and "Amber, Ra-
jasthan, India" (Q8197166), but not the correct en-
tity "Amber Rose" (Q290856). To the reader, it is
clear upon reading the entire Tweet that the mean-
ing does not concern a rescue service or city, but
rather celebrities who have dated someone named
"Wiz". This is contrasted by Dense retrieval, which
returned the correct entity, but also similar enti-
ties such as celebrity "Amber Benson" (Q456862).
Furthermore, we can see in the Wikipedia entity
description of Amber Rose that she had been mar-
ried to Wiz Khalifa, information that would not be
present in the lookup table.

However, the presence of context can also be
detrimental and misleading when taken literally.
An example of such a TweetNERD Tweet would
be "No one here remembers The Marine and the 12
Rounds." where the desired span is "12 Rounds".

In this case, Dense retrieval returned incor-
rect candidates such as "12 Gauge Shotgun"
(Q2933934), instead of "12 Rounds" the movie
(Q245187). However, this was mitigated by
Lookup, which accurately found the correct entity.
We hypothesize that the context of "Marines" com-
bined with "12 Rounds" misleads the Dense model
to retrieve entities related to weaponry, instead of
matching the literal title as Lookup did.
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4 Conclusion

In this work, we have evaluated the usage of sparse
and dense retrieval techniques towards candidate
generation on social media text. In our qualitative
and quantitative experimentation, we have high-
lighted the complementary strengths of both meth-
ods. Combined, our hybrid approach achieves sig-
nificant improvements on TweetNERD, a large tem-
porally diverse dataset for entity linking on Tweets.
We also demonstrate the improvements that dense
retrieval translates to improved downstream en-
tity linking performance using both gold and NER
based spans.

There are also a few directions for future work.
First, in this work we focused on the Candidate
Generation step for Entity Linking. While we re-
port preliminary results for the Entity Disambigua-
tion step in Appendix Section A, future work could
explore efficient ways to disambiguate the candi-
dates retrieved from our hybrid approach. Second,
future work could expand our evaluation beyond
the English Tweets found in TweetNERD and de-
velop a multi-lingual solution. Third, it is important
to note that there are significant linguistic differ-
ences between the formal text found on Wikipedia
and informal speech on Twitter. Recent work has
explored leveraging mentions as entity descriptions,
which could be applied to Twitter text to bridge this
gap (FitzGerald et al., 2021).

Overall, our work highlights the best practices
for improving entity linking on short and noisy
social media text. We hope this work inspires future
entity linking efforts on this challenging domain.
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A Entity Disambiguation

To evaluate end-to-end EL performance, we con-
duct preliminary experiments by training a disam-
biguation model using the candidate set retrieved
from our retrieval methods. Once we generate en-
tity candidates, we score each <Mention, Entity>
pair for each Tweet using common mention-entity
Lookup based features (e.g., mention count per en-
tity), entity only based features (e.g., Wikipedia
page rank), and contextual mention-entity features
generated by comparing the mention embedding
in the text against the candidate entity description
embedding. We train our model to identify the
correct entity for each span among the retrieved
candidates. Our architecture and features are like
the ones described in Kolitsas et al. (2018) with the
major difference being the usage of a BERT based
encoder instead of BiLSTM.

While our focus is candidate generation, report-
ing end-to-end performance is important since im-
provement in candidate generation does not neces-
sarily translate to end-to-end improvement. Dense,
unlike Lookup, can retrieve the right candidate even
when the mention span is missing due to NER er-
rors, however our disambiguation system currently
still requires a span in order to link a mention.

Dataset Split Dense Lookup

Academic 0.617 0.566
OOD 0.605 0.568
Overall 0.610 0.567

Table 6: F1 of Entity Disambiguation using NER Spans

Description Recall Precision F1

Lookup

Short 0.484 0.686 0.567
Long 0.543 0.628 0.582

Dense

Short 0.299 0.249 0.272
Long 0.613 0.607 0.610

Table 7: Ablation Experiments on Entity Disambigua-
tion

Table 6 shows the F1 score of our disambigua-
tion model using candidates retrieved by our pro-
posed methods. Our results demonstrate that the
increased recall brought by Dense candidates have
translated into increased end-to-end F1 on all splits
when compared to Lookup, achieving a 0.04 F1
gain. Furthermore, we can see the largest differ-
ence on the Academic split, where Dense achieved
0.051 higher F1 then our lookup-based approach.

B Ablation Study

A core part of our methodology is how we repre-
sent entities. In our proposed approach, we uti-
lize Wikipedia descriptions, which provide a ver-
bose but rich description of entities. We refer to
these descriptions as "Long" descriptions. To eval-
uate the impact of these descriptions on Dense and
Lookup retrieval, we conduct an ablation study
where we evaluate utilizing Wikidata descriptions.
These descriptions are much shorter and terse, of-
ten never exceeding 5-6 words. An example of such
a description would be "species of bird", which is
shared by 23 828 different bird entities 4. We refer
to these Wikidata descriptions as "Short" descrip-
tions.

The results of our ablation study can be seen
in Table 7. While we see an overall improvement
when utilizing Long descriptions, the most signifi-
cant impact can be seen on dense retrieval, where

4https://www.wikidata.org/w/index.php?search=species+of+bird
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we see a leap of F1 performance from 0.272 to
0.610. Furthermore, we can also see that Lookup
can still perform well when utilizing Short descrip-
tions, achieving our highest precision result.

There are a few reasons for these results. Due to
the k-nearest neighbour nature of Dense retrieval,
entities that are retrieved by this method are often
very semantically similar. This was demonstrated
in Section 3.2.3, where Dense retrieval returned a
list of actors when trying to link to an actor mention.
However, since short descriptions are often shared
between related entities ("species of bird"), often
the same description would appear in the retrieved
list. This is contrasted by Lookup, where the list of
retrieved entities is related only by mentioned name.
As a result, the entities are typically much more
diverse (AMBER Alert vs Amber Rose) and thus
easier to disambiguate with shorter descriptions.
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Abstract

In hope of expanding training data, researchers
often want to merge two or more datasets that
are created using different labeling schemes.
This paper considers two datasets that label
part-of-speech (POS) tags under different tag-
ging schemes and leverage the supervised la-
bels of one dataset to help generate labels for
the other dataset. This paper further discusses
the theoretical difficulties of this approach and
proposes a novel supervised architecture em-
ploying Transformers to tackle the problem of
consolidating two completely disjoint datasets.
The results diverge from initial expectations
and discourage exploration into the use of dis-
joint labels to consolidate datasets with differ-
ent labels.

1 Introduction

There has been an explosion in the availability and
variety of labeled datasets in almost every domain.
Unfortunately, Artificial Intelligence (AI) practi-
tioners and researchers often find themselves un-
able to make use of labeled datasets for tasks re-
lated but not identical to their tasks. This is pri-
marily due to different labeling schemes where a
trivial mapping to merge the datasets into one larger
dataset does not exist. In this paper, we explore
the possibility of consolidating datasets that were
curated for the same task with different labeling
schemes. To make this easy to apply to any pair
of datasets, we consider a very interesting scenario
in which we attempt to make a model that can un-
derstand both datasets without ever actually seeing
any examples that have labels from both of them.

There are several domains and application ar-
eas to which our technique can be applied to, and
frankly might be the only option. For example:
When creating a data set to detect people, objects,
and vehicles in an urban environment, we may want
to supplement our existing data set with the pop-
ular Cityscapes dataset (Cordts et al., 2016), but

struggle to directly apply those labels to the merged
dataset due to a few minor differences in the label
scheme, such as a smaller or larger label set. There
could also be some information partially correlated
with the existing dataset’s labels; perhaps in our
dataset we have to distinguish between standing
and sitting people. Cityscapes does not distinguish
between these, so is it possible to use the label
information (about where humans are) to get high-
quality segmentation under our desired labeling
scheme?

The focus of this paper comes from part-of-
speech (POS) tagging. Although some tags are
common to all datasets, different datasets may have
different conventions for how to deal with more
uncommon parts of speech, like modal verbs, par-
ticles, or even when to treat something as a noun.
These problems are exacerbated in informal con-
texts. We provide a novel design for a supervised
model that can translate labels from one dataset
into another labeled dataset without requiring any
shared examples. After analyzing results, we re-
consider the situations under which it is possible to
squeeze out extra performance from these labels,
and show that it is unlikely for any kind of architec-
ture to use label information to perform better than
an equivalent model that does not, unless the archi-
tecture has access to shared examples or metadata
about the meaning of the labels.

1.1 Related Work
The problem of dissimilar POS tagsets has histori-
cally been approached in two significant ways:

1. Supervised Learning: (Shen, 2007) proposed
a supervised POS tagger with 97.3% accuracy
for the English language;

2. Create Dictionary Mapping: (Petrov et al.,
2011) proposed a Universal POS tagset to map
25 different treebank tagsets to 12 universal
POS tags.
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There has also been a significant amount of
progress in creating POS tags for languages other
than English leveraging both supervised and unsu-
pervised methods (Das and Petrov, 2011).

Our work can be seen as a type of Multitask
Learning (Caruana, 1998) as we are learning from
two related datasets that have been labeled inde-
pendently and differently. A common technique is
to create a model for each task (Collobert and We-
ston, 2008), and enforce weight sharing between
their lower layers to allow shared low-level domain
knowledge. A key distinction between our method-
ology and Multitask Learning is that our test time
goal also makes use of labels from the other task.
We use the actual predictions of the model rather
than the more common idea of using the predicted
logits or encoded representation from a previous
layer.

This problem can also be considered as a type
of Domain Adaptation Technique. However, many
domain adaptation algorithms ((Daumé, 2009)) as-
sume some shared examples between the source
and target domains, so we cannot apply it in our
case. Those algorithms that do not make this as-
sumption have never to our knowlege tried to use
the labels that are in the target distribution but are
not the source distribution labels.

2 Setting

Let Σ be the set of unicode characters. In our set-
ting, we have two datasets that map from the space
of sentences of unicode characters X =

⋃
Σn to

part-of-speech tags. However, the two datasets use
different labeling schemes: the first may use the
standard Universal POS tagset Y while the second
uses a proprietary POS tagset Z. Each sentence
in the first dataset has a label for each word in⋃∞

n=0 Y = Y, while each sentence in the second
has a label in

⋃∞
n=0 Z = Z.

Then we can name the two datasets as DY =
{(x(i)y , y(i)) ∈ (X,Y)}i and DZ = {(x(i)z , z(i)) ∈
(X,Z)}i. Presumably, Y and Z are very highly
correlated, since they are both POS tags for a sen-
tence, just defined with slightly different rules. We
would like to expand the dataset DY to include
the sentences and labels of DZ , but unfortunately
the labels are incompatible. However, we expect
that we can still get useful information from the
labels Z. Therefore, our goal is to build a predictor
function fY : (X,Z)→ Y that combines both the
text and the information of the annotated DZ to

predict what the translated label would be in the
tagset Y. Similarly, we consider the construction
of fZ : (X,Y)→ Z.

Here are the two obvious baselines that could be
used to construct fY :

1. Direct Map We could use domain knowledge
to directly design a mapping from each label
Z → Y . If |Z| < |Y |, Y is not a deterministic
predictor of Z and this introduces noise into
the system. If |Z| > |Y |, converting to Y will
result in a loss of information.

2. Supervised Model We could train a model on
DY to build a function X → Y.

Note that while the second baseline is trained with
data, the first baseline is completely based on hu-
man understanding of the relationship between la-
bels. Thus, while we can naturally train a model to
match the performance of the Supervised Model,
it is much less obvious how we can train a model
to gain the performance advantage given by the
Direct Map method.

Now we consider the design of our model in-
tended to use information about both X and Z to
perform better than either approach.

3 Model

In our method, we will transform our input X
into an embedding space E using a transformer’s
encoder Enc : X → E and two GRU decoder
functions, one for each type of label Y and Z.
DY : (E,Z) → Y and DZ : (E,Y) → Z. Then
to infer a label Z for a given training sample (xy, y),
we can compute DZ(Enc(xy), y). See Figure 1 for
a visualization.

xy y xz z

ey = Enc(xy) ez = Enc(xz)

z̃ = DZ(ey, y) ỹ = DY (ez, z)

Figure 1: When evaluating the model, we use y and z
as inputs!

However, the setup used for validation will not
work for training the model. Ideally, we would like
to make a loss function that penalizes the predicted
value of z from being far from the true z corre-
sponding to xy, but we do not have any access to
the true z! We only have pairs (x, y) and (x, z),
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xy P (z|xy) = SZ(ey)

ey = Enc(xy)

sy = SY (ey)

ẑ ∼ P (z|xy)

ỹ = DY (ey, ẑ)

Loss = CE(y, ỹ) + CE(y, sy)

Figure 2: To train the model with the Y dataset, we
simulate having Z labels by sampling from the logits of
a normal supervised model SZ . At the same time, we
train a model SY for the other dataset. Heavy dropout
is applied at the location of the blue arrow.

not (x, y, z). One way to fix this is to first predict ẑ
using (x, y) and then use that as a surrogate for true
z. To do this, we can create a supervised model SZ

that takes in the encoded variables Enc(xy) and
outputs a prediction for the label z, which we can
then input into the decoder DZ . However, the care-
ful reader will notice a flaw in this strategy: While
DZ takes the input as one-hot labels at inference
time, it takes input as logits at training time. To
reconcile this difference, we treat the softmax of
the predicted logits as a probability distribution,
from which we sample our true predicted label ẑ.

The entire training process with the inputsDY is
shown in Figure 2, and the model for DZ is made
the same way, but with the y / z inputs flipped.
In our implementation, each mini-batch contains
some examples from both datasets. To reduce the
complexity of the model, we use the same base
encoder model weights for SY , SZ , DY , and DZ ,
though in principal they could be different or only
partially shared.

The inquisitive reader may wonder why we use
SZ to predict labels z instead of reusing labels DZ

along with ground truth labels y. In this case, we
will have given the label that we want to predict
as an input to the model, and so the model can
simply learn to predict the input! For example,
suppose that in our model, rather than sampling
ẑ ∼ SZ(ey), we reused the decoder weights to
get ẑ := DZ(ey, y), then predicted ỹ = DY (ey, ẑ)
(and similarly on the other side). Then, the model
can simply learn to ignore the first argument of
DY and DZ and instead learn that DY (−, z) and
DZ(−, y) are inverses to each other. In this setup,
it will perfectly predict all the training data, but it
will be completely useless in practice. We actually
tried this setup and found that the model would

Text Ark Label
New Adjective
FC Proper noun

Menu Proper noun
Utility Proper noun

2.0 numeral
#apple Proper noun

http://t.co/VftFt2c URL or email address
Text Tweebank Label

@USER2082 A
good ADJ
night NOUN

I PRON
Love VERB
You PRON

:) SYM
http://t.co/VftFt2c U

Table 1: Example tweets from Ark and Tweebank

actually achieve performance competitive with the
supervised model for a few epochs (perhaps due to
regularization like dropout), but after training long
enough, it learns the cheat and arrives at 0 training
error and very high validation error. Now, during
training, y and z are completely derived from x. So,
in principle, DY and DZ may learn to ignore noisy
outputs y and z and make predictions based solely
on x. To prevent this, we enforce a very heavy
dropout of 0.85 on the first term before passing it
as input.

The model and training code can be found in out
Github repository1 in the footnote.

4 Datasets

In this project, we consider two datasets:

1. ARK-Twitter Kevin Gimpel (2011), which
contains 34k tokens from tweets sampled pri-
marily on Oct 27, 2010.

2. Tweebank dataset Yijia Liu et al. (2018)
which maintains 840 tweets from Tweebank
v1, 2500 examples from twitter stream from
February 2016 to July 2016.

The Tweebank dataset used UD annotation conven-
tions, while the ARK data set used the Stanford
POS Tagger trained in WSJ.

However; these two datasets have a data con-
tamination problem: there are 210 identical shared

1https://github.com/Alex7Li/TransPOS
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Figure 3: Distribution of validation labels.

tweets. In our case, however, this served as the
perfect validation set for our model.

Looking at the distribution of the labels in this
validation set (Figure 3), we see that the ambiguity
between the meanings of the labels will limit the
performance of a direct mapping.

5 Experiments

GPT-2 Tweebank Acc Ark Acc
supervised model 89.53% 89.92%

our model 89.53% 90.17%
supervisor only 86.96% 88.29%
no label input 88.09% 88.59%

Bertweet-large Tweebank Acc Ark Acc
supervised model 94.31% 95.02%

our model 94.26% 94.97%
supervisor only 94.31% 95.09%
no label input 94.22% 94.97%

direct map 88.31% 89.97%

Table 2: Accuracy (Acc) with Bertweet-large model
baseline

The first baseline was created by making a ‘di-
rect map’ between the labels. We looked at the
validation set and chose the map that gave the high-
est possible score.

The second ’supervised model’ baseline was a
normal transformer model; we train on the train
split of one dataset and evaluate on the validation
split of that same dataset.

Then, for ‘our model’, we trained with the
described architecture, using the transformers
BERTweet (Nguyen (2020)), and GPT-2 (Radford

et al. (2019)) a GPT-2 model and a Bertweet model
with the described architecture with dropout .85.
After the training was complete, we evaluated the
accuracy using the method described above to com-
pute our model accuracy.

To see if our model was really learning from the
y labels, we used of the supervised model heads
SY ◦Enc and SZ ◦Enc to get the ‘supervisor only’
accuracy. This architecture is exactly the same as
the baseline, but differences arise in the accuracy
because the training process is not the same (in
particular, there is very high x dropout).

Finally, we considered the accuracy of the full
pipeline when there with ‘no label input’: instead
of providing the z labels for the first dataset while
predicting the y labels of the second, we just took
the z labels that the model predicted and sampled
from that distribution as we do at training time.

6 Results

Figure 4: GPT-2 Validation accuracy

We trained the model with both the GPT-2 as our
encoder and the Bertweet model as our encoder.
All models were trained for 25 epochs, and we
report the accuracy at the final epoch in Table 2.

In both cases, our accuracy does not exceed the
baseline. Although the Bertweet model appears to
gain nothing from the z labels, the GPT-2 model
appears to be using the z labels to effectively im-
prove performance as indicated in Figure 4. Since
the score of the model improves when we give it
the z labels, we can say that it is actually learning
to use the joint probability distribution of the y and
z labels.
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Our approach can only be useful when the corre-
lation between the labels of both datasets provides
information that the correlation between the en-
coder output and the true labels does not. One
possible explanation for our inability to beat the
baseline model is because the label information
was not sufficient or because the baseline model
was already too strong. However, using the weaker
GPT-2 model as a baseline did not show any im-
provement.

Although there are a multitude of different ideas
for model designs that use the y labels, it is im-
portant to first try and understand why this model
struggled in this regime. From our results, it seems
it will be difficult to design an architecture that
can effectively learn from the label information of
another dataset without using any shared examples.

To emphasize that this problem will be hard for
any architecture, let us consider a toy example of
this problem where we no longer have any X data
and are just given a set of Y POS tokens and Z
POS tokens. In this case, the the y and z labels are
still very correlated, but since it is impossible for a
model to predict the price from an integer id, our
model will not be able to learn about and make use
of the high covariance between labels. As we have
given the model two unrelated sets of labels, no
matter what model you use, it will be impossible to
relate them with anything other than the statistical
properties of the Y and Z distributions. This does
not seem too informative in general, since it will
be difficult to find the correct relationship between
two sets with no shared examples, though the fact
that POS is a multi-label prediction problem means
that you might be able to get a bit out of it. Still,
even trying to make the label distributions similar
is not easy as the labels are not in the same space.

In our model, we consider pairs of predicted y
and true z data, which ultimately cannot give any
more information than the already known relation-
ship between encoder outputs and true labels. The
hope was that replacing the predicted label y with
the true label y would allow for a final gain in accu-
racy, but that was not the case in our experiments.
There is a difficult tension to balance: When trust-
ing the predicted y label too much, the decoder will
not be able to perform well on the training dataset
because the predicted label is often wrong. But
when we do not trust the label, we cannot do well
at evaluation time.

The toy example indicates that the only other

way to gain new information would be relating the
statistical properties of the distribution. However,
it is not clear how to learn this information or how
helpful it would be. Therefore, using label infor-
mation for a separate dataset appears very unlikely
to improve performance.

A counterpoint to this argument is the perfor-
mance gap between our model and the no label
input model. This is especially clear in the early
stages of GPT-2 training. In Figure 4, we plot
the three accuracies when training GPT-2. Here,
using the ground truth labels for the y dataset gives
a better score on the z dataset than using the model
predictions for y. Thus, it seems that we can con-
clude that it is possible for the model to learn the
joint distribution P (Y,Z) and use that informa-
tion effectively. However, the problem is that the
only information about P (Y,Z) that the model is
capable of learning is what can be deduced from
P (X,Y ) and P (X,Z). In trying to predict Z, it
can really only use the information that was learned
from P (X,Z), which is already contained in any
normal supervised model. The fact that the model
performance never surpasses the supervised model
is evidence toward the argument that the replace-
ment policy will not help to improve model perfor-
mance in general.

7 Conclusion

The task of consolidating datasets with different
labels and no shared examples is a hard problem.
The experiments did not provide any improvement
over the baseline of only using the x variables. This
was surprising, as the correlation between the y and
z labels is quite large. However, this may be due
to an intrinsic difficulty with the setting (no shared
examples) rather than the model design.

8 Future Work

Future work of consolidating datasets without
shared examples should focus on using semi-
supervised learning with other x labels or support-
ing the other dataset labels with metadata.

Another possible direction would be to use the
architecture in this paper together with a subset
of shared examples between the datasets. Our
approach can be easily modified to deal with la-
bels that are sometimes missing instead of all the
time. Such a modification could shine in (poten-
tially multi-label) environments with that require
frequent missing value imputation.
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Abstract
We present a simple yet effective method to
train a named entity recognition (NER) model
that operates on business telephone conversa-
tion transcripts that contain noise due to the
nature of spoken conversation and artifacts of
automatic speech recognition. We first fine-
tune LUKE, a state-of-the-art Named Entity
Recognition (NER) model, on a limited amount
of transcripts, then use it as the teacher model
to teach a smaller DistilBERT-based student
model using a large amount of weakly labeled
data and a small amount of human-annotated
data. The model achieves high accuracy while
also satisfying the practical constraints for in-
clusion in a commercial telephony product: re-
altime performance when deployed on cost-
effective CPUs rather than GPUs.

1 Introduction

We describe a named entity recognition (NER) sys-
tem that identifies entities mentioned in English
business telephone conversations. The input to the
NER system is transcripts produced by an auto-
matic speech recognition (ASR) system. These
transcripts are inherently noisy due to the nature
of spoken communication and due to the limita-
tions of the ASR system. The transcripts contain
dysfluencies, false starts, filled pauses, they lack
punctuation information and have incomplete in-
formation about case.

Because there was no pre-existing annotated data
set publicly available that matched the characteris-
tics of the ASR transcripts in the domain of busi-
ness telephone conversations (Li et al., 2020), the
NER model is required to be trained on a large
dataset containing telephone conversations to ef-
fectively detect named entities in such noisy data.
Moreover, the NER model needs to provide real-
time functionality in a commercial communication-
as-a-service (CaaS) product such as displaying in-
formation related to the named entities to a cus-
tomer support agent during a call with a customer.

The deployed system was therefore required to be
fast (less than 200ms inference time) but economi-
cal (able to operate on CPU, rather than more ex-
pensive GPUs).

To address the above issues, in this paper, we
present a simple yet effective method, distill-then-
fine-tune, to transfer knowledge from a large and
complex model to a small and simple model while
reaching a similar performance as the large model.
More specifically, we fine-tune a state-of-the-art
NER model, LUKE (Yamada et al., 2020), on our
limited amount of noisy telephone conversations
and predict the labels of a large amount of unla-
beled conversations, denoted as distillation data.
The smaller model is then trained on the distilla-
tion data using pseudo-labels. We conduct exten-
sive experiments with our proposed approach and
observe that our distilled model achieves 75x infer-
ence speed boost while reserving 99.09% F1 score
of its teacher. This makes our proposed approach
very effective in limited budget scenarios as it does
not require the annotation of a huge amount of
noisy data that would otherwise be required to fine-
tune simpler transformers on downstream tasks.

2 Related Work

NER is often framed as a sequence labeling prob-
lem (Huang et al., 2015; Akbik et al., 2018) where
a model is used to predict the entity type of each to-
ken. Previously, various models based on the recur-
rent neural network architecture have been widely
used for this task. In recent years, pre-trained lan-
guage models have been employed to perform the
NER task where a new prediction layer is added
into the pre-trained model to fine-tune for sequence
labeling (Devlin et al., 2019).

More recently, (Yamada et al., 2020) proposed a
new approach to provide the contextualized repre-
sentations of words and entities based on a bidirec-
tional transformer. In their proposed model, LUKE,
they treat words and entities in a given context
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Type Utterances Person Prod/Org Location
Train 16124 4852 4443 4135
Dev 2292 682 627 629
Test 4497 1382 1274 1151

Table 1: Labeled in-domain dataset class distribution.
The numbers under each entity type represent number
of utterances containing the specific type.

as independent tokens, and output the contextual-
ized representations of them. The LUKE model
achieved impressive performance in various entity-
related tasks. However, this model is inherently
slow due to its complex architecture and so it is not
applicable for usage in production environments in
a limited computational budget scenario.

In scenarios where the computational budget is
limited, using a smaller model that can mimic the
behaviour of the large model can be used. Knowl-
edge distillation (Hinton et al., 2015) is one such
technique where a large model is compressed into a
small model. One prominent approach for Knowl-
edge Distillation that has been used in recent years
is the work of (Tang et al., 2019), where they pro-
posed a task specific knowledge distillation method
to show that using an additional unlabeled trans-
fer dataset can augment the training set for more
effective knowledge transfer. However, most prior
work that leveraged such knowledge distillation
techniques focused on typed input, whereas the
amount of work that leveraged knowledge distil-
lation for noisy texts (e.g., telephone conversation
transcripts) is very limited (Gou et al., 2021). Mo-
tivated by the advantages of knowledge distillation,
in this work, we also leverage knowledge distilla-
tion to address the computational issues that occur
while utilizing large state-of-the-art language mod-
els in a limited computational environment, while
minimizing the amount of noisy data that must be
human-annotated for use during fine-tuning.

3 Datasets

In this section, we first introduce the in-domain
training data (noisy human-to-human conversa-
tions) that we sampled and annotated to train the
teacher model. Then, we describe the data used for
knowledge distillation of the student model.

3.1 In-domain Data Annotation

Since our in-domain dataset is sampled from tran-
scripts produced by an ASR system, the dataset
does not contain any punctuation marks and only

contains partial casing information. This makes
the property of our dataset fundamentally differ-
ent from the data that most pre-trained models are
trained on. This also makes the task more difficult
since upper-cased words are a very strong hint of a
token being a named entity (Mayhew et al., 2019).

For data annotation, we sampled 26,000 utter-
ances from telephone conversation transcripts and
had them annotated by Appen1. Four types of
named entities were labeled by the annotators: per-
son name, product or organization, geopolitical
location, and none. The detailed statistic of this
dataset labeled by Appen is shown in Table 1.

3.2 In-domain Distillation Data

Our goal is to reduce the amount of human anno-
tated data in the training set. For this purpose, we
perform knowledge distillation that transfers knowl-
edge from a large and complex teacher model to
a small and simple student model. Since the stu-
dent model is expected to be much simpler than the
teacher model, it requires a large amount of labeled
training data. In addition, due to the sparsity of
named entities, the model cannot learn too much
from randomly sampled utterances where most of
them may not contain any named entities. We ad-
dress this issue by using the spaCy2 NER model to
select utterances that are highly likely to contain at
least one named entity of a type we are interested
in. Specifically, we only used four entity types rele-
vant to this study from the spaCy model: PERSON,
ORG, GPE, PRODUCT. This sampling method
produced 483, 766 unlabeled utterances from busi-
ness telephone conversation transcripts and largely
increased the information density in the data. How-
ever, annotating this huge amount of unlabeled data
would be a prohibitively costly process. To tackle
this problem, we use the trained teacher model to
predict the labels of these utterances. In this way,
the teacher model provides the pseudo-labels of a
large unlabeled noisy dataset to alleviate the need
of human annotation for such data. We use this
large noisy speech data with pseudo-labels as the
distillation data to train the student model. The
statistics of this dataset is listed in Table 2.

4 Our Proposed Approach

In this section, we first describe the architectures
of the teacher and student models. We then de-

1https://appen.com/, accessed on January 4, 2022.
2https://spacy.io/api/entityrecognizer
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Figure 1: Our knowledge distillation approach: (a) first, fine-tune the teacher model (LUKE) on the labeled dataset,
and generate the pseudo-labels of a huge amount of unlabeled data for distillation. (b) Next, fine-tune the student
model (DistilBERT) in two steps, step 1: on the distillation data having pseudo-labels that were generated in the
previous step, and step 2: on the original labeled training data where the teacher model was also trained. Here,
‘PDORG’ denotes ‘PROD/ORG’, while ‘Bold’ font in the output layer denotes the entities tagged by the model.

Type # Examples
Positive utterances 347,412
Negative utterances 136,354

Utterances containing Person tags 179,495
Utterances containing Prod/Org tags 97,857
Utterances containing Location tags 138,989

Table 2: Pseudo-labeled distillation data class distribu-
tion. “Positive utterances" are those that contain any of
the 3 entity types, and “Negative utterances" are those
that do not contain any of the 3 entity types. Here, ‘#’
denotes ‘Total number of’.

scribe our proposed knowledge distillation method,
distill-then-fine-tune, that can be broken down into
four steps: i) fine-tune the teacher model on the
in-domain data, ii) sample distillation data from
unlabeled examples, iii) perform distillation, and
iv) fine-tune the student model. An overview of
our proposed approach is illustrated in Figure 1.

Model Architecture: We use LUKE, a bidirec-
tional transformer, that was pre-trained by (Yamada
et al., 2020) on Wikipedia data to learn contextu-
alized representations of words and entities. In
LUKE, the input representation of a token (word
or entity) is computed using three types of embed-
ding: token embedding, position embedding, and
entity type embedding. Token embedding, which
is decomposed into two small matrices, represents
the corresponding token. Position embedding rep-

resents the position of a token in a word sequence,
while the entity type embedding represents whether
the token is an entity. To further leverage the en-
tity type embedding, an entity-aware self attention
mechanism is used to handle interactions between
entities in a given word sequence. Since LUKE is
a large model that contains approximately 483M
parameters (355M on its encoder and 128M for en-
tity embeddings), we use it as the teacher to teach
a student model.

For the student model, we adapt the Distil-
BERT (Sanh et al., 2019) model, a 6-layer bidirec-
tional transformer encoder that was pre-trained for
the language modeling task by Sanh et al. (2019).
The DistilBERT model was initialized from its
teacher BERT model by taking one layer out of
two. It was pre-trained on the same corpus as
BERT while using both the distillation loss and
the masked language modelling loss. It contains
approximately 66M parameters (approximately one
seventh the size of the teacher model), making it
more economical to deployment in a production
environment with limited resources.

Distillation Method: Our goal is to build an
NER system that can detect named entities in busi-
ness conversations, but the LUKE model that we
employ as a teacher model was pre-trained on writ-
ten text, which is very different from noisy tran-
scribed human-to-human conversations. To adapt
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Model F1 Score Inference Time
LUKEft 86.07 2980ms

DistilBERTft 83.08 40ms
DistilBERTdtft 85.29 40ms

Table 3: Performance of our proposed DistilBERTdtft
models (fine-tuned on a large amount of distillation data
and a small amount of in-domain human-annotated data)
compared to the LUKEft and DistilBERTft models that
were fine-tuned only on the in-domain human-annotated
data. Inference time is measured on a 2.20Ghz Intel
Xeon CPU with sixteen virtual cores.

to the domain of business conversations, we first
fine-tune the LUKE model on 16,124 in-domain
human-annotated examples (see Section 3.1 for de-
tails). The resulting model is called LUKEft. The
LUKEft model serves as the teacher that generates
pseudo-labels for the distillation data (see Section
3.2 for details).

Next, we use a two-step fine-tuning approach for
the student model (Fu et al., 2021; Laskar et al.,
2022c). The student model is initialized with the
pre-trained DistilBERT model. For step 1, we fine-
tune the student model on the distillation data with
pseudo-labels generated by the teacher. During the
training stage, we use the cross entropy loss defined
below.

LCE = − 1

N

N∑

n=1

log
eŷn,yn

∑C
c=1 e

ŷn,c
(1)

Here, N is the number of samples in a batch, and
C denotes the number of classes. ŷn,c is the logit
of the c-th class in the n-th example, and ŷn,yn is
the logit of the gold class in the n-th example.

For the final distillation step, we fine-tune the
student model further on the in-domain human-
annotated data. The resulting child model is termed
DistilBERTdtft.

5 Experiments

In this section, we describe our experimental set-
tings and results.

5.1 Experimental Settings

Below, we discuss the baseline models and the
training parameters used in our experiments.

Baselines: To compare the performance with our
proposed model, we use the following baselines, (i)
LUKEft: The pre-trained LUKE model fine-tuned
on our human-annotated in-domain training data,
and (ii) DistilBERTft: Similar to the other baseline,

it was fine-tuned only on our human-annotated in-
domain training data.

Training Parameters: For the teacher model,
LUKEft, we set the batch size to 2, learning rate to
5× 10−5, and the number of epochs to 3. For the
student DistilBERT model, we set the batch size
to 32 and the learning rate to 5 × 10−5, and the
number of epochs to 5.

5.2 Results and Analyses

From Table 3, we see that the LUKEft model
(fine-tuned on in-domain human-annotated data)
achieves the highest F1 score, 86.07%, but with
an inference time of 2980ms it is not practical for
realtime applications.

The DistilBERTft model (also fine-tuned only
on the in-domain human-annotated data), with an
inference time of 40ms is suitable for realtime ap-
plication, but loses almost three percentage points
of accuracy, reducing to an F1 score of 83.08%.

Our proposed DistilBERTdtft model, which
leverages two stage of fine-tuning (uses the large
distillation data on stage 1 of fine-tuning and the
human-annotated data on stage 2 of fine-tuning)
brings the F1 score back to within 1% of the
LUKEft model. Since DistilBERTdtft model has
the same model architecture and the same num-
ber of parameters as the DistilBERTft model, its
inference time is identical: 40ms, i.e. 75x faster
than LUKEft. This makes DistilBERTdtft model
applicable for production deployment as it achieves
an improved F1 score with high efficiency while
requiring less computational resources due to its
small size.

6 Conclusion

In this paper, we introduce the distill-then-fine-tune
method for entity recognition on real world noisy
data to deploy our NER model in a limited budget
production environment. By generating pseudo-
labels using a large teacher model pre-trained on
typed text while fine-tuned on noisy speech text to
train a smaller student model, we make the student
model 75x times faster while reserving 99.09%
of its accuracy. These findings demonstrate that
our proposed approach is very effective in limited
budget scenarios to alleviate the need of human
labeling of a large amount of noisy data. In the
future, we will explore how to apply knowledge
distillation to other tasks (Laskar et al., 2022a,b;
Khasanova et al., 2022) containing noisy data.
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Ethics Statement

The data used in this research is comprised of indi-
vidual sentences that do not contain sensitive, per-
sonal, or identifying information. Each machine-
sampled utterance is labelled by annotators before
the utterance is used as part of the training dataset.
While annotator demographics are unknown and
therefore may introduce potential bias in the la-
belled dataset, the annotators are required to pass a
screening test before completing any labels used in
these experiments, thereby mitigating this unknown
to some extent. Future work should nonetheless
strive to improve training data further in this regard.
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Abstract

Sentiment analysis is essential to process and
understand unstructured user-generated con-
tent for better data analytics and decision mak-
ing. State-of-the-art techniques suffer from
a high dimensional feature space because of
noisy and irrelevant features from the noisy
user-generated text. Our goal is to mitigate
such problems using DNN-based text classifi-
cation and popular word embeddings (Glove,
fastText, and BERT) in conjunction with statis-
tical filter feature selection (mRMR and PCA)
to select relevant sentiment features and pick
out unessential/irrelevant ones. We propose an
effective way of integrating the traditional fea-
ture construction methods with the DNN-based
methods to improve the performance of sen-
timent classification. We evaluate our model
on three real-world benchmark datasets demon-
strating that our proposed method improves the
classification performance of several existing
methods.

1 Introduction

Sentiment analysis is used to classify user-
generated review/comments into positive and neg-
ative classes, and widely applied to various do-
mains such as businesses and organizations, pol-
itics, health, education, etc. Existing proposals
for text sentiment analysis can be mainly divided
into lexicon-based and corpus-based approaches.
Sentiment lexicons may ignore important domain-
specific sentiment words incurring concerns with
word coverage. Unlike lexicon-based approach,
corpus-based approaches requires careful consid-
eration of sentiment clues behind sentiment words,
that is crucial for determining a text’s sentiment
orientation.

We propose an effective method for improving
sentence-level classification performance by inte-
grating the traditional feature construction method
with the DNN-based method, while considering se-
mantics, context and sentiment clue. First, we parse

the review sentences and employ linguistic rules
to identify mixed opinionated sentences. Then the
POS tags are assigned to the sentiment bearing
words: adjectives, adverbs, verbs, and nouns by
Stanford POS tagger. Next we leverage the inte-
grated wide coverage sentiment lexicon (WCSL)
(Khan and Lee) as the semantic and sentiment in-
formation to identify and extract sentiment bearing
words. After that, we employ statistical features
reduction algorithms namely mRMR (Ding and
Peng) and PCA (Wold et al.) for optimum features
selection. Further we process the optimum senti-
ment features and convert them to word vector by
employing word embedding methods (e.g., Glove,
fastText, and BERT). Finally, we apply a CNN clas-
sifier to process the word vector/vector embedding
and predict the sentiment class of each sentence.

Our main contribution is summarized as follow:
(1) We use semantic and sentiment knowledge, lin-
guistic rules, and integrated WCSL to identify and
extract the sentiment features in the sentence. (2)
We reduce the dimensionality of feature space by
employing the mRMR and PCA statistical filter al-
gorithms to filter out redundant features and select
the optimum sentiment features. (3) The experi-
mental results of our proposed method using three
real word benchmark domain datasets show that the
suggested sentiment analysis model improves the
performance of several previous baseline methods
significantly.

2 Related Work

Many traditional feature-based machine learning
methods have been largely used for textual senti-
ment classification (Tripathy et al., 2016; Yousef-
pour et al., 2017; Chang et al., 2020). These ap-
proaches have employed Bag of Words, high order
n-grams, Part of speech (POS) patterns and lin-
guistic patterns for sentiment features representa-
tion and sentiment classification. While traditional
feature-based selection approaches might lower the
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Figure 1: Proposed framework consists of three phases: text pre-processing, knowledge and embedding, and CNN.

dimensionality of textual data to improve classi-
fication performance, classifiers still face sparsity
issues due to a lack of adequate data representation
strategies. Word embeddings: Word2vec, Glove,
fastText, and BERT (Zhang and Wallace, 2015;
Mikolov et al., 2017; Kenton and Toutanova) are
alternative approaches recently used for the dense
representation of words of the text of analysis.

Deep neural network (DNN) models: CNN,
BiLSTM, and BiGRU with word embeddings have
achieved tremendous results in textual sentiment
analysis (Kim; Rezaeinia et al., 2017; Lei et al.;
Huang et al.; Khasanah, 2021). However, accord-
ing to recent studies, DNN-based methods select
some irrelevant and redundant features and also ig-
nore the sentiment clue behind each sentiment word
which affects its performance in terms of classifica-
tion accuracy (Rezaeinia et al., 2017; Ayinde et al.;
Denil et al., 2013). Although traditional feature-
based methods have benefits in interpretability and
time complexity, DNN-based methods outperform
classic feature-based methods.

3 Methodology

Our proposed effective method for sentiment clas-
sification is composed of three main phases: (1)
text pre-processing (2) knowledge and embedding
(3) CNN architecture. The overall framework of
our proposed method is shown in Figure 1.

3.1 Text Pre-processing

We employ the text pre-processing method to cre-
ate the initial feature space. The review dataset is
loaded first, followed by sentence parser and to-
kenizer. The noise removal and text transformer
module is then used to remove noisy text ( e.g., stop
words, URLs, numeric symbols, etc.), and convert
the text to lowercase respectively. Next the POS
tagger is employed to assigns POS tags to the likely
words such as adjectives, adverbs, verbs and nouns.

Furthermore, these words are searched in the inte-
grated WCSL to identify and extract the sentiment
words. We also employ linguistic rules following
the work of (Appel et al., 2016; Khan et al., 2021)
to identify the context of text sentiment and dis-
criminate synonyms from antonyms. Linguistic
rules provide help to the context-based sentiment
analysis that comprises differing viewpoints. For
example, in the statement “the filmmaker is well-
known but the film is dull" linguistic norms only
consider the clause after “but" whereas the clause
preceding “but" is omitted. It comprises certain
words that can change the polarity of a statement,
such as “but" “despite" “while" “unless" and so on.

3.2 Sentiment Knowledge and Embedding

We leverage semantic and sentiment knowledge
using integrated wide coverage sentiment lexicons
to identify, extract and select the relevant sentiment
features for word embedding and sentiment classi-
fication (Khan and Lee).
Integrated Wide Coverage Sentiment Lexicons
In literature different sentiment lexicons (Khan
et al., 2021) such as AFFIN, OL, SO-CAL,
WordNet-Affect, GI SentiSense, MPQA Subjec-
tivity Lexicon, NRC Hashtag Sentiment Lexicon,
SenticNet5, and SentiWordNet with different sizes
have been built. There is no one-size-fits-all gen-
eral sentiment lexicon that can be utilized for senti-
ment analysis. We standardize them by assigning
scores, +1, -1, 0 to positive, negative, and neu-
tral words respectively. Then for integration, we
take the average of the sentiment score of the over-
lapping words, which produces a huge sentiment
lexicon with more sentiment words that we called
WCSL. In this study sentiment words in the review
sentences are matched against integrated WCSL
and then used for sentiment classification.
Sentiment Features Extraction For reliable model
learning, it’s crucial to identify and extract the right
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features. Specifically, we employ Stanford POS
tagger (Toutanvoa and Manning) to assign POS
tags to the content words such as adjectives, ad-
verbs, verbs, and nouns and then identify the sen-
timent orientation of these words/features in the
integrated WCSL.
Sentiment Features Selection We utilize two
statistical filter-based algorithms namely mini-
mum redundancy-maximum relevance (mRMR)
and Principal component analysis (PCA) for fea-
ture reduction and selection. We use the mRMR
and PCA feature selection techniques to reduce the
feature space and select the subset of most accept-
able top k high ranked features.

3.3 Word Embedding

We employ popular word embedding methods
(Glove, fastText and BERT) to convert words into
real-valued, low-dimensional vectors and extract
useful syntactic and semantic information from
them. The BERT-generated word vector has better
quality features. In this study, we utilize these em-
bedding algorithms for vectorization and sentiment
classification.

3.4 CNN Architecture

We train our proposed system employing the CNN
model, which is made up of four layers.
Input layer In this layer the tokenized input sen-
tence is represented in our model by the matrix
D ∈ Rm×di , where di is the word embedding vec-
tor dimension of each word and m is the number
of words in the sentence. Each sentence is padded
with a zero vector to ensure that all the review sen-
tences are the same size. The embedding matrix
for each word in the sentence D is expressed in the
embedding layer as:

Me = {Vt1 , Vt2 , ..., Vki , ..., Vkm}, (1)

where Vti is the word vector and Vki is the place-
holder for it in the embedding space.
Convolutional Layer The second layer is convolu-
tion layer and it is applied to the word embedding
matrix Me attained in the preceding layer. As-
sume that the convolution kernel Kc ∈ Rh×l has
the following properties: c represents the num-
ber of convolution kernels, l indicates the length
of the convolution kernel, and h represents the
width of the convolution kernel. For the input
matrix D ∈ Rm×di , the feature map is created
P = {p1, p2, ..., pn−h} ∈ Rm−h+1 by repeatedly

applying a convolution kernel R to perform convo-
lution operation. Over the convolution output, the
ReLU activation is applied.
Max-pooling Layer The max-pooling layer is the
third layer, and it is applied to each feature map and
takes the maximum value ĉ = max{c}(Collobert
et al.). The max-pooling procedure is used in this
study to save the most significant features (Kalch-
brenner et al., 2014). These features are then con-
catenated and sent to the fully connected layer
which is the final layer
Fully-connected Layer The main goal of a fully
connected layer is to use the outputs of the convo-
lution and pooling layer to processes and classify
them into a label. A sigmoid function is utilized to
get the final output. The probability distribution on
the label is the output.

4 Experiments

Experimental Setup We tested our system using
three real-world benchmark datasets: (1) Movie
Reviews (MR) (Pang and Lee, 2005), (2) Stan-
ford Sentiment Treebank (SST-2) datasets (Socher
et al.), (3) Customer Review datasets (CR) (Hu and
Liu). MR composed of 5331 positive and 5331 neg-
ative review samples. SST-2 contains positive and
negative sentences, there are 9,613 single sentences
in the dataset, which were obtained from movie re-
views. CR consists of 14 products extracted from
Amazon (Hu and Liu). SST-2 have standard train-
ing–test splits. MR and CR do not have such a
standard split, we apply 10-fold cross validation,
which is consistent with previous research (Huang
et al.) on the dataset. We hold out 10 % of the train-
ing data for MR and CR for development purposes
(e.g. for early stopping), we adopt classification ac-
curacy as an evaluation measure. We generate 300-
dimensional word vectors for GloVe and fastText
embedding. The BERT-BASE model case version
(network layers L = 12, hidden layer dimension H
= 768, attention=12, total number of parameters
surpass 110 M, Learning rate for Adam = 2e-5) was
utilized as the pre-trained BERT model for word
vectorization. We employed wide coverage senti-
ment lexicon (WCSL) for sentiment information
extraction from review texts. We used mRMR and
PCA filter-based feature selection algorithm for top
k optimum feature selection. Top 2000 features of
MR, 1500 features of SST-2, and 1000 features of
CR dataset are feed to each channel in CNN. The
dropout rate for each network’s layer is 0.5, and
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Figure 2: Ablation results of each component of (PCA, mRMR, Glove, fastText,
BERT, and CNN) for different datasets (MR, SST-2, CR).

Table 1: Comparative Study

Model Dataset Accuracy
Rezaeinia et al. 2017 MR 79.80
Lei et al. 2018 MR 84.30
Huan et al. 2020 MR 79.45
Khasanah et al. 2021 MR 80.00
Our model MR 85.12
Rezaeinia et al. 2017 SST-2 83.70
Huan et al. 2020 SST-2 84.34
Khasanah et al. 2021 SST-2 83.90
Our model SST-2 85.10
Rezaeinia et al. 2017 CR 83.70
Our model CR 85.20

the layers activation function is Rectified Linear
Unit (ReLU). The sigmoid is used for the prob-
ability of class label in the fully connected layer.
The proposed model and the other baseline mod-
els are implemented using the Rapidminer Studio
(visual workflow designer) and tensorflow Keras
library (High-level neural networks) in python. In
our proposed model, the filter sizes of convolution1,
convolution2, and convolution3 are 3,4, and 5, re-
spectively, with 100 feature maps. The dropout
rate is 0.5, l2 constraint is (s) 3, mini-batch size
is 5, and the layers activation function is Rectified
Linear Unit (ReLU). The sigmoid is used for the
probability of class label. We used the paired t-test
(P<0.05) to calculate the evaluation measures of
proposed model.

Experimental Results The ablation results of our
proposed approach in terms of accuracy for each
component with and without embeddings, with dif-
ferent feature selection methods is shown in Figure
2. From Figure 2, we can observe that selecting
and representing relevant sentiment feature in a real
valued vector/dense representation boost classifica-
tion performance.We compare our approach with
state-of-the-art DL approaches (Rezaeinia et al.,
2017; Lei et al.; Huang et al.; Khasanah, 2021)
that employed CNN-based model, multi-head at-
tention convolutional network, and DNN models
with fastText embedding respectively for sentence-
level sentiment classification as shown in Table
1.

Model Analysis We explore the performance of
our semantic and sentiment-aware CNN model.
From Table 1, it is clear that our proposed model
outperform baseline models on three benchmark
datasets significantly. There are five reason why
the proposed model achieves the best and compa-
rable results. The first reason is that during text
pre-processing, noisy and irrelevant features are re-
moved from the text. The extraction and selection

of relevant sentiment features is the second reason.
The third reason is to classify mixed-opinionated
texts using linguistic rules and semantic informa-
tion. The integration of WCSL for sentiment fea-
tures identification is the fourth reason. The fifth
reason is the dense representation of sentiment fea-
tures in a real valued vector, and fine tuning the
proposed semantic and sentiment aware sentiment
analysis model.

5 Conclusion

We propose an effective way of integrating the
traditional feature construction method with the
deep learning method to improve the overall perfor-
mance of sentiment classification. To this end, we
leverage semantic and sentiment knowledge using
integrated WCSL to extract and select the relevant
sentiment features for word embedding and sen-
timent classification. By employing mRMR and
PCA filter-based algorithms and pre-trained embed-
ding models (Glove, fastText, and BERT) to select
optimum sentiment features and consider the se-
mantics and context of words, we can filter out irrel-
evant and redundant features and reduce the dimen-
sionality of feature space. In-depth experiments
with three benchmark domain datasets demonstrate
the effectiveness of the proposed model.
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Abstract

The ability to track fine-grained emotions in
customer service dialogues has many real-
world applications, but has not been studied
extensively. This paper measures the potential
of prediction models on that task, based on a
real-world dataset of Dutch Twitter conversa-
tions in the domain of customer service. We
find that modeling emotion trajectories has a
small, but measurable benefit compared to pre-
dictions based on isolated turns. The models
used in our study are shown to generalize well
to different companies and economic sectors.1

1 Introduction

While emotion recognition in conversations (ERC)
has recently become a popular task in NLP (Po-
ria et al., 2019b), its application potential to real-
life business-related settings remains understudied.
Our research focuses on applying ERC to the do-
main of customer service (CS), as it can be used to
model customer satisfaction, reduce churns, prior-
itize clients, and detect emotional shifts in clients
throughout CS interactions. Since the provision of
customer service is gaining ground in both public
and private chat channels, timely delivering high-
quality assistance is crucial in mitigating the effects
of negative word-of-mouth (van Noort and Willem-
sen, 2012) and creating relational bonds between
customers and brands (Deloitte Digital, 2020).

As emotion recognition is often implemented
on ‘artificial’, open-domain conversations (Busso
et al., 2008; Li et al., 2017), we worked on real-
world, domain-specific data that is more imbal-
anced and noisy. Moreover, we are the firsts to
tackle the ERC task in Dutch dialogues. To these

*Both authors contributed equally.
1Dataset and code are available at https://github.

com/SofieLabat/EmoTwiCS-data and https://
github.com/hadifar/DutchEmotionDetection,
respectively.

ends, we annotated emotion layers in a Dutch sub-
set of 9,489 conversations from the Twitter cor-
pus introduced by Hadifar et al. (2021), which we
called EmoTwiCS (‘Emotions in CS interactions
on Twitter’) (Labat et al., 2022b).2 These emo-
tion layers function as building blocks for emotion
trajectories, a term emphasizing that emotions are
dynamic attributes that can shift at each customer
turn in the conversation.

We report classification effectiveness for six pre-
diction tasks (focusing on cause, response strate-
gies, subjectivity, valence, arousal, and emotion
clusters). Besides subjectivity prediction which
is applied to the conversation level, the five other
tasks are run on isolated turns. To investigate the
portability of our trained models to future data and
other companies or sectors, we introduce three well-
chosen train-test segmentation scenarios. We then
zoom in on emotions and hypothesize that they fol-
low a trajectory throughout conversations, whereby
the operator tries to help the customer, thus de-
flecting negative emotions. To investigate whether
knowledge about recurring emotion transitions may
be useful for emotion prediction, we apply a Condi-
tional Random Field (CRF; Lafferty et al., 2001) to
the sequence of user turn encodings from a conver-
sation, to make a joint prediction for the emotions
in the conversation. We observe a weak, but con-
sistently positive effect with respect to the isolated
turn baselines in support of that premise.

2 Related work

Although emotion detection has often been ap-
plied to tweets (Mohammad et al., 2018) and chat
logs (Ma et al., 2005), the context-aware detec-
tion of emotions throughout conversations is a rela-
tively recent development in NLP. State-of-the-art
results for emotion detection on isolated texts are
achieved by fine-tuning large pretrained language

2We refer to Labat et al. (2022b) for a detailed inter-
annotator study and data analysis on EmoTwiCS.
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models. For Dutch, there currently exist two such
models named BERTje (de Vries et al., 2019) and
RobBERT (Delobelle et al., 2020), although cross-
lingual language models such as XLM (Conneau
et al., 2019) can also be applied to Dutch texts.

In contrast to these ‘vanilla’ emotion detection
systems, recent work on ERC models additional
information such as the conversational context, the
temporal order of turns, and interlocutor-specific
attributes (Poria et al., 2019b). There exist two
approaches for ERC: we either view it as a se-
quence labeling task, or we predict emotions for
a turn given the previous (and, in some variants,
future) utterances. The latter approach was first
addressed by recurrence-based models such as
LSTMs (Poria et al., 2017), conversational mem-
ory networks (Hazarika et al., 2018), and attentive
RNNs (Majumder et al., 2019). Afterwards, graph-
based (Ghosal et al., 2019; Shen et al., 2021) and
knowledge-enriched transformer models (Zhong
et al., 2019; Zhu et al., 2021) were also investigated.
The sequence labeling approach was introduced
by Wang et al. (2020) who used information about
the emotional consistency in conversations. His
model combines a global context encoder (trans-
former) with an individual context encoder (LSTM)
into a CRF layer to jointly predict emotions for all
utterances. Guibon et al. (2021) implemented ERC
in a few-shot learning sequence labeling problem.
In our second experimental setup, we also tackle
emotion detection as a sequence labeling task.

All but the two previously mentioned models are
trained on publicly released datasets in English con-
taining open-domain conversations (Busso et al.,
2008; Poria et al., 2019a). There is only one small
Dutch dataset (Vaassen et al., 2012) with 11 conver-
sations and emotions rated on Leary’s Rose (Leary,
1957), a dimensional framework with two axes rep-
resenting the degree of control and agreeableness.
For ERC, the corpus is less suitable given its small
size, low agreement, fixed events, and uncommon
emotion model. Unlike standard sentiment anal-
ysis, the fine-grained task of ERC has not yet be-
come commonplace in CS departments. To our
knowledge, there exist only a few papers that apply
ERC to CS (Herzig et al., 2016; Maslowski et al.,
2017; Mundra et al., 2017; Guibon et al., 2021).

3 Experimental setup

After describing the EmoTwiCS corpus along with
its prediction tasks (Section 3.1), our data segmen-

tation strategies are introduced (Section 3.2), fol-
lowed by the models and their implementation de-
tails (Section 3.3).

3.1 EmoTwiCS task descriptions

We rely on a newly annotated corpus of emo-
tion layers called EmoTwiCS. The corpus contains
9,489 Dutch Twitter dialogues in the domain of
customer service that were collected for three eco-
nomic sectors: telecommunication, public trans-
portation, and airline industry. The conversations
were annotated for four emotion layers: conversa-
tion characteristics, cause, response strategies, and
customer emotions. Figure 1 illustrates how the
layers and sublayers are annotated on a conversa-
tion, while the remainder of this section provides
more details about each of them.

Figure 1: An English mock-up conversation to illus-
trate how conversations are annotated in the EmoTwiCS
corpus along four emotion layers (conversation charac-
teristics, cause, emotions, and response strategies).

Experiments were conducted for the following
classification tasks on our emotion layers:

Subjectivity – Detect whether the conversation
is subjective, which is the case if at least one cus-
tomer turn contains emotions. The task involves
classifying the concatenation of all customer turns.

Cause – Recognize the event that triggered cus-
tomers to start a conversation, as a multi-class clas-
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sification problem with eight classes (see Appendix,
Table 3). Since 99% of all causes reside in the first
customer turn, we use that as our model’s input.

Response strategies – Recognize one or more
response strategies operators applied in their re-
sponses. This is a multi-label prediction task over
eight response strategies (see Table 3). Response
strategies have only been annotated for subjective
conversations, but cannot be assumed absent in ob-
jective ones. We therefore restrict the prediction
task to subjective conversations only, and we use
single operator turns as input to our models.

Valence/Arousal – Given a customer turn, pre-
dict its valence/arousal score (integer from 1 to
5). While valence represents the sentiment of an
emotional state ranging from very negative to very
positive, arousal stands for the amount of activation
an emotion elicits and ranges from calm to excited.
We implement both as multi-class tasks.

Emotion clusters – Given a customer turn, pre-
dict the emotion clusters that it contains.3 While
annotators could assign multiple labels to a single
turn, we find that only 6.5% of the customer turns
received two or more annotations. We therefore
convert the task from a multi-label to a multi-class
detection task by assigning an order of importance
to the labels.4 To validate our heuristic, an external
annotator extracted the most prominent emotions
from 100 customer turns with multiple emotion
annotations. We find that the annotator and our
heuristic agree in 78% of the cases.

3.2 Data segmentation

To investigate the out-of-domain transferability of
our models on the different prediction tasks, we
work with three train-test segmentation strategies.
The size of the different splits is given in Table 4
in the Appendix.

Temporal split – 80-20 train-test split based on
the chronological order of the first tweet in each
conversation, stratified over companies. This way,
we want to demonstrate that prediction systems
trained on past data generalize well to unseen, fu-
ture data. The split is also used for the in-context
classification experiments (see Section 4.2).

Company splits – As telecom is the most fre-
quent sector in EmoTwiCS, we split the six com-

3We use the term clusters to remain consistent with the
EmoTwiCS data description paper. In that paper, 28 emotion
labels were grouped into 9 emotion clusters.

4Heuristic: Anger > Annoyance > Disappointment > Ner-
vousness > Gratitude > Relief > Joy > Desire > Neutral.

panies within this sector into three train-test splits,
with each four companies for training and two for
testing. Averaging the prediction results over these
splits gives an idea of the transferability of our
models to new companies within the same sector.

Sector splits – Given that EmoTwiCS has data
for three economic sectors, we create three cor-
responding train-test splits in which we train on
two economic sectors and evaluate on the third one.
Cross-validation over these splits will demonstrate
the transfer potential of our models to new sectors.

3.3 Models and implementation details

For the experiments on isolated tweets, we select
the following models: majority class baseline, Sup-
port Vector Machines (SVM; Cortes and Vapnik,
1995) with tf-idf features, BERTje (de Vries et al.,
2019), RobBERT (Delobelle et al., 2020), and
XLM (Conneau et al., 2019). For all pretrained
transformer models, we use their publicly avail-
able ‘base’ versions and place a single feedforward
layer on top to predict the classes. We only tune
the learning rate and number of epochs on 15% of
the train data for the temporal setup, and reuse the
same hyperparameters for the company and sec-
tor setups. For the second set of experiments, we
put a CRF layer on top of RobBERT to predict
the emotion trajectories of conversations (Lample
et al., 2016). Given a conversation and its sequence
of turns, we first extract the turn embeddings by
using the [CLS] token representations from the last
layer of the pretrained language model, which are
then given to a classifier to estimate emotion cluster
probabilities. These probabilities are subsequently
fed into a CRF layer to maximize valid emotion
sequence predictions.

4 Results and Discussion

We present the results of our models for six classifi-
cation tasks on isolated tweets across the different
train-test setups in Section 4.1. In Section 4.2,
we focus on the emotion trajectories, and cast the
detection of emotion clusters as a context-aware
sequence labeling task.The presented metrics are
micro and weighted F1 scores (Table 1), as well as
accuracy (Fig. 2) and individual class F1 (Table 2)
for emotion trajectories.

4.1 Experiments on isolated tweets

The results of our experiments for the six classifica-
tion tasks are shown in Table 1, while the standard
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Subjectivity Cause Response strat. Valence Arousal Emotion clusters
Setup Model F1micro F1w F1micro F1w F1micro F1w F1micro F1w F1micro F1w F1micro

Temporal Majority-class 55.4 29.6 46.6 23.2 41.1 38.2 54.3 48.7 63.0 34.9 51.4
SVM (tf-idf) 75.4 62.7 64.5 79.8 80.5 58.7 61.8 67.4 69.4 66.5 68.3
BERTje 82.0 70.0 70.4 87.6 87.7 65.6 65.2 74.2 74.9 71.6 72.0
RobBERT 83.4 71.1 71.7 86.9 87.1 67.8 67.7 74.0 74.6 72.8 73.7
XLM 83.4 70.9 71.6 87.5 87.6 68.1 68.0 74.4 75.2 72.7 73.4

Company RobBERT 83.0 71.1 71.4 84.4 84.8 66.7 67.0 73.1 74.5 71.2 72.7
XLM 76.3 71.3 71.5 80.9 81.9 65.7 66.4 72.8 74.1 68.4 71.4

Sector RobBERT 83.0 61.6 64.0 84.6 85.4 65.6 65.7 73.9 74.7 71.6 72.9
XLM 72.90 63.3 63.4 81.5 83.5 65.8 66.0 72.8 73.7 70.6 72.0

Table 1: Results for subjectivity, cause, response strategies, valence, arousal, and emotion clusters classification.

deviations on the results of the company and sector
setups are reported in Table 5. In the temporal setup
of Table 1, we see that the fine-tuned language mod-
els outperform the majority class and SVM base-
lines by a large margin. Upon comparing the two
Dutch language models RobBERT and BERTje, we
find that RobBERT outperforms BERTje on four
tasks (subjectivity, cause, valence, and emotion
clusters). Moreover, the multi-lingual XLM model
also achieves good results: it is the best baseline
for valence and arousal prediction, but achieves
second-to-best scores on all other tasks. As for the
company and sector setups, we report scores for
the two best-performing systems from the temporal
setup. We observe that the results for two latter
setups are less than, but still very comparable to the
temporal experiments. Our models thus generalize
well to other companies within the same domain,
and to other economic sectors. This generalizabil-
ity across sectors is significantly less outspoken for
cause detection, which illustrates that cause classes
are often linked to a specific domain (e.g., delay for
public transportation vs. breakdown for telecom).

4.2 Modeling emotion trajectories

We hypothesize that emotions follow recurring tra-
jectories that reflect the attempts of the CS operator
to mitigate negative customer emotions. This moti-
vated our reformulation of the emotion clustering
task as a sequence labeling task (see also Wang
et al., 2020; Guibon et al., 2021), modeled with a
CRF to make joint predictions for emotion clusters
in the conversation. As we work with joint pre-
dictions, we test our hypothesis on the subset of
subjective conversations with at least two customer
turns. We focus on subjective conversations, as
these contain a varied distribution of emotion clus-
ters. Figure 2 plots the results of our experiment

across the conversations with a given number of
customer turns. We notice a weak, yet consistent
trend in which the CRF model slightly outperforms
the isolated turn predictions. There is no clear indi-
cation that this effect is stronger for longer conver-
sations, although that is hard to measure due to the
low number of longer conversations. The improved
results of the CRF model are thus an indication
that there is some signal in modelling the sequence
of emotions, although not statistically significant,
given the size of the test set.

2 3 4 5
Number of customer turns

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.65 0.66

0.75

0.6

0.68
0.73 0.76

0.68

wo CRF
w CRF

219 44 15 8
Number of conversations

Figure 2: Emotion accuracy for all test conversations
with at least two customer turns, calculated on the tem-
poral setup, for the RobBERT baseline without CRF
(wo CRF) vs. the one with the CRF (w CRF).

We further investigate the models’ performance
on individual emotion clusters in Table 2. We find
that for some classes there is too little support lead-
ing to very low scores (e.g., Relief, Nervousness,
and Desire). The F1 scores of both systems are gen-
erally higher for classes with more support. Nev-
ertheless, the CRF model outperforms the baseline
by a large margin on classes with lesser support
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(e.g., Anger, Disappointment, and Joy). Note that
the high scores for Gratitude may be due to the
rather standard lexicalization of it in the corpus.

Classes w CRF wo CRF Support

Anger 0.40 0.04 45
Annoyance 0.53 0.58 182
Desire 0.11 0.0 17
Disappointment 0.45 0.0 36
Gratitude 0.92 0.90 123
Joy 0.51 0.32 35
Nervousness 0.00 0.00 11
Neutral 0.73 0.73 230
Relief 0.00 0.00 8

Table 2: Results (F1) for individual emotion clusters.

5 Conclusion

We presented the first experiments on a newly col-
lected corpus of Dutch Twitter conversations an-
notated along four emotion layers. For our exper-
iments on isolated tweets, we find that the best
performance is obtained by fine-tuning pretrained
language models such as RobBERT and XLM. We
show that these two models transfer well across
(i) time, (ii) companies within the same sectors,
and (iii) across sectors. We also demonstrate that
the detection of emotion clusters slightly benefits
from knowledge about frequently occurring emo-
tion trajectories, especially for classes with lower
levels of support. In future research, we will extend
our approach to model emotion trajectories for the
purpose of real-time prediction (e.g., in chatbots),
thus having access to past utterances only. We will
also investigate emotion trajectories in longer con-
versations (e.g., on data collected through Wizard
of Oz experiments (Labat et al., 2022a)) and focus
on joint prediction tasks such as emotion-cause or
emotion-response strategy extraction.
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Appendix

Task Label set

Cause employee service; product quality; delays
and cancellations; breakdowns; product
information; digital design inadequacies;
environmental and consumer health;
no cause / other.

Resp. apology; cheerfulness; empathy; gratitude;
explanation; help offline; request information;
other

Emotion anger; annoyance; desire; disappointment;
gratitude; joy; nervousness; neutral; relief

Table 3: Label sets for the tasks cause, response strate-
gies (Resp.), and emotion clusters.

Subj-Cause Response strat. Cust. emotions
Setup Train Test Train Test Train Test

Temporal 7,587 1,902 6,477 1,489 10,272 2,443
Comp. 1 3,795 1,852 3,002 1,739 4,970 2,571
Comp. 2 3,670 1,977 2,962 1,779 4,802 2,739
Comp. 3 3,829 1,818 3,518 1,223 5,310 2,231
Sector 1 3,842 5,647 3,225 4,741 5,174 7,541
Sector 2 6,727 2,762 5,650 2,316 8,962 3,753
Sector 3 8,409 1,080 7,057 909 11,294 1,421

Table 4: Number of train-test instances for the classifi-
cation tasks across the different segmentation strategies
(temporal, company, sector). Subjectivity and cause
are grouped together as they have the same number of
train-test instances. The tag ‘customer emotions’ stands
for valence, arousal and emotion clusters which are also
grouped together for the same reason.

Subjectivity Cause Response strat. Valence Arousal Emotion clusters
Setup Model s F1micro s F1w s F1micro s F1w s F1micro s F1w s F1micro s F1w s F1micro s F1w s F1micro

Company RobBERT 0.6 1.5 1.8 0.4 0.3 1.1 1.3 1.8 1.8 1.9 1.8
XLM 9.7 2.0 1.8 1.2 1.2 1.4 1.4 2.1 2.1 2.5 2.2

Sector RobBERT 1.4 3.2 2.1 4.4 4.3 1.1 1.2 1.6 1.8 1.9 1.9
XLM 16.5 4.5 4.9 9.7 7.6 1.0 1.0 1.6 1.9 2.5 2.2

Table 5: Standard deviation (s) on the average performance reported in Table 1. Standard deviation is reported for
those setups that have several train-test splits (viz., company and sector setups).
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Abstract

Code-switching (CS) is a phenomenon of mix-
ing words and phrases from multiple languages
within a single sentence or conversation. The
ever-growing amount of CS communication
among multilingual speakers in social media
has highlighted the need to adapt existing NLP
products for CS speakers and lead to a rising
interest in solving CS NLP tasks. A large num-
ber of contemporary approaches use synthetic
CS data for training. As previous work has
shown the positive effect of pretraining on high-
quality CS data, the task of evaluating synthetic
CS becomes crucial. In this paper, we address
the task of evaluating synthetic CS in two set-
tings. In supervised setting, we apply Hinglish
finetuned models to solve the quality rating pre-
diction task of HinglishEval competition and
establish a new SOTA. In unsupervised setting,
we employ the method of acceptability mea-
sures with the same models. We find that in
both settings, models finetuned on CS data con-
sistently outperform their original counterparts.

1 Introduction

Code-switching (CS) is a phenomenon of mixing
words and phrases from multiple languages within
a single sentence or conversation1. It is common for
multilingual speakers and happens across various
language pairs across the globe, such as Spanish-
English (Spanglish) and Hindi-English (Hinglish).
Various studies (Baldauf, 2004) have predicted the
high growth in the number of CS speakers, which
would surpass the number of native speakers in
various globally popular languages (e.g., English).

The advent of social media has highlighted the
amount of CS communication and lead to a further
increase of the number of multilingual speakers

1Some works make a distinction and refer to intrasentential
(within a single sentence) code alternation as “code-mixing”
(CM) and intersentential (at or above the sentence level) as
“code-switching” (CS). It is also common, however, to use the
term “CS” for both cases. Intrasentential code alternation is
the focus of this paper and we refer to it as “CS”.

who use this pattern. This availability of CS data
and the understanding that existing NLP products
need to be adapted for the ever-growing number of
CS speakers has resulted into a rising interest in
various CS NLP tasks. Work has been done in such
tasks as LID (Shekhar et al., 2020; Singh et al.,
2018a; Ramanarayanan et al., 2019; Barman et al.,
2014; Gundapu and Mamidi, 2020), POS tagging
(Singh et al., 2018b; Vyas et al., 2014; Pratapa et al.,
2018b), NER (Singh et al., 2018a; Priyadharshini
et al., 2020; Winata et al., 2019a), word normal-
isation (Singh et al., 2018c; Parikh and Solorio,
2021), sentiment analysis (Patwa et al., 2020; Joshi
et al., 2016), NLI (Khanuja et al., 2020a), machine
translation (Srivastava and Singh, 2020; Dhar et al.,
2018) and QA (Chandu et al., 2019; Thara et al.,
2020).

Various studies have shown that CS data may
pose a challenge for contemporary multilingual
models (Birshert and Artemova, 2021). Finetuning
on CS data can alleviate this problem (e.g. Ansari
et al., 2021). As social media can be noisy and
not readily available to build a large scale corpus,
various techniques of generating synthetic CS have
been proposed (see Section 2). However, it was
shown that the performance of the models crucially
depends on the quality of CS text used for pretrain-
ing (Santy et al., 2021). This creates the task of
synthetic CS evaluation which is the main focus of
current paper.

CS evaluation methods range from computing in-
trinsic text metrics to measuring downstream task
performance depending on the CS data used for
pretraining and human evaluation (see Section 2).
Srivastava and Singh (2021a) show that most CS
evaluation metrics fail to capture the linguistic di-
versity which leads to poorly estimating the quality
of CS text. Thus, human evaluation remains as
a reliable method. Srivastava and Singh (2021b)
propose HinGE, a dataset of Hinglish sentences
with human quality ratings and organise HinglishE-
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val shared task based on it (Srivastava and Singh,
2021c). In our paper, we address HinglishEval
quality rating prediction task with Hinglish models
proposed in Nayak and Joshi (2022). Moreover, we
add an unsupervised setting of the task. Our main
contributions are:

• We perform a series of experiments on unsuper-
vised CS evaluation, employing the method of
acceptability measures (Lau et al., 2015). To our
knowledge, this is the first such attempt.

• We perform a series of experiments on super-
vised CS evaluation and establish a new SOTA
for HinglishEval quality rating prediction task.

• We find that models finetuned on CS data consis-
tently outperform their original counterparts.

2 Related works

Generating synthetic CS As large amounts of
real-world CS data may be difficult to extract, vari-
ous generating methods have been proposed. Sim-
plistic methods include re-writing of some words
in the target script (Gautam et al., 2021) and vari-
ous rule-based algorithms used as baselines in the
literature (e.g., Tarunesh et al., 2021; Srivastava
and Singh, 2021b). The vast majority of methods
utilize machine translation engines (Singh et al.,
2019), parallel datasets (Jawahar et al., 2021; Gau-
tam et al., 2021; Gupta et al., 2021; Winata et al.,
2019b) or bilingual lexicons (Tan and Joty, 2021)
to replace the segment of the input text with its
translations. Bilingual lexicons may be induced
from the parallel corpus with the help of soft align-
ment, produced by attention mechanisms (Lee and
Li, 2020; Liu et al., 2020). Pointer networks can
be used to select segments for further replacement
(Gupta et al., 2020; Winata et al., 2019b). If natural
CS data is available, such segments can be identi-
fied with a sequence labeling model (Gupta et al.,
2021). A number of works employ popular archi-
tectures like VAE (Samanta et al., 2019) and GANs
(Garg et al., 2018; Chang et al., 2019). Other meth-
ods produce synthetic CS text that grammatically
adheres to a linguistic theory of code-switching.
Pratapa et al. (2018a) leverage the equivalence con-
straint (EC) theory (Poplack, 1980), while Rizvi
et al. (2021) use EC and Matrix-language (Carol,
1993) theories.

Evaluating synthetic CS Despite the practical
need of synthetic CS datasets, the task of evaluat-
ing synthetic CS remains relatively understudied.

Some evaluation techniques involve estimating in-
trinsic text properties, such as code-switching ratio
and length distribution. One of the most popu-
lar metrics is code-mixing index (CMI) (Das and
Gambäck, 2014; Gambäck and Das, 2016), which
accounts for code-switching ratio and the number
of switches in a sentence. We defer to Srivastava
and Singh (2021a) for a detailed overview of other
metrics used for evaluating CS NLG.

Further, extrinsic measures can be used, like the
perplexity of external language model. For exam-
ple, Nayak and Joshi (2022) propose a finetuned
Hinglish GPT model and suggest using it for eval-
uation. Also, downstream task performance can
be measured, depending on the CS data used for
augmentation (Samanta et al., 2019; Santy et al.,
2021). Downstream tasks are organised into bench-
marks such as GLUECoS (Khanuja et al., 2020b)
and LinCE (Aguilar et al., 2020) which comprise
data for popular language pairs like English-Hindi
and English-Spanish.

Finally, human evaluators can be employed to
assess the quality of the generated CS. There are
examples of such evaluation studies in the literature
which are usually performed to prove the quality
of the proposed CS generation method (Bhat et al.,
2016; Tarunesh et al., 2021). However, these stud-
ies are of low scale and do not result into substantial
datasets which can be used in further research. In
this context, HinGE dataset (Srivastava and Singh,
2021b) is unique being the largest collection of
synthetic CS with human ratings to date. It is de-
scribed in detail in Section 3.1. Based on HinGE,
HinglishEval competition was organised (Srivas-
tava and Singh, 2021c; see Section 3.1.1), where
the task is to model the annotators’ opinion on CS
sentences.

Language models for CS Along with the de-
velopment of language models (LMs), work has
been done to adapt them for CS data. Chan et al.
(2009) compare different n-gram LMs, Vu et al.
(2012) suggest to improve language modeling by
generating artificial CS text. A number of works
propose LMs that incorporate a syntactic constraint
(Li and Fung, 2012, 2014; Pratapa et al., 2018a).
Another line of papers introduce LMs where the
output layer is factorized into languages, and POS
tags are added to the input (Adel et al., 2013a,b,
2014, 2015; Sreeram and Sinha, 2017).

With the advent of Transformers (Vaswani et al.,
2017), work has shifted to applying popular archi-

114



tectures to CS data. Pires et al. (2019) show that
m-BERT can achieve promising results in Hinglish
downstream tasks when Hindi parts are written in
Devanagari even in a zero-shot setup. The same,
however, does not apply to romanized Hinglish,
as m-BERT was pretrained on Devanagari Hindi.
Both GLUECoS (Khanuja et al., 2020b) and LinCE
(Aguilar et al., 2020) benchmarks provide m-BERT
baselines for their leaderboards. Ansari et al.
(2021) show that BERT models produce better re-
sults in CS LID when pretrained on CS sentences
rather than on multiple monolingual corpora. Santy
et al. (2021) find that finetuning m-BERT on natural
CS data gives the best performance improvement
compared to any synthetic CS. Nayak and Joshi
(2022) present the first large-scale (52.93M sen-
tences) corpus of real Hinglish CS scraped from
Twitter and a line of Transformer models finetuned
on it. The corpus and the models are described in
detail in Section 4.1.

Acceptability measures Lau et al. (2015)
present the task of unsupervised prediction of
speakers’ acceptability judgements and propose
acceptability measures as a method to translate
LM’s probability into acceptability scores. Accept-
ability measures are variants of the sentence’s log
probability, devised to normalise sentence length
and low frequency words (see Section 4.2 for addi-
tional details and equations). The effectiveness of
an acceptability measure is evaluated by computing
its Pearson correlation with human acceptability
scores. Lau et al. (2020) further experiment with
Transformer LMs and investigate the dependence
of acceptability measures’ scores on whether the
context of the sentence is provided.

3 Data

3.1 HinGE

HinGE is a dataset of synthetic Hinglish sentences
with human quality ratings proposed in Srivastava
and Singh (2021b). The dataset consists of firstly,
parallel English and Hindi sentences. Second, two
synthetic Hinglish sentences are generated from
each pair of parallel sentences by two rule-based
code-mixed text generation (CMTG) algorithms:
• Word-aligned CMTG (WAC): Noun and adjec-

tive tokens are aligned between the parallel sen-
tences. The aligned Hindi token is replaced with
the corresponding English token.

• Phrase-aligned CMTG (PAC): Key-phrases of

Label # sentences Binary
label # sentences

1 0

0 2279

2 9
3 61
4 250
5 394
6 633
7 932
8 960

1 16739 587
10 126

Total # 3952

Table 1: Hinge All classes statistics

length up to three tokens are aligned between the
parallel sentences. The aligned Hindi phrase is
replaced with the corresponding English phrase.

For both algorithms, the Hindi parts are then
transliterated into the Roman script.

Third, an average of two human quality ratings
on a scale of 1-10 is assigned to each synthetic
Hinglish sentence. Refer to Table 1 for class bal-
ance information.

Fourth, annotators’ disagreement is given, which
is calculated as the absolute difference between the
human quality ratings and ranges 0-9. Finally, for
each pair of parallel sentences, at least two human-
generated Hinglish sentences are provided. Figure
1 demonstrates an example of the described fields
of the dataset.

Overall, HinGE contains 1976 parallel Hindi–
English, 3952 synthetic CS and 4803 human-
generated CS sentences. All synthetic CS sentences
have human scores assigned to them, and HinGE
is the largest such dataset to date. We refer to the
synthetic part of the dataset as Hinge All.

3.1.1 HinglishEval competition

The authors also organized HinglishEval shared
task based on the HinGE dataset (Srivastava and
Singh, 2021c), which includes two subtasks: qual-
ity rating prediction and annotators’ disagreement
prediction. Both are classification tasks, but are
evaluated with MSE in addition to weighted F1-
score. Besides, Cohen’s Kappa (CK) is computed
for quality rating prediction. The dataset is split in
the ratio 70:10:20 with 2766, 395 and 791 synthetic
CS sentences in train, validation, and test, respec-
tively. We refer to this dataset as HinglishEval.
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Figure 1: Example pair of parallel sentences with corresponding human-generated and synthetic CS from HinGE
dataset. Picture from Srivastava and Singh (2021b).

For both tasks, the participants can use all the
data in HinGE, including the English, Hindi and
human-generated Hinglish sentences. Participants
are also asked to implicitly answer questions about
the reasons influencing the quality of synthetic CS.
We seek to answer some of these in our work.

3.2 TCS

The dataset we refer to as TCS is a collection of
750 Hinglish sentences with human scores from
Tarunesh et al. (2021). It contains Hinglish sen-
tences from five sources (250 sentences each):
human-generated CS, two rule-based algorithms,
and supervised and unsupervised versions of the
Transformer-based generation method proposed in
Tarunesh et al. (2021). Each Hinglish sentence is
provided with an average of three human scores
on a scale of 1-5 under three heads: “Syntactic
correctness”,“Semantic correctness” and “Natural-
ness”. For our experiments, we also take the aver-
age of these three scores under the name of “Mean
human score”.

The original TCS sentences have their Hindi
parts in Devanagari script, and we refer to
this dataset as TCS Devanagari. We also
transliterate the sentences into Roman script us-
ing indic-transliteration library2 with
ITRANS scheme3 and refer to this dataset as TCS
transliterated.

4 Experimental setup

4.1 Models

This subsection describes the LMs we experiment
with in this work. All of them are taken from the
Hugging Face Hub4. First, we employ a line of

2https://github.com/
indic-transliteration/indic_
transliteration_py

3ITRANS scheme showed the best performance scores
among others in our preliminary experiments. See https:
//www.aczoom.com/itrans/

4https://huggingface.co/models

popular Transformers architectures: BERT (De-
vlin et al., 2018); CoLA BERT, a BERT model
trained on CoLA dataset (Warstadt et al., 2019) and
released by Morris et al. (2020); XLM-RoBERTa
(Conneau et al., 2019); m-BERT (Devlin et al.,
2018); GPT-2 (Radford et al., 2019); and mGPT
(Shliazhko et al., 2022).

Further, we employ Hinglish LMs introduced
in Nayak and Joshi (2022). All of them are
trained on L3Cube-HingCorpus proposed in the
same paper. L3Cube-HingCorpus was collected
as follows. First, CS sentences were filtered
from continuously scraped tweets using a shallow
subword-based LSTM LID classifier which was
iteratively improved as the dataset increased. Then
a BERT LID classifier was finetuned on the re-
sulting 44455 sentences and was further used to
collect the main corpus. The final dataset con-
tains 52.93M sentences (1.04B tokens) of nat-
ural Hinglish CS. A Devanagari version of the
dataset was created using an in-house transliter-
ation model. Here we list the finetuned Hinglilsh
models with their original counterparts in paren-
theses: HingBERT (BERT), HingMBERT (m-
BERT), HingRoBERTa (XLM-RoBERTa), Hing-
GPT (GPT-2). There are also two mixed ver-
sions of the models, which are pretrained on
both Devanagari and roman scripts (HingMBERT-
mixed and HingRoBERTa-mixed), and a model
which is trained completely on Devanagari script
(HingGPT-devanagari).

4.2 Unsupervised approach

We employ the concept of acceptability measures
proposed in Lau et al. (2015) to assess the quality
of CS in both TCS datasets and Hinge All. Ta-
ble 2 presents equations for different acceptability
measures. Of all the methods, we compute only
LP, MeanLP, and PenLP, as NormLP and SLOR
require an additional unigram LM. It should not be
oversignificant, however, because for considered
models (BERT and GPT-2) the best performance
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Acc. Measure Equation
LP logP (s)

MeanLP
logP (s)

|s|
PenLP

logP (s)

((5 + |s|)/(5 + 1))α

NormLP − logP (s)

logPu(s)

SLOR
logP (s)− logPu(s)

|s|

Table 2: Acceptability measures for predicting the ac-
ceptability of a sentence. P (s) is the sentence probabil-
ity, computed by a LM; Pu(s) is the sentence probability
estimated by a unigram LM; and α = 0.8.

was mostly achieved by PenLP in the original pa-
per (Lau et al., 2020). To compute the acceptability
measures of considered Transformer models, we
rely on the code from Lau et al. (2020). To evalu-
ate the effectiveness of each acceptability measure,
we compute its Pearson correlation with human
acceptability scores in our datasets.

4.3 Supervised approach
We also run our models in a supervised setting on
HinglishEval data, particularly the quality rating
prediction task. As the original 10-way classifi-
cation task has proved to be quite difficult in our
preliminary experiments and the results of the com-
petition, we add two simplified versions of it:
• Binary classification: We binarize the labels

(1-7 are converted to 0 and 8-10 to 15) and
perform binary classification. Classes numbers
are given in Table 1.

• Regression: We perform regression on the orig-
inal labels. MSE is computed with the models’
initial predictions, while the predictions for F1-
score and CK are rounded.
All models are trained for 5 epochs with a learn-

ing rate of 2e−5, batch size of 32. The best model
is then chosen with validation F1-score. For all
models, we repeat training 10 times with 10 differ-
ent seeds (0–9, respectively). We report mean and
standard deviation of all metrics over 10 runs.

5 Results

5.1 Unsupervised approach
Acceptability measures’ performance on TCS De-
vanagari and TCS transliterated is given in Tables

5We choose the boundary so that the classes are of relative
sizes.

3 and 4, respectively. For both versions of TCS,
among the three scales, the highest correlations are
achieved with Mean syntactic correctness score,
which may indicate that syntax structure is the eas-
iest for the models to grasp.

For TCS Devanagari, predictably, a substan-
tial advantage is on the side of the models which
were exposed to Devanagari during pretraining (m-
BERT, mGPT, HingMBERT-mixed, and HingGPT-
devanagari). The best Mean human score corre-
lations are shared by HingMBERT-mixed and no-
tably mGPT which was not pretrained on any CS
data.

For TCS transliterated, multilingual models can-
not rely on their Devanagari knowledge. Hing-
BERT is a clear leader, as it was exposed to ro-
manized Hinglish during pretraining. Overall, the
correlations of Hinglish models are lower than on
TCS Devanagari. A possible explanation could be
that the transliteration scheme we used to translit-
erate TCS differs from the way Hinglish is written
on social media, whose data was used to finetune
Hinglish models.

Acceptability measures’ performance on Hinge
All is given in Table 5. Here, the best correlations
are also predictably achieved by the models which
were finetuned on Hinglish CS data.

Comparing different acceptability measures with
each other, we observe that unnormalized LP works
quite well, but is usually outperformed by PenLP.
In general, however, unidirectional (GPT-like) mod-
els benefit more from normalization. These obser-
vations support the findings of Lau et al. (2020).
In general, we note that CS finetuned models con-
sistently perform better than their original counter-
parts.

5.2 Supervised approach

Table 6 shows the results of 10-class classification
on HinglishEval data. To be consistent with the
participants of HinglishEval competition, we re-
port both validation and test results and round the
scores to thousandths. Here, HingMBERT-mixed
achieves the best score and beats current SOTA
(0.261) as reported in HinglishEval leaderboard6.
It outperforms HingMBERT, although all Hindi
data in HinGE is romanized.

Although the best model for regression (see Ta-
ble 7) is still chosen based on F1-score, this kind of

6https://codalab.lisn.upsaclay.fr/
competitions/1688
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model Mean syntactic correctness Mean semantic correctness Mean naturalness Mean human score
LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP

BERT 0.08 0.03 0.1 0.07 0.03 0.09 0.05 0.04 0.08 0.07 0.04 0.09
m-BERT uncased 0.33 0.13 0.28 0.31 0.12 0.26 0.28 0.12 0.25 0.31 0.13 0.26
m-BERT cased 0.28 0.15 0.26 0.26 0.14 0.24 0.24 0.14 0.24 0.26 0.15 0.25

GPT-2 0.09 0.16 0.31 0.08 0.16 0.29 0.06 0.16 0.28 0.08 0.16 0.3
mGPT 0.35 0.21 0.41 0.33 0.2 0.39 0.3 0.2 0.37 0.33 0.2 0.39

HingBERT 0 -0.08 -0.04 0 -0.07 -0.04 -0.02 -0.07 -0.06 -0.01 -0.08 -0.05
HingMBERT 0.08 -0.07 0.02 0.08 -0.07 0.02 0.07 -0.05 0.02 0.07 -0.06 0.02

HingMBERT mixed 0.41 0.28 0.39 0.39 0.27 0.37 0.37 0.27 0.36 0.39 0.28 0.37
HingGPT -0.02 -0.18 -0.06 -0.03 -0.18 -0.06 -0.04 -0.19 -0.07 -0.03 -0.19 -0.07

HingGPT-devanagari 0.2 0.31 0.26 0.19 0.3 0.25 0.17 0.29 0.23 0.19 0.3 0.25

Table 3: Acceptability measures’ correlations on TCS Devanagari

model Mean syntactic correctness Mean semantic correctness Mean naturalness Mean human score
LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP LP MeanLP PenLP

BERT 0.03 -0.02 0.01 0.02 -0.03 0 0.01 0 0 0.02 -0.02 0
m-BERT uncased 0.02 -0.05 -0.01 0.01 -0.06 -0.02 0 -0.04 -0.01 0.01 -0.05 -0.01
m-BERT cased 0.01 -0.09 -0.04 0 -0.1 -0.05 0 -0.07 -0.04 0 -0.09 -0.05

GPT-2 0.03 0 0.04 0.02 0 0.02 0 0.01 0.02 0.02 0 0.02
mGPT 0.05 0.02 0.06 0.04 0.02 0.05 0.02 0.04 0.05 0.03 0.03 0.05

HingBERT 0.18 0.2 0.22 0.16 0.18 0.2 0.16 0.21 0.22 0.17 0.2 0.22
HingMBERT 0.15 0.12 0.19 0.13 0.11 0.17 0.13 0.13 0.18 0.14 0.12 0.18

HingMBERT mixed 0.16 0.13 0.2 0.14 0.12 0.18 0.14 0.14 0.2 0.15 0.13 0.2
HingGPT 0.07 0.02 0.07 0.06 0.01 0.06 0.04 0.04 0.06 0.06 0.02 0.07

HingGPT-devanagari 0.05 0.05 0.05 0.04 0.03 0.04 0.02 0.02 0.03 0.04 0.03 0.04

Table 4: Acceptability measures’ correlations on TCS transliterated

model LP MeanLP PenLP
BERT 0.19 -0.04 0.15

m-BERT uncased 0.19 -0.07 0.14
m-BERT cased 0.19 -0.08 0.14

GPT-2 0.19 -0.06 0.2
mGPT 0.2 -0.06 0.21

HingBERT 0.22 0.08 0.2
HingMBERT 0.22 0.1 0.21

HingMBERT mixed 0.23 0.1 0.21
HingGPT 0.2 0.1 0.25

HingGPT-devanagari 0.18 0.11 0.19

Table 5: Acceptability measures’ correlations on Hinge
All

problem statement allows to reduce the MSE score
as compared to 10-class classification. A low MSE,
however, does not lead to a higher F1-score. The
best F1-scores are achieved by HingMBERT and
HingRoBERTa, but are insufficient to overcome
the level of 10-class classification.

Binarizaton of the problem (see Table 8) allows
to significantly raise the F1-scores. The best result
here is achieved by HingMBERT-mixed. We ob-
serve that CoLA BERT performs better than BERT
base model, which may indicate transfer learning
from English acceptability task.

We note that similarly with unsupervised setting,
CS models consistently outperform their original

counterparts in all supervised problem statements.

6 Discussion

Our experiments show that both in unsupervised
and supervised setups, models pretrained on
Hinglish data consistently outperform their orig-
inal counterparts. This goes in line with previous
studies which have shown that pretraining on CS
data yields better results than monolingual pretrain-
ing (Santy et al., 2021; Ansari et al., 2021).

On HinglishEval 10-class classification, our
HingMBERT-mixed establishes new SOTA, sur-
passing the m-BERT baseline from Srivastava and
Singh (2021c) which was trained solely on Hinglish
sentences from Hinge. Moreover, our Hinglish
models trained solely on Hinglish sentences pro-
duce scores competitive with the participants of
HinglishEval shared task which use all available in-
formation from HinGE (original Hindi and English
sentences and annotators’ disagreement; Furniture-
wala et al., 2022; Guha et al., 2022; Kodali et al.,
2022; Singh, 2022).

6.1 Error analysis

In this subsection, we look for sources of errors of
our best performing model, HingMBERT-mixed.
We analyze its predictions on the test subset of
HinglishEval 10-class classification. We put three
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model Val Test
F1 CK MSE F1 CK MSE

BERT 0.232±0.013 0.069±0.015 2.812±0.146 0.238±0.011 0.082±0.014 2.778±0.215

CoLA BERT 0.238±0.014 0.081±0.014 2.774±0.274 0.225±0.019 0.065±0.016 2.76±0.327

m-BERT uncased 0.255±0.016 0.102±0.013 2.867±0.193 0.238±0.016 0.086±0.014 2.826±0.115

m-BERT cased 0.245±0.015 0.08±0.02 2.944±0.215 0.237±0.013 0.078±0.017 2.878±0.149

XLMRoBERTa 0.229±0.014 0.081±0.02 2.957±0.187 0.203±0.013 0.045±0.016 2.878±0.194

GPT-2 0.216±0.013 0.056±0.018 3.182±0.173 0.204±0.017 0.036±0.022 3.175±0.243

HingBERT 0.253±0.005 0.106±0.007 2.689±0.123 0.248±0.012 0.101±0.015 2.839±0.134

HingMBERT 0.262±0.015 0.11±0.015 2.663±0.213 0.253±0.019 0.1±0.02 2.613±0.182

HingMBERT-mixed 0.253±0.014 0.1±0.02 2.627±0.23 0.267±0.01 0.119±0.011 2.526±0.184
HingRoBERTa 0.245±0.012 0.099±0.015 2.682±0.102 0.251±0.024 0.109±0.027 2.734±0.16

HingGPT 0.237±0.009 0.066±0.01 3.116±0.15 0.25±0.014 0.087±0.016 3.031±0.199

HingGPT-devanagari 0.209±0.006 0.051±0.008 3.29±0.141 0.196±0.016 0.037±0.018 3.195±0.154

m-BERT baseline 0.202 0.003 2.797 0.256 0.092 2.628

Table 6: 10-class classification results on HinglishEval. m-BERT baseline from Srivastava and Singh (2021c)

model Val Test
F1 CK MSE F1 CK MSE

BERT 0.222±0.011 0.063±0.014 2.371±0.086 0.218±0.013 0.055±0.018 2.219±0.123

CoLA BERT 0.219±0.008 0.059±0.012 2.364±0.078 0.222±0.018 0.056±0.018 2.226±0.058

m-BERT uncased 0.223±0.011 0.06±0.016 2.341±0.065 0.215±0.009 0.051±0.015 2.213±0.079

m-BERT cased 0.217±0.006 0.049±0.011 2.391±0.08 0.215±0.008 0.05±0.011 2.205±0.035
XLMRoBERTa 0.189±0.007 0.019±0.012 2.453±0.05 0.197±0.009 0.033±0.011 2.396±0.063

GPT-2 0.211±0.012 0.042±0.015 2.411±0.077 0.22±0.013 0.053±0.011 2.246±0.054

HingBERT 0.232±0.016 0.069±0.016 2.359±0.14 0.244±0.016 0.081±0.018 2.331±0.149

HingMBERT 0.239±0.024 0.083±0.028 2.401±0.088 0.25±0.014 0.093±0.015 2.37±0.092

HingMBERT-mixed 0.226±0.03 0.066±0.037 2.437±0.146 0.235±0.025 0.075±0.026 2.388±0.154

HingRoBERTa 0.236±0.013 0.08±0.012 2.276±0.133 0.25±0.02 0.092±0.017 2.276±0.128

HingGPT 0.247±0.008 0.076±0.009 2.389±0.1 0.256±0.007 0.086±0.01 2.278±0.095

HingGPT-devanagari 0.194±0.008 0.027±0.014 2.625±0.188 0.191±0.014 0.027±0.014 2.545±0.228

Table 7: Regression results on HinglishEval

model Val Test
F1 CK MSE F1 CK MSE

BERT 0.639±0.011 0.253±0.023 0.357±0.013 0.662±0.011 0.304±0.021 0.333±0.011

CoLA BERT 0.633±0.007 0.246±0.018 0.365±0.008 0.673±0.013 0.329±0.026 0.325±0.014

m-BERT uncased 0.646±0.011 0.27±0.025 0.353±0.011 0.648±0.01 0.278±0.022 0.348±0.01

m-BERT cased 0.626±0.015 0.23±0.031 0.371±0.016 0.637±0.01 0.254±0.021 0.359±0.01

XLMRoBERTa 0.623±0.025 0.222±0.058 0.371±0.019 0.639±0.015 0.258±0.036 0.356±0.013

GPT-2 0.612±0.02 0.211±0.041 0.388±0.022 0.619±0.016 0.228±0.026 0.379±0.019

HingBERT 0.665±0.007 0.324±0.02 0.336±0.007 0.648±0.015 0.287±0.026 0.353±0.016

HingMBERT 0.682±0.011 0.354±0.021 0.318±0.012 0.672±0.015 0.333±0.24 0.327±0.016

HingMBERT-mixed 0.682±0.008 0.353±0.014 0.318±0.009 0.681±0.008 0.352±0.019 0.319±0.008
HingRoBERTa 0.689±0.013 0.369±0.026 0.312±0.013 0.668±0.011 0.323±0.021 0.332±0.011

HingGPT 0.642±0.009 0.269±0.02 0.358±0.009 0.643±0.011 0.269±0.022 0.355±0.012

HingGPT-devanagari 0.574±0.01 0.116±0.021 0.42±0.011 0.609±0.008 0.193±0.017 0.383±0.012

Table 8: Binary classification results on HinglishEval
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factor mean statistically
significantcorrect incorrect

sentence
length

17.0 19.2 ✗

Hindi fraction 0.63 0.67 ✓

# of switch
points

5.5 6.1 ✗

Table 9: Error source factors for HinglishEval 10-class
classification, model is HingMBERT-mixed

factors under consideration: sentence length in
words, fraction of Hindi words in a sentence and
number of code switches within a sentence. To
compute the latter two values, we annotate HinGE
test subset with HingBERT-LID model proposed
in Nayak and Joshi (2022). We compare the mean
value of the factors depending on the correctness
of model’s prediction (see Table 9). We find that
the mean of all three factors is greater for incorrect
predictions, which means that the model tends to
consistently make mistakes on more complex sen-
tences. However, computing the t-test shows that
only the difference in fraction of Hindi words is
statistically significant. These results can be seen
as an answer to the questions about the reasons
influencing the quality of synthetic CS posed in
(Srivastava and Singh, 2021c), e.g. “Does the dom-
inance of a language (English or Hindi) present in
the Hinglish sentence impact the rating provided
by the humans?”.

7 Conclusion and further work

In this paper, we address the task of evaluating
synthetic CS in supervised and unsupervised ap-
proaches. In supervised setting, we solve Hingli-
shEval quality rating prediction task with a line
of finetuned Hinglish Transformer models and es-
tablish a new SOTA. In unsupervised setting, we
apply the method of acceptablity measures to eval-
uate the synthetic CS sentences in HinGE dataset.
We find that Hinglish finetuned models consistently
outperform their original versions.

Several further work directions open up based
on this work. First, it is promising to directly com-
pare the unsupervised and supervised approaches
presented in this paper, possibly applying the semi-
supervised method of Warstadt et al. (2019) for
acceptability measures. Second, it is of interest
to continue the analysis presented in Section 6.1
with various CS metrics, thus repeating the study
of Srivastava and Singh (2021a) on a larger scale.
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Abstract

Gender analysis of Twitter can reveal important
socio-cultural differences between male and fe-
male users. There has been a significant effort
to analyze and automatically infer gender in the
past for most widely spoken languages’ content,
however, to our knowledge very limited work
has been done for Arabic. In this paper, we
perform an extensive analysis of differences
between male and female users in the Arabic
Twitter-sphere. We study differences in user
engagement, topics of interest, and the gender
gap in professions. Along with gender analy-
sis, we also propose a method to infer gender
by utilizing usernames, profile pictures, tweets,
and networks of friends. In order to do so, we
manually annotated gender and locations for
∼167K Twitter accounts associated with∼92K
user location, which we make publicly avail-
able.1 Our proposed gender inference method
achieves an F1 score of 82.1% (47.3% higher
than the majority baseline). We also developed
a demo and made it publicly available2.

1 Introduction

Demographic information (e.g., age, gender) has
proven to be useful in many different decision-
making processes such as, from business decisions
(e.g., personalized online advertising), forensic in-
vestigation to policy-making purposes (Li et al.,
2016; Volkova et al., 2013; Mukherjee and Liu,
2010; Soler and Wanner, 2016). For example, so-
cial media platforms and e-commerce sites are us-
ing customers’ gender and other demographic at-
tributes for targeted advertising (Tuan et al., 2019).
In the past decade, there have been extensive re-
search efforts to automatically infer demographic
attributes of the social media users using their so-
cial media footprints (e.g., users’ posts, names, and
other attributes) (Chen et al., 2015; Volkova et al.,

1https://alt.qcri.org/resources/
ArabGend.zip

2https://asad.qcri.org/

2015). In addition, to evaluate the performance
of the model’s fairness for different tasks it is im-
portant to have such attributes (Chakraborty et al.,
2021; Wang et al., 2019). Given that such attributes
are often removed from the original source for pri-
vacy and ethical reasons, however, having such
attributes through inference is a possible way to
evaluate the model’s fairness.

Major research efforts for such attributes infer-
ence are mostly done for English, and very little
effort has been given to non-English languages
(Chakraborty et al., 2021). The research for Arabic
demographic inference such as gender is relatively
rare for social media users, specifically on Twitter’s
content. With approximately 164 million monthly
active users, Twitter is one of the most popular so-
cial media platforms in the Arab region (Abdelali
et al., 2021). The large volume of tweets produced
represents the social and cultural characteristics of
the region. Even though there is a large number
of Twitter users, however, usage of Twitter differs
in volume, topics, and engagement depending on
the users’ gender role. Another important factor is
that social media users often provide misleading
demographic information (e.g., name, age, location
and marital status), which is highlighted in a sur-
vey conducted in the Arab region (Salem, 2017).
Hence, self-declared information might not be al-
ways reliable. Though some studies argue that the
proportion of such misleading self-reported infor-
mation is relatively lower (Herring and Stoerger,
2014). While the availability of Twitter data and
its large user base provides opportunities to un-
derstand such information, however, for privacy
reasons, Twitter does not share users’ gender infor-
mation (Mueller and Stumme, 2016). Such factors
stress the need to have automatic methods for gen-
der inference, and here our focus is Twitter-sphere
for the Arabic region. In addition, there is a gap
in the literature in a thorough analysis of Arabic
Twitter (e.g., linguistic content) for gender, even
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though Arabic is a morphologically rich language
where linguistic markers are present to distinguish
genders in many cases (see Section 3.1).

To address the gap of gender analysis and auto-
matic inference, in this paper, we perform an exten-
sive analysis of Arabic Twitter data where we iden-
tify key distinguishing properties of male/female
authorship. We experiment with different features
to identify the gender of Twitter users. We examine
the usage of friendship networks, profile pictures,
and textual information such as usernames, user
descriptions, and tweets to classify gender. The
contributions of our work are as follows:

• We developed a new dataset of∼167K Twitter
accounts that are manually annotated for their
gender and location, which we make publicly
available for research purposes.

• We show differences between the two gen-
ders from different angles such as presence on
Twitter in different Arab countries, language
usage, etc.

• We show signs of gender gaps in the labor
market which align with some official reports.

• We study automatic gender identification of
tweets, user accounts, and user descriptions.
We also study how profile pictures and net-
works of friends can influence results.

• Using our models we developed a demo,
which is publicly available.

2 Related Work

Gender inference is a well-studied problem in En-
glish. Liu and Ruths (2013) present a dataset of
13K gender-labeled Twitter users and propose the
use of first names as features for gender inference.
Screen_names, full names, user descriptions, and
tweets have also been used as features for gender
inference (Burger et al., 2011). Rao et al. (2010)
use stacked SVMs for identifying gender and other
latent attributes of Twitter users. Semi-supervised
methods that exploit social networks have also been
used for gender classification (Li et al., 2016).

Gender inference has also received attention
for a few other languages. Sakaki et al. (2014)
combine the output of text processor and image
processor to infer the gender of Japanese Twitter
users. Taniguchi et al. (2015) propose a hybrid
method that uses logistic regression to combine
text and image features. Ciot et al. (2013) label

1000 users for gender in each of the following lan-
guages: Japanese, Indonesian, Turkish, and French.
The authors use Support Vector Machines (SVMs)
for classification. Sezerer et al. (2019) present a
dataset consisting of 5.5K Twitter users labeled for
their gender. Tuan et al. (2019) proposes clustering-
based approaches for demographic analysis to sup-
port advertising campaigns. Very recently Liu et al.
(2021) provided a large-scale study that investi-
gate different inference techniques (e.g., classic
machine learning to deep learning models) using
Twitter data. The authors highlight that a simpler
model performs well to infer age, however, sophis-
ticated models (e.g., sentence embeddings) are im-
portant for gender.

For Arabic, on the other hand, work is relatively
less explored. Malmasi (2014) use first names to
classify the gender of Arabic, German, Iranian and
Japanese names. ElSayed and Farouk (2020) uses
neural networks to differentiate male and female
authors of tweets in Egyptian dialect. Hussein et al.
(2019) use classic machine learning classifiers such
as Logistic Regression and Random Forest classi-
fiers to identify gender in Egyptian tweets. Habash
et al. (2019) use deep learning for gender identifica-
tion and uses Machine Translation for reinflection.
Bsir and Zrigui (2018) use the gated recurrent unit
(GRU) for gender identification in Facebook and
Twitter posts. Zaghouani and Charfi (2018) col-
lect a corpus of 2.4M multi-dialectal tweets from
1600 accounts that are tagged for gender, age, and
language. Wang et al. (2019) propose a new multi-
lingual (32 different languages), multimodal, multi-
attribute deep learning system for inferring differ-
ent demographic attributes.

Our work differs from previous work on gender
analysis and inference for Arabic in a number of
ways (i) it uses a much bigger dataset for male and
female users; (ii) it has no bias towards a specific
country as it covers users from all Arab countries;
(iii) it uses a generic method for collecting users
and their names as opposed to starting with a spe-
cific list of names, which can be skewed towards
some countries or cultures; (iv) in addition to gen-
der inference, we perform a thorough analysis of
gender differences in their profile descriptions, top-
ics of interest, the profession gender gap among
other things.
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3 Dataset

3.1 Background

In Arabic, typically nouns and adjectives have gen-
der markers such as Taa Marbouta letter “ �è” as a
feminine (f) suffix, and in case of absence, they can
be considered as masculine (m). There are special
cases where a word can have the feminine marker
and it’s gender is unknown (e.g., �éJ
«@X - religious
scholar (m and f)). Also, there are some cases
where words are feminine without explicit gender
markers (e.g., �I 	�K. , ú �æ 	K


@ - female, girl). Except for

some special cases, converting gender from mascu-
line to feminine can be done by appending the Taa
Marbouta suffix “ �è”, e.g., words like �èQ«A �� , �èQK
YÓ
(manager(f), poet(f)) are the feminine forms of
Q«A �� ,QK
YÓ (manager(m), poet(m)) in order.

It’s widely observed that many Arabic users on
Twitter describe themselves in the description field
in their profiles. This description expresses several
identity features such as nationality (NAT), pro-
fession or job (PROF), interest (INT), social role
(SOC), religion (RELIG), and ideology (IDEO)
among others. We provide a few examples in Ta-
ble 1.

Description Translation Class

Q 	j�J 	̄

@ð ú


�̄ @Q« Iraqi (m) and proud NAT
�éK
Xñª� �é 	J£@ñÓ Saudi citizen (f) NAT

	àA 	J�

@ �éJ. �
J.£ Dentist (f) PROF

è @Pñ�J»X I. ËA£ PhD student (m) PROF
�éªJ
J.¢Ë@ �é�® ��A« Nature lover (f) INT

�éJ
 	J �®�JË @ PAJ. 	k

AK. Õ �æêÓ Interested (m) in IT news INT

Ð

@ð �ék. ð 	P Wife and mother SOC

ÉKA 	®�JÓ H. A �� Optimistic young man SOC

Q 	j�J 	̄

@ð ÕÎ�Ó Muslim (m) and proud RELIG

�éJ
K. Q« �éJ
j�
�Ó Arab Christian (f) RELIG
	�PAªÓ ú
æ�AJ
� Opposition politician (m) IDEO

ø
 YÊK. I. k

@ �éJ
Ë @Q�. J
Ë Liberal (f), love my country IDEO

Table 1: Examples of user description with gender (m/f)
and identity label (class).

3.2 Data Collection

For the data collection, we used Twitter API to
crawl Arabic tweets using a language tag to Arabic
(“lang:ar”), back in January 2018. We collected
data in two phases. First, we collected 4.35M
tweets (termed as former set), which covers tweets

Figure 1: Our pipeline to develop ArabGend – labeling
gender and location.

from 2008 to January 2018.3 Using this dataset we
developed a word list using a gender marker (see
Section 3.3.1). In the second phase, we collected
additional 100M millions tweets (termed as later
set), dated from 2018 to 2020, to develop final an-
notated dataset (see Section 3.3.2). The purpose
of the former set of tweets was to create a gender
marker word list, the purpose of the later set of
tweets was to create a large annotated dataset with
gender and location labels. We used such an ap-
proach to avoid any biases that may appear due to
the word list selection.

3.3 Annotation

3.3.1 Creating Word List with Gender Info
For the annotation, we first created a word list of
gender markers. In order to do that we first ex-
tracted all profile information of users who posted
these tweets. From the user’s profile descrip-
tion, we obtained a list of all the first words that
users used to describe themselves.4 We obtained a
unique list of 10K words. We then excluded words
that appeared only once, which resulted in a list of
∼2,500 words out of 10K. We used the publicly
available Farasa tool (Darwish and Mubarak, 2016)
to initially detect the gender of each word in the
list. Then, a native speaker revised gender informa-
tion and provided both the masculine and feminine
word forms and their different writings to have bet-
ter coverage. For example, for the feminine form
“ �éJ
ÓAm× - lawyer (f)”, the masculine form and its

different writings “Ð� Am
× , ú×Am× , ú
×Am

× - lawyer (m)”

was also added if they did not appear in the word

3Note that our data collection might not consist of all of the
tweets posted on Twitter during this period, which is because
Twitter’s free API has a limit.

4the First word is a very strong signal in identity descrip-
tion and can be mapped to gender.
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list. The final gender marker word list contains 713
words, in which 56% of them indicate masculine
and 44% indicate feminine gender.5 The list can be
found in our publicly released dataset.

3.3.2 Gender and Location Annotation
For gender and location annotation, we first col-
lected another set of 100M tweets, the later set,
which dated from 2018 to 2020.

Gender: We annotated 100M tweets with gen-
der and location information in several steps. We
used the word list, discussed in the previous sec-
tion, and matched the words at the beginning of
each user’s profile description. The matching ap-
proach resulted to assign a gender label to ∼167K
users. We could not able to assign the gender label
for the rest of the users due to the mismatch be-
tween our created word list, and the empty user’s
profile description. We then manually revised the
assigned gender labels of these 167K users by a
native Arabic-speaking expert annotator. In Figure
1, we present ArabGend development pipeline that
demonstrates how the user profile appears, how we
used profile description with the word list to the
assign gender marker and location information to
assign a specific location. Note that we developed
the word list, highlighted in blue, at the first phase
of our dataset development, as discussed in Section
3.3.1. In this profile, user location is clearly visi-
ble, however, this is not always the case for which
location inference is needed.

Location: Out of these 167K users we extracted
28K unique locations, which are then mapped into
Arab countries with geographic location informa-
tion using GeoPy toolkit.6 Similar to gender an-
notation, the output of GeoPy is then manually
revised by the same annotator. The annotation pro-
cess resulted in identifying the countries for 92K
users (55.08% of all users) out of 167K users. We
could not identify the rest of user locations as they
were either empty (38%) or cannot be mapped to a
specific country (6.92%).

Removing Ambiguous and Inappropriate Ac-
counts The manual annotation process consists
of another step to remove ambiguous, inappropriate

5Words like Èð 	P , 	áëA¿ ,�	m��� (person, priest, man) have
no corresponding feminine words.

6https://pypi.org/project/geopy/, It is a
python client for several geocoding web services includ-
ing Nominatim (https://nominatim.org), which uses
OpenStreetMap data to find location.

(e.g., adult and spam) accounts. Typically Arabic
words are written without diacritics, which causes
ambiguity in many cases, e.g., the word �é�PYÓ can
be interpreted as Teacher (f) or School. As we
are interested in collecting personal accounts us-
ing their profile description, therefore, we excluded
organizations’ accounts from our data collection.
Also, there are some titles that can be used to de-
scribe males and females, which we removed. For
example, QK
YÓ ,Pñ�J»X (Doctor, Manager) are used
for both genders.

To filter adult and spam accounts we used the
publicly available APIs from ASAD system (Has-
san et al., 2021). It is a social media analysis toolkit
consisting of eight modules to classify dialects, sen-
timent, emotion, news category, offensiveness, hate
speech, adult content, and spam in Arabic tweets.7

Based on the classified output from ASAD and a
manual inspection during the annotation process,
we removed inappropriate accounts. We use the
term appropriateness to refer to the labels non-
adult and spam content in the rest of the paper. In
this phase, after filtering non-personal and inap-
propriate accounts, we ended up with 167K users
(80% are males and 20% are females).

3.3.3 Annotation quality
To assess the quality of the annotation, we manu-
ally annotated 500 users’ accounts. We selected
a random sample of 500 users and then manually
assigned gender labels by checking their accounts
on the Twitter platform. Agreement with manual
annotation was ∼99%. Similarly, for location, we
randomly selected another sample of 500 unique
user locations and checked their mappings to coun-
tries. The accuracy was 98%, which indicates anno-
tation quality is very high for gender and location
labels. Note that, Twitter user locations are typi-
cally noisy, and mapping them to countries is not
always trivial.

Accounts Count User Loc.

Male 133,192 (80.0%) 75,539 (81.5%)
Female 33,348 (20.0%) 17,115 (18.5%)
Total 166,540 (100%) 92,654 (56.0%)

Table 2: Statistics of the dataset.

3.3.4 Statistics
In Table 2, we report number of final male and
female accounts and percentage of successful map-

7https://asad.qcri.org
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User Name Description User Loc. G C

ú
j
��Ë@ �éJ
 	®� �éJ. �KA¿ - �éJ
ÓC«@ UAE - Dubai F AE

(Safia Alshehi) (journalist (f) and writer (f))
Ahmed Azhar @Yg. ¡J
��. 	àA�	� @

�èYg. M SA

(very simple person (m)) (Jeddah)

Table 3: Annotation: Description was mapped to Gender
(G), and User Loc. was mapped to Country (C).

pings of user locations to countries for both gen-
ders. According to a report from the World Bank
in 2015,8 the gender gap in Middle East and North
Africa region can reach to 34% in internet usage.
This gap comes second after the largest gender gap
in Sub-Saharan Africa region (45%). Further, while
52% of females (91M) have mobile phones, this
ratio increases to 56% for males with additional
8M male users. These factors can explain the less
presence of female users on Twitter as shown in
our study. In Table 3, we present some annotation
examples from our dataset. We use ISO 3166-1
alpha-2 for country codes.9

Figure 2: Gender distribution in Arab countries.

Figure 3: Country distribution of Twitter accounts.

8https://blogs.worldbank.org/ar/
arabvoices/ten-facts-about-women-arab-world

9https://en.wikipedia.org/wiki/List_
of_ISO_3166_country_codes

4 Analysis

4.1 Gender and Location Distribution
In Figure 2, we present gender distribution of Twit-
ter users in Arab countries. We observe that the
top three countries that have higher percentages
of female users. For BH (Bahrain), AE (United
Arab Emirates) and LB (Lebanon) are 30%, 28%
and 27%, respectively. The lowest percentages of
female users from YE (Yemen), SD (Sudan) and
IQ (Iraq) are 5%, 8% and 11%, respectively.

In Figure 3, we present country distribution of all
accounts in our dataset. We observe that more than
half of Twitter users are from SA (Saudi Arabia)
and 70% of accounts are from Gulf region (SA,
KW, OM, AE, QA and BH) followed by accounts
from EG, YE, etc. Distributions are very similar
to what was reported in a previous study to collect
dialectal tweets in a different time span and using a
different approach (Mubarak and Darwish, 2014).

We mapped user locations to OTHER (OTH) for
the countries that are outside Arab World. They
represent 6% of all user locations. Top five coun-
tries that are outside Arab World include US, GB,
TR, DE and FR in order. In addition, we found
that the dataset has 1,495 verified accounts, out of
which 90% are male and 10% are female. Such
numbers represent 1% and 0.45% verified male and
female accounts, respectively.

4.2 User Engagement
We extracted the date of joining on Twitter for all
accounts to study their engagement with Twitter.
As shown in Figure 4 (in appendix), we can see that
many accounts joined Twitter between 2010 and
2012, then the number of users who joined Twitter
between 2013 and 2018 was almost stable for male
and female accounts. Starting from 2019, there was
an increasing number of users. We notice that there
is a slightly increasing number of female accounts
who join Twitter over time, however, Twitter was
always dominated by male accounts and the gap
between the two genders seems to increase in the
future as shown in the cumulative chart in Figure 5
(in Appendix).

4.3 User Connections
Figure 6 shows an average number of followers and
followees (friends) of male and female accounts
in our dataset. We can see that on average, female
accounts tend to attract more followers than males
(more than double). Further, females have ∼30%
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Figure 4: Distribution of Twitter joining date

Figure 5: Accounts distribution over time

Figure 6: Followers and followees distribution.

more friends than males, which may indicate that
females prefer to have a larger community and
friends than males on Twitter.

4.4 Person Names

A person’s name is a very important feature in iden-
tifying gender. To understand the demographics of
Twitter users, prior studies have been using a seed
list of names to collect male and female accounts.
Mislove et al. (2011) used the most common 1000
male and female names in the US to collect Twitter
user information. Such an approach, i.e., using a
pre-specified list of person names, can create bias

in the resulting data collection. In our study, we
attempted to follow a different approach to avoid
such a bias. We created initial dataset to create
word list, and used a different set (i.e., the later
100M) to create the final list. We further normal-
ized the names by removing diacritics, mapping
Alif shapes, Taa Marbouta and Alif Maqsoura let-
ters to plain Alif, Haa, and Yaa letters respectively,
and mapping decorated letters to normal letters.

From the obtained lists, we can extracted names
that are used for both genders when they are written
in Arabic (e.g., �ÖÞ�� , hAJ.� , Pñ	K - Nour, Sabah,
Shams), or due to transliteration ambiguity, e.g.,
the names ZC«(m) and ZB

�
@(f) both are transliterated

to “Alaa”, also Ym.×

@(m) and XAm.×


@(f) have the same

transliteration “Amjad”.
In Figure 7 we show the most common male and

female names are written in English. Mostly, they
have similar distribution as their Arabic counter-
parts with different ways of transliteration.

4.5 Interests According to User Description

In Figure 8 we present most common words used
in user’s profile description for males and fe-
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Figure 7: Common Arabic names (in English).

males in order. This gives an indication about
jobs and interests for both genders. We can see
that females tend to describe their social role
(e.g., �é�®K
Y� , �èA�J 	̄ , Ð


@ , �I 	�K. - daughter, mother, girl,

friend) more than males. For comparison, while
more than 1000 female accounts describe them-
selves first as Ð


@ (mother), less than 200 accounts

describe themselves as H.

@ (father). We can also

see that a good portion of Twitter users is young
(e.g., �ém.�'
Q 	k , �èA�J 	̄ ,I. ËA£ - student, young woman,
graduate) as opposed to few accounts who describe
themselves as Y«A�®�JÓ (retired). From our analysis,
we observed that self-description can be used to
predict the age group of Twitter users. We leave
this for future work.

Figure 8: Description of male and female accounts. The
top five for males are: engineer, student, lover, interested
(in), and teacher. The top five for females are: student,
graduate, teacher, girl, and mother.

4.6 Topics of Interest

In Figures 9 we present the common distinguish-
ing words in tweets written by male and female
accounts in our dataset. We computed the valence
score discussed in (Conover et al., 2011; Chowd-
hury et al., 2020) with a threshold of 0.5 to obtain
these words.

While tweets from males have many words re-
lated to politics (e.g., 	à@ñ 	kB @ , 	áÒJ
Ë @ - Yemen, Mus-

lim Brotherhood) and sports (e.g., ÈCêË@ ,ø
 PðYË@

- league, Hilal club), tweets from females have
many words related to family and society (e.g.,
�HCJ
Ó 	P , ZA 	JK.


@ , ú
×


@ - my mother, children, col-

leagues) and feelings (e.g., ú

�æJ. �
J.k ,Pñª �� , ú
æ. Ê

�̄ -

my heart, feeling, my love).

4.7 Gender Gap in Professions

We can observe from Figure 8 that the most fre-
quent profession for males was �Y	JêÓ (engineer)

while it was �éÒÊªÓ (teacher) for females. In Table
4, we report the distribution of some professions
for male and female accounts in different domains.
We observe that the Sport domain is overwhelm-
ingly dominated by males, and other domains (e.g.,
Management, Software, Health, etc.) have less rep-
resentation of females (percentages are from 9% to
20%). The best domain that has a good represen-
tation of females is the Translation domain with a
percentage of 36%.

According to the World Bank’s report in June
2020,10 the labor force participation rate of fe-
males in the Middle East and North Africa region
is around 20% with a slight improvement from
17.4% in 1990. Our study supports this report by
showing that females are less represented in many
job domains, and participation rates can be roughly
quantified in different sectors of job markets. The
same report also mentions that only 11% of females
hold managerial positions compared to the world
average of 27%.11 The ratio of female managers
to all managers in our dataset is 9% based on the
self-description of the profile.

Figure 9: Most common words.

5 Experiments

For the classification experiments, we focused only
on the gender inference and leave the location in-

10https://data.worldbank.org/indicator/
SL.TLF.CACT.FE.ZS?locations=ZQ

11www.dw.com/ar/, shorturl.at/vLOQT
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Prof. Translation G Freq. % Domain

I. «B player m 1,096 98 Sport
�éJ.«B f 19 2

�Y	JêÓ engineer m 6,619 94 Engineering
�é�Y	JêÓ f 404 6

QK
YÓ manager m 2,982 91 Management
�èQK
YÓ f 286 9

l .×Q�.Ó programmer m 153 91 Software
�ém.×Q�.Ó f 16 9

I. �Am× accountant m 580 90 Finance
�éJ.�Am× f 61 10

I. �
J.£ doctor m 2,265 80 Health
�éJ. �
J.£ f 577 20

Ñk. Q��Ó translator m 177 64 Translation
�éÔg. Q

��Ó f 98 36

Table 4: Profession gaps examples.

ference study as for a future study. We measure
the performance of the classification models using
accuracy (Acc), macro-averaged precision (P), re-
call (R) and F1 score. We use macro-averaged F1
score as a primary metric for comparison in our
discussion.

5.1 Datasets

We used two datasets for training to provide a
comparative study. We used our developed Arab-
Gend dataset only for training. We also used ARAP
dataset (Zaghouani and Charfi, 2018), which con-
sists of 1,600 Twitter accounts labeled for their
gender along with country and language. We used
half of the ARAP dataset for training, and half for
the evaluation. Hence, in our experiments, models
are evaluated using the half of the ARAP dataset,
which we considered as our test set.

5.2 Classification Models and Features

We used Support Vector Machines (SVMs) as our
classifier. Our choice of SVM was influenced by a
reasonable accuracy and a system deployment in
a low computational resource setting. As features,
we used character n-gram vectors weighted by
term-frequency-inverse document term frequency
(tf-idf). We experimented with different n-gram
ranges. Only character [2-5] n-gram results are
reported in this paper since they yielded the best
results.

In addition, we also varied different types of in-
put to the classifiers. We experimented with (i)
a single tweet from each user, (ii) aggregate all
tweets from a user, (iii) usernames of the Twit-

ter users. We also experimented by balancing the
ArabGend training set, to have equal number males
and females, to understand the affect on the per-
formance of the classifiers. Since ARAP dataset
is balanced in terms of gender, hence, we do not
apply any sampling to balance the data any further.
Since there was not any significant improvement in
performance after balancing to equal distribution,
therefore, we do not report that results.

5.3 Results
In Table 5, we report the classification results on
ARAP test set. From the results, we observed that
for both ARAP data and ArabGend data, best re-
sults are obtained when usernames are used as op-
posed to aggregation of tweets or user descriptions.
In general, aggregating tweets do not improve re-
sults in general by a significant margin. The user-
names in the ArabGend dataset have a significant
performance improvement over all other settings,
resulting in an F1 score of 82.1.

Train Data Features Acc. P R F1

Majority Baseline 53.3 26.7 50.0 34.8
Usernames 67.2 67.1 66.8 66.8

ARAP (Baseline) Description 58.2 58.5 58.5 58.2
Tweets 69.8 70.9 70.4 69.7
All Features 59.9 65.3 61.6 57.9

Usernames 82.4 82.7 82.0 82.1
ArabGend Description 64.1 65.4 62.7 61.8

Tweets 63.1 62.9 62.9 62.9
All Features 78.0 80.2 77.1 77.1

Table 5: Performance on ARAP test data

5.4 Additional Experiments
Predicting Gender from Profile Images To eval-
uate the efficiency of profile image based gender de-
tection model we used Gender-and-Age-Detection
model (Levi and Hassner, 2015) on ARAP test set.
It uses deep learning to identify the gender and age
of a person from face image, which was trained on
∼27K images from Flickr (Adience dataset) (Levi
and Hassner, 2015).12

For comparison, we manually annotated the
same ARAP test set for gender prediction using
profile images and the accuracy was 81%. This
shows that profile image can be one of the power-
ful features to predict gender. It is worth to mention
that 87% of the package errors are due to misclas-
sification of female users as males. We plan to use
profile images with textual features in future.

12Accuracy of this model is 64%. Some images are hard for
gender prediction, e.g., flag, natural scene, incomplete face,
kid image, cartoon, mixed, etc.
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Figure 10: Distribution of female accounts

Predicting Gender from Friends Network Ho-
mophily (meaning love of the same) is a tendency
in social groups for similar people to be connected
together (McPherson et al., 2001). Homophily has
predictive power in social media (Bischoff, 2012).
We anticipated that female users on Twitter tend
to have more female friends than male users and
vice versa. To experiment this assumption, we col-
lected a list of up to 100 friends for all accounts
in the ARAP test set, and from their usernames,
we used our classifier to predict their gender. We
experimented with different thresholds on ratio of
predicted male to predicted female friends to de-
cide gender of our target users. The best results
were obtained when 1/3 of friends of an account are
predicted as females. In these cases, we propagated
the label “female” to the account and propagated
“male” otherwise. By doing so, we could achieve
56% accuracy. This shows that gender distribution
of friends network has limited impact on determin-
ing gender of a user.

We also explored if information about friend’s
gender can improve the performance of the model
from the earlier section. We adopt the following
procedure: if the classifier is not confident that the
instance is male, we apply the threshold technique
above and take the classifier’s predicted label oth-
erwise. By doing this, we were able to improve the
performance from 82.1% to 82.9% indicating that
friend’s gender might be helpful in cases where the
classifier is not confident. However, obtaining a
list of friends for all accounts needs a significant
amount of time. This limits the usage of friends’
gender in cases where fast response is needed.

Comparison with Twitter Ads API Advertisers
on Twitter can target their campaigns based on geo-
location, gender, language, and age. Twitter uses
the gender provided by people in their profiles, and
extends it to other people based on account like-
ness. We used Twitter Ads API to get total number
of users in all Arab countries and their gender dis-
tribution. Figure 10 shows distribution of female
users as obtained from Twitter Ads and our method.
Although there are some differences between the
two methods, the average percentages of female
users are similar (19% using Twitter Ads vs. 20%
using our method). This can show that our method
is close to Twitter Ads for gender prediction of
users although Twitter has much larger informa-
tion to use. Note that Twitter Ads results (also our
method) may have limitations in terms of accuracy.

6 Conclusion

In this paper, we have presented ArabGend, a new
dataset of Twitter users labeled for their gender and
location. To the best of our knowledge, this is the
largest Arabic dataset for gender based analysis.
We analyzed the characteristics of the users from a
gender perspective. We identified key differences
between male and female accounts on Arabic Twit-
ter such as user connections, topics of interest, etc.
We also studied the gender gap in professions and
argued that results obtained from our dataset are
aligned with recent reports from the World Bank
and Twitter Ads information. We also showed that
our dataset yields the best inference results on a
publicly available test set. In the future, we plan to
enhance our data collection method by considering
gender markers in the whole user description and
other profile fields.
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Ethical Concern and Social Impact

User Privacy For privacy protection and compli-
ance with Twitter rules, we make sure that Twitter
account handles and tweets are fully anonymized.
We share tweets by their IDs, and we share a list of
names written in Arabic and English as first names
only.

Biases and Limitations Any biases found in our
dataset are unintentional, and we do not intend to
cause harm to any group or individual. In our study,
we tried to remove biases in data collection by pro-
viding all forms of male and female description
words. But, because Twitter is widely used in some
regions (e.g., Gulf) and less used in other regions
(e.g., Maghreb), we acknowledge that our statistics
and results may be less accurate for some Arab
countries in the real world. However, they give
rough estimates about the actual presence of users
from those countries on Twitter. The bias in our
data, for example towards a particular gender, is
unintentional and is a true representation of users
on Twitter as obtained also from Twitter Ads. Gen-
der label (male/female) is extracted from the data
and might not be a true representative of the users’
choice.

Further, we heavily depend on users’ self-
disclosure (first words only) which covers a small
portion of Twitter users. Therefore, the statistics
presented in our paper provides an estimate of the
whole picture. In the future, we plan to consider
better methods for data collection with greater di-
versity and coverage.
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Appendix

A Demo

Using the developed model, we also built a demo
that takes a person’s name written in Arabic or
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Figure 11: Demo interface for gender inference using our proposed models.

English and predicts a gender label with prob-
abilities. The demo can be accessed using the
link: https://asad.qcri.org/demo (part
of ASAD tools (Hassan et al., 2021)). A screenshot
of the demo is presented in Figure 11.
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Abstract

Monitoring vaccine behaviour through social
media can guide health policy. We present a
new dataset of 9471 tweets posted in Australia
from 2020 to 2022, annotated with sentiment
toward vaccines and also 5C, the five types
of behaviour toward vaccines, a scheme com-
monly used in health psychology literature. We
benchmark our dataset using BERT and Gra-
dient Boosting Machine and show that jointly
training both sentiment and 5C tasks (F1=48)
outperforms individual training (F1=39) in this
highly imbalanced data. Our sentiment analysis
indicates close correlation between the senti-
ments and prominent events during the pan-
demic. We hope that our dataset and bench-
mark models will inform further work in online
monitoring of vaccine behaviour. The dataset
and benchmark methods are accessible online.1

1 Introduction

The development of effective and safe vaccines has
been shown as one of the most successful means to
mitigate the spread of COVID-19 disease around
the globe. As with any other vaccination program,
COVID-19 intervention in any country depends on
public acceptance and vaccine uptake. This has to
be done by a large proportion of society to attain
herd immunity, which is estimated to range from
67% to 95% (Mills et al., 2020; Randolph and Bar-
reiro, 2020; Anderson et al., 2020). However, vac-
cine hesitancy has been identified as one of the top
10 challenges to global health by the World Health
Organization in 2019 (World Health Organization,
2019 January [cited 14 August 2022]).

Vaccine hesitancy refers to the delay in accep-
tance or refusal of vaccination by the public despite
the availability of vaccination services (MacDonald
et al., 2015). This behaviour has been significantly

1https://github.com/ajayhemanth/
5C-Twitter

prominent towards COVID-19 vaccines as they dif-
fer from previous vaccines in many respects: accel-
erated development, novel techniques used, poten-
tial side effects, uncertainty regarding the size and
extent of their effectiveness, and limited production
compared to the demand (Dubé and MacDonald,
2020).

Australia began its mass vaccination program in
late February 2021 but was initially hampered by
low vaccine uptake due to mistrust of vaccine effec-
tiveness and the government, the blood clotting syn-
drome (TTS) associated with the AstraZeneca prod-
uct, shipment delays, and misinformation (Kauf-
man et al., 2022b). Despite the fact that the present
uptake is high (> 90% two doses for over 16 years),
the coverage varies across age, jurisdictions, and
the number of doses (Australian Government: De-
partment of Health and Aged Care, 2022 August
[cited 14 August 2022]). High coverage is primar-
ily driven by travel desires (and travel vaccination
requirements) and the need to mitigate risk. As
new variants of SARS-CoV-2 are emerging and
existing immunity waning in a short period of time,
it is likely that people will need to get multiple
booster doses. Consequently, identifying immedi-
ate and future public behaviour toward vaccination
is important for public health authorities to combat
possible challenges to reaching and maintaining
herd immunity.

The 5C model provides five measures (Confi-
dence, Complacency, Constraints, Calculation and
Collective Responsibility) for assessing an indi-
vidual’s psychological reasoning towards vaccina-
tion (Betsch et al., 2018, 2020). Confidence as-
sociates the trust in vaccine effectiveness, safety,
and the system that delivers it. People with low
confidence mistrust the healthcare system, fall for
misinformation, believe in conspiracies, and doubt
the benefit of vaccines. Complacency exists when
vaccination is viewed as a low priority or when
vaccine-preventable diseases are not of a concern.
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High complacency correlates with low uptake of
a vaccine. Constraints refer to the structural and
psychological barriers to getting vaccinated. For
example, geographical constraints in accessibility,
limited language, and health literacy, and cost may
postulate high constraints. Calculation defines the
engagement in extensive information searching,
which may lead to lower vaccination willingness
arising with exposure to a high volume of anti-
vaccination content. Collective responsibility as-
serts an individual’s willingness to protect others
by getting vaccinated and contributes to herd immu-
nity. See Table 1 for a summary of the description
of the 5C model.

Most works in identifying vaccine behaviour use
surveys that are costly, time-consuming, and don’t
scale to a large population. The use of social me-
dia for expressing vaccine-related opinion provides
a great opportunity to use online social monitor-
ing tools to guide health policy-making for vac-
cine adoption. There are few recent studies that
adapt the 5C scheme for online health monitoring.
Greyling and Rossouw (2022) focus on the analysis
of tweets rather than building predictive models,
Fues Wahl et al. (2022)’s uses 1794 tweets from
Scandinavian users and manually categorise them
into the 5C categories, and Boucher et al. (2021)
focuses on the vaccine trials and uses unsupervised
methods.

Our contributions are as follows: 1) we provide
the first large-scale vaccine behaviour dataset in
English, annotated with both 5c and sentiment; 2)
we present two benchmark models and show the
challenges of 5C predictive models given the highly
imbalanced data; and 3) we analyse the data show-
ing that changes in 5C distribution is not uniform
across regions, indicating opportunities for targeted
health messaging. We make the dataset and bench-
marks available hoping to impact future work in
online vaccine behaviour monitoring based on the
5C framework.

2 Related work

The 5C model has been widely applied to exam-
ine COVID-19 vaccination behaviour. In 2020,
Kwok et al. (2021a) estimated Hong Kong nurses’
intention to receive COVID-19 vaccine using the
5C model and examines the correlation of their
vaccine behaviour to previous influenza vaccina-
tion. Thunström et al. (2021) applied the 5C scale

to investigate psychological reasoning behind the
previous uptake of measles and flu vaccines by
adults in the United States and their intention to
get COVID-19 vaccination for themselves and their
children. Wismans et al. (2021) studied the psycho-
logical drivers of vaccination intention in university
students across the Netherlands, Belgium and Por-
tugal, using the 5C model. Gallant et al. (2021) im-
plemented the 5C model to investigate older adults’
vaccination behaviour in the United Kingdom over
the first year of the pandemic. Lindholt et al. (2021)
examined the levels and predictors of acceptance of
an approved COVID-19 vaccine in eight Western
countries by utilizing the 5C model. Rustagi et al.
(2022) applied the 5C model to identify vaccine
hesitancy among chronic disease patients availing
care in a primary health facility in India.

Previous studies examined COVID-19 vaccina-
tion behavior utilizing traditional surveys (Seale
et al., 2021; Trent et al., 2022; Rhodes et al., 2021;
Edwards et al., 2021; Dodd et al., 2021; Kaufman
et al., 2022a; Kwok et al., 2021a; Thunström et al.,
2021; Sherman et al., 2021; Wismans et al., 2021;
Paul et al., 2021; Sallam, 2021; Akarsu et al., 2021;
Fisher et al., 2020; Freeman et al., 2020; Ward et al.,
2020; Lazarus et al., 2021). However, such surveys
are often costly in their design and implementation,
time-consuming, produces limited data and repre-
sent comparatively short-term situation. Recently,
Twitter has been increasingly applied in research
concerning public attitude towards vaccination due
to its advantages of availability of a large amount
of real-time posts without any costs, ease of ac-
cess and public searching facility. In spite of these
advantages, there remains a gap in Australia for
Twitter-based COVID-19 vaccination research. We
found just one study (Kwok et al., 2021b), con-
ducted during 2020, which addresses Australian
public opinion towards COVID-19 vaccine solely
from Australian Twitter users. Sentiment analysis
of this study has shown that the majority of peo-
ple expressed positive emotions towards vaccine
with trust and anticipation as the most prominent
behaviors associated with it, while fear being the
top negative emotion.

An investigation of Twitter posts from 10 coun-
tries, including Australia, has revealed that more in-
formation about vaccines’ safety and the expected
side effects may increase public positive attitudes
towards vaccination Greyling and Rossouw (2022).
Similarly, sentiment analysis from 4 million tweets
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Label Behavior Description
C1 Confidence Trust in safety and effectiveness of vaccines and health system
C2 Constraints Structural and psychological barriers
C3 Complacency Not perceiving diseases as high risk
C4 Calculation Engagement in extensive information searching
C5 Collective responsibility Willingness to protect others

Table 1: Description of 5C categories. Collective Responsibility and Responsibility (Resp.) are used interchangeably
in this work.

across several nations, including Australia, has
found the prevalence of vaccine hesitancy and
objections outweighs vaccine interests (Yousefi-
naghani et al., 2021). Various other studies have
assessed COVID-19 vaccination behavior using
Twitter data from a specific country or a particu-
lar region. These include, studies based on posts
from the United States (Jang et al., 2021; Engel-
Rebitzer et al., 2021; Germani and Biller-Andorno,
2021), the United Kingdom (Hussain et al., 2021),
Japan (Niu et al., 2022b,a), China (Gao et al., 2021;
Wang et al., 2020), Canada (Griffith et al., 2021),
Africa (Gbashi et al., 2021). Other studies ad-
dress COVID-19 vaccination behaviour at a global
scale (Chopra et al., 2021; Lyu et al., 2021; Xue
et al., 2020).

Along with sentiment analysis, some studies
have implemented the 5C model to examine
COVID-19 vaccination emotions as well as atti-
tudes towards other vaccines in tweets. Greyling
and Rossouw (2022) constructed a multiple linear
regression model to examine positive attitudes to-
wards vaccines across ten countries. In their model,
among other methods, the positive 5C categories
were applied to identify the covariates. Boucher
et al. (2021) applied a topic modeling approach
to investigate the mistrust in Covid-19 vaccina-
tion based on English and French tweets. They
then used the 5C scale to categorize the topics and
found that all mistrusts fell into the Confidence
category. Fues Wahl et al. (2022) applied the 5C
model to map relevant predictors for several vac-
cination behaviours in Scandinavian Twitter users.
Similar to our work, they manually labelled each
tweet according to the 5C scale. However, unlike
our dataset, their dataset was multi-labeled, as each
tweet was assumed to have multiple 5C categories.
They did not, however, include Covid-19 vacci-
nation as a specific vaccination category in their
analysis.

3 Method

3.1 Dataset

We made use of the Twitter API to collect 60, 000
COVID-19 vaccine-related tweets restricted to Aus-
tralia from 01 February 2020 to 30 October 2021,
using keywords: vax, vaccine, vaccinate, vacci-
nation, jab, pfizer, astrazeneca. We selected a
weighted sample of 20, 000 tweets with weights
proportional to the total number of tweets within
the time frame of a week and annotated each tweet
first based on its sentiment towards vaccination and
then its associated 5C category if the tweet con-
tains either a positive or negative stance. We note
that some tweets do not provide a clear positive
or negative stance and thus have been categorized
accordingly if the stance is totally irrelevant to the
topic of vaccination, or if the stance concerns vac-
cination, but does not belong to either the positive
or negative category. We excluded tweets from the
last two categories in our analysis. We labeled each
tweet based on the most prominent 5C behaviour.
Thus, our dataset has the structure of binary cate-
gories in terms of tweet’s sentiment and multi-class
categories with regard to 5C vaccine behaviour.
Table 2 depicts a sample of labeled tweets. The fi-
nal dataset consists of 9471 annotated tweets. The
study has received clearance by the authors’ organ-
isation’s human research ethics committee.

We note that, in the original 5C model (Betsch
et al., 2018) much of the description was made for
the negative aspects of the model, hence we made
some discretion for labeling positive 5C categories,
as, based on the tweet texts, these categories were
not clearly identified. For example, tweets which
mentioned only about taking vaccine without any
further explanations (like ‘got my first vaccine !!!’)
were labeled as positive Confidence. Tweets which
talked about getting vaccine as a compulsory ac-
tion (like ‘no jab no job’) were labeled as positive
Constraints. Similarly, tweets which supported vac-
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Label Sample Tweet (rephrased for privacy reasons)
+ Complacency It takes just one COVID infected person to start a Pandemic. Please vaccinate.
+ Complacency Resp. Difficult to wear mask but we have to. Vaccinate, not just for yourself but for

others too.
+ Calculation Vaccines don’t prevent infections, they prevent severe disease and hospitalisa-

tion.
+ Constraints no jab no job. That’s how it should be.
- Complacency 99% of people recover from COVID, vaccines shouldn’t be mandated.
- Confidence A vaccine that might kill you for various reasons while big pharma benefits.
- Calculation myocarditis risks is higher in teenage boys, we shouldn’t rush into vaccinating

them.
- Constraint AZ age limit should be 60, not 50

Table 2: A sample of eight tweets (rephrased for privacy reasons) and their labels. + and - refer to the positive and
negative sentiments towards COVID-19 vaccination, respectively. The five C categories are also shown (see Table 1
for definition).

cine based on data as well as personal experience
(like ‘I took AZ vaccine 1 week ago, and there is
no symptoms of blood clot’) were categorized as
positive Calculations. To check the validity of the
annotations, we compared annotation agreements
between two researchers from the team who inde-
pendently labeled a random sample of 200 tweets.
Using the Cohen’s kappa (Cohen, 1960; McHugh,
2012) statistic, we found a strong (κ = 0.95) level
of agreement between the researchers with regards
to the sentiment labels (see Table 3 for contingency
table), and a strong (κ = 0.88) agreement for the
5C labels (see Table 4 for contingency table). All
200 tweets have been used in the sentiment label
comparison while only those tweets which both an-
notators agreed as positive and negative have been
included in the 5C label comparison.

A/B InSuff Neg Pos X
Insuff 19 0 2 0
Neg 0 68 0 0
Pos 1 0 82 1
X 0 2 1 24

Table 3: Summary of annotation agreements between
two researchers for a random sample of 200 tweets. La-
bels indicate positive (Pos), negative (Neg), irrelevant
(Insuff) and inconclusive (X) stance towards vaccina-
tion.

3.2 Data Analysis

Overall, people expressed significantly high nega-
tive emotions in the Constraints category, similar
levels of positive and negative emotions in the Com-

A/B C1 C2 C3 C4 C5
C1 75 0 2 1 1
C2 0 27 1 1 2
C3 0 0 4 0 1
C4 0 0 0 4 0
C5 0 1 0 0 17

Table 4: Annotation agreement table for 5C (See Table1
for the definition of C1-C5).

placency category and have been otherwise always
positive towards vaccination depicting high Confi-
dence and Calculation behaviours (Figure 1). The
most eminent concerns regarding negative emo-
tions have been related to the constraints caused
by vaccine roll out, Pfizer vaccine, aged care facil-
ities, and the government and its leader (Table 5).
On the other hand AstraZeneca and Pfizer vaccines
and COVID vaccine in general lead among posi-
tive topics, with high calculations and confidence
associated with them (Table 5). A high number
of tweets with the Positive Calculation category
relate to the tweets in support of AstraZeneca with
their own experience as evidence to disprove the
tweets associating blood clot issues with that vac-
cine. This causes AstraZeneca to be a dominant
unigram in both positive and negative instances.

As the pandemic prevailed from 2020 to 2022,
negative attitudes towards vaccination continuously
varied in terms of prevalence and corresponding
5C reasoning. During 2020, the prevalence of neg-
ative stances has been relatively stable apart from
the peaks around August and December, and the
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Label Bigrams
Constraints vaccine rollout, scott morrison, aged care
Confidence az vaccine, catching measles, pfizer vaccine
Complacency COVID19 vaccine, blood clots, cold flu
Calculation blood clots, sore arm, az vaccine
Collective Resp. aged care, stay safe, vaccine hub
Positive az vaccine, pfizer vaccine, sore arm
Negative vaccine rollout, az vaccine, scott morrison

Table 5: Top 3 most frequent bigrams categorized by their sentiment and 5C classes.

Figure 1: Distribution of positive and negative 5C.

shallow dips between the end of May to the end of
July and in September (Figure 2 (left)). The shal-
low period from the end of May 2020 to the end of
July 2020 coincides with the event of high approval
towards the government for proactively closing the
border, implementing lockdown, releasing super
funds. Negative stances have been stable from early
2021 until around the end of March, and peaked
during April, possibly due to the panic caused by
the blood clot from AstraZeneca vaccine. Multi-
ple peaks have then appeared with prominent ones
occurring in July, August and December 2021 (Fig-
ure 2 (right)). The peaks in July and August cor-
relate with the public outrage caused by the short-
age of vaccine doses, the continuous emergence of
blood clotting incidences from AstraZeneca vac-
cine, and the government ignoring to use the offer
of Pfizer vaccine from that company. Consequently,
the peak in December 2021 correlates to high dis-
pleasure towards the government at that time.

From the beginning of 2020 until around Novem-
ber that year, people voiced strong lack of con-
fidence with regard to vaccination, but has then
changed to the constraints from December 2021
onward until September 2021 where the notion
has turned back to lack of confidence. Collective
responsibility has not been consequential much
to negative emotions except during April 2020 to

March 2020 (Figure 2 (left)). This may be due to
the fact that people resisting to lockdowns around
April 2020, pointing their right to freedom. Such
emotions have reduced after June 2020, with many
deaths due to Covid occurring during April 2020.
High level of negative confidence seen from Oc-
tober 2020 to the end of that year may be related
to the events of the development of vaccines and
people being doubtful of their effectiveness due to
some vaccinated people in other countries getting
re-infected. The emergence of negative Compla-
cency and Collective responsibility from February
2021 to March 2021 may happen because of pub-
lic resistance to the government’s allocated vac-
cine, pointing out their right to choose the vaccine
type. High level of negative Constraints emotion
depicted from April 2021 onward may be a con-
sequence of combination of several factors: short-
age of vaccine, fear of blood clotting from the As-
traZeneca vaccine, the failure of government to
secure Pfizer vaccine when it was first available.

The bulk of opinions about vaccination has been
arising from people residing in Sydney and Mel-
bourne, the most populated two cities in Aus-
tralia (Australian Bureau of Statistics, 2022 Au-
gust [cited 24 August 2022](b)), with Melbourne
slightly dominating in terms of negative stances and
people from both cities displaying quite similar lev-
els of positive emotions (Figure 3). Both cities have
shown identical behavior in terms of the 5C scale,
with negative attitudes attributed mostly to lack of
confidence and calculative behaviour, while posi-
tive attitudes related mostly to constraints, collec-
tive responsibility and confidence behaviour. The
prevalence of tweets and people’s variable emo-
tions in Melbourne and Sydney towards vaccina-
tion may also be related to long lockdown peri-
ods in Victoria and New South Wales where these
two cities are located, respectively (Australian Bu-
reau of Statistics, 2022 August [cited 24 August
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Figure 2: Changes of negative sentiment 5C’s through 2020 and 2021 aligned with major COVID-related events.
The description of the events are from: Statista (2020 August [cited 24 August 2022]); 9News (2021 August [cited
24 August 2022]); BBC News (2021 August [cited 24 August 2022](a),A); Reuters (2022 August [cited 24 August
2022]).

2022](a)).

Figure 3: Distribution of positive and negative 5Cs
based on location.

3.3 Vaccine behaviour identification

We perform three predictive modeling tasks in our
analysis: (1) predicting the sentiment of tweets, (2)
predicting the 5C vaccination behaviour in tweets,
(3) predicting the combined sentiment and 5C cate-
gories in tweets:

Task 1 - Sentiment Identification: The first task
is a binary classification problem to identify regard-
less of the type of behaviour if the post expresses
positive or negative attitude towards vaccination.
This task is framed as a binary classification prob-
lem.

Task 2 - 5C Categorisation: In task 2 our goal
is to identify one of the 5C categories from the
tweet content regardless of its sentiment. This task
is useful to practitioners where there is no senti-
ment expressed, however, one of the 5C vaccine

behaviours are expressed through posts. For ex-
ample, a vaccine researcher might be expressing
scientific data regarding the risks versus benefits
of a vaccine in certain population groups without
necessarily expressing an opinion. This task is for-
mulated as a multi-class classification trained using
categorical cross-entropy loss.

Task 3 - Combined Sentiment and 5C Categori-
sation : In this task, we categorise a post into one
of the ten categories resulting from the two sen-
timents and the five vaccine behaviour types (10
classes). We formulate this task as a multi-class
problem. To identify if the information in the senti-
ment and the vaccine attitudes are complementary,
we compare the results with a model where Task
1 and 2 are trained separately but the results are
combined after prediction.

For our benchmark models, we use BERT (De-
vlin et al., 2018) using the base-uncased English
version. To make sure the results are reasonable,
we compare Task 3 with a Gradient Boosting Ma-
chine (GBM) (Hastie et al., 2009) baseline using
TF-IDF features. Prior to fitting the models, we
pre-processed the tweet texts by removing stop
words (only for GBM), tokenizing sentences and
encoding the words to integers. We then randomly
partitioned the dataset into train/test/validation sets
in the ratio 7 : 1 : 2.

GBM, in Task 3, is a tree-based ML model which
sequentially fits new models to enhance the accu-
racy of the estimated response variable supervised
learning tasks such as the classification problems
we address here. For each predictive modeling task,
we use 50 trees, each with a maximum depth of
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Label P% R% F1%
+Sentiment 90 87 88
-Sentiment 81 84 82
Confidence 48 55 51
Constraints 79 79 79
Complacency 25 18 21
Calculation 61 60 60
Collective Resp. 62 52 57
Combined at prediction 39 39 39

Table 6: Performance of BERT in predicting the sen-
timent (task 1), 5C categories (task 2) and combined
sentiment and 5C during prediction.

15 and the minimum number of observations at
each leaf node being also 15. The learning rate and
column sample rate have been set to 0.1 and 0.4,
respectively. We use grid search with 1 to 70 trees,
having maximum tree depth in the range 3 to 7,
with column sample rate of 0.4 to 1 and minimum
rows from 1 to 100 to search for the best param-
eters in GBM using cross-validation. For BERT,
we use the default parameters of the pre-trained
model. Additionally, the number of nodes in the
output layer equals the total number of classes to
be predicted, the activation function of the output
layer is "softmax", with the loss function being
"categorical cross-entropy".

We evaluate the performance of the models us-
ing the precision, recall and F1 scores which are
commonly applied measures in classification prob-
lems. Because of the imbalanced nature of our
problem, we use macro-averaged F1 to evaluate
across multiple classes.

4 Results

Our results assert that the largest F1 value corre-
sponds to positive sentiments (88%) from the sen-
timent task (task 1) and the Constraint class (79%)
in predicting the 5C task (task 2) (Table 6). Our
results further show that BERT has correctly pre-
dicted the 5C categories 1191 times (Table 7).

For the combined sentiment and 5C prediction
task (task 3), our prediction depicts that the neg-
ative Constraints (80%) and positive Calculation
and Collective Responsibility categories (59% for
both) have the highest F1 measure (Table 8). BERT
has performed quite variably in predicting individ-
ual class in all three tasks due to the imbalanced
nature of our dataset across the classes. This can

A/B C1 C2 C3 C4 C5
C1 297 84 39 166 70
C2 33 482 11 26 30
C3 2 5 3 1 1
C4 86 19 12 274 27
C5 44 24 7 14 138

Table 7: Confusion matrix for predicting the 5C cate-
gories (task 2).

Label P% R% F1%
-Confidence 49 44 46
-Constraints 78 83 80
-Complacency 26 29 27
-Calculation 49 40 44
-Responsibility 20 13 16
+Confidence 47 51 49
+Constraint 33 28 30
+Complacency 7 10 8
+Calculation 61 57 59
+Collective Resp. 62 57 59

Table 8: Performance of BERT in predicting the com-
bined sentiment and 5C categories (task 3).

be visualized from Figure 4, in which we can see
that classes with lower proportions have been less
likely predicted. As such, we fitted a GBM model
to predict the combined sentiment and 5C task, and
found that, overall, BERT performed better than
GBM (F1 score of 48%).

We stress that GBM uses boosting, so it over-
samples difficult instances, for example, less fre-
quent ones, and thus can handle class imbalance
in an indirect way to some extent. However, both
GBM and BERT were to be affected by the class
imbalance. When the weights of the low-frequency
categories were increased to fix this issue, they re-
duced the accuracy of other categories, and hence
we did not implement class weights in the models.

5 Conclusion

We presented the first large dataset for online mon-
itoring vaccination behaviour in Australia, which
is annotated by public sentiments towards vaccina-
tion and their psychological reasoning by the 5C
scale. Our analysis has shown a close correlation
between the sentiments of the tweets and the promi-
nent events during the pandemic. Our analysis of
vaccination behaviour from this dataset showed
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Figure 4: Comparison of precision and recall scores
from the sentiment and 5C prediction task (task 3) with
the distribution of 5C categories.

Model P% R% F1%
BERT 53 38 48
GBM 36 28 32

Table 9: Comparison of the two benchmark methods
for the combined sentiment and 5C tweet classification
task.

large amount of negative emotions towards vac-
cination due to the constraints related to vaccine
rollout caused by its shortage, delay in securing
Pfizer vaccine when it was available, administering
vaccination to aged care facilities, and the govern-
ment’s handling of the vaccination program.

Using this dataset, we predicted the sentiments
towards vaccination, the 5C behaviour and the com-
bined sentiment and 5C behaviour using BERT. All
these predictive tasks are based on classification
models, and showed variable performance across
classes due to the imbalance proportion of data
across classes. We compared performance of BERT
with GBM in predicting the combined sentiment
and the 5C categories and found that BERT has
performed better than GBM.

Our work provides a proof of concept in the
application of 5C scales to monitor vaccination
behaviour using social media and can be extended
to other domains such as Facebook and Google
Trends.
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Abstract

Aggregate mining exploration results can help
companies and governments to optimise and
police mining permits and operations, a neces-
sity for transition to a renewable energy future,
however, these results are buried in unstruc-
tured text. We present a novel dataset from
23 Australian mining company reports, fram-
ing the extraction of structured drillhole infor-
mation as a sequence labelling task. Our two
benchmark models based on Bi-LSTM-CRF
and BERT, show their effectiveness in this task
with a F1 score of 77% and 87%, respectively.
Our dataset and benchmarks are accessible on-
line.1

1 Introduction

Mineral exploration involves drilling for core sam-
ples to assess their mineral composition. These
assays are published in annual reports and other
public announcements such as press releases. Of-
ten these results are presented in a semi-consistent
non-tabular form. There is an industry demand for
up-to-date mineral exploration results given that
aggregate mineral composition information across
a region or country can guide and optimise min-
eral exploration, however, current solutions involve
manual collection of data directly from public com-
pany resources, which is expensive, time-intensive,
and out-of-date (Riganti et al., 2015). This has
become more important as the transition from fos-
sil fuels to renewable energy has accelerated the
demand for minerals such as lithium, nickel and
rare earth metals. An assay report contains "drill-
hole sentences" which are phrases containing a
unique drillhole code, depth, material, type and
material percentage. See the example in Figure 1
from a mining company press release. The results
are buried in long reports that contain images and
natural language text with varying nomenclature,

1Link to the dataset

format and placement in the report across compa-
nies, geologists and mineral sectors, making their
automatic extraction by regular expressions very
challenging. The format of the drillhole sentences

Figure 1: Excerpt from Pilbara Minerals ASX An-
nouncement Pilbara Minerals (2021)

presents an opportunity to apply natural language
processing techniques to automatically extract drill-
hole data. In this paper, we assess the performance
of neural network models in extracting structured
information about drillhole mineral exploration re-
sults. To the best of our knowledge, this work is
the first to focus on extracting drillhole results from
unstructured text, acknowledging prior work on ex-
tracting other geological information such as rick
types Holden et al. (2019).

Our contributions are: a) developing a novel
dataset for structured drillhole result extraction
from 23 public Australian Stock Exchange (ASX)
listed mining companies involved in mineral ex-
ploration.; b) formulating the extraction task as
sequence labelling and presenting two benchmarks:
a bidirectional LSTM network with a conditional
random field layer (BI-LSTM-CRF) (Lample et al.,
2016) and BERT (Devlin et al., 2019), showing that
both perform fairly well; and c) performing error
analysis and identifying major error types to guide
future work.

2 Related Work

In this section, we provide insight into previous
work performed on extracting geological data from
reports and an overview of neural network models
for sequence labelling tasks.
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2.1 Geological NLP

Various NLP approaches have been used to ex-
tract geological data from reports. GeoDocA is
a search portal developed to search for geological
terms in reports, research papers and geology re-
sults (Holden et al., 2019). GeoDocA performs
part-of-speech tagging using a POS tagger from
Manning et al. (2014). Although GeoDocA im-
plements a non-neural network machine learning
approach, compared to other research GeoDocA’s
results are most similar to the drillhole data we have
extracted from public Australian mining company
reports; and use a more textually similar corpus.

Consoli et al. (2020) applies a Bi-LSTM-CRF
model to perform POS tagging on Portuguese geo-
science literature, however, its objective was to
compare different methods of word embedding.
They made use of an existing corpus, GeoCorpus-2
and its predecessor from Amaral (2017) tagging
rock types and numeric data such as age and period.
Consoli et al. (2020) achieved a F1 from 53.71%
up to 84.63% while Amaral (2017) achieved an F1
score of 54.33%. Challenges in developing NLP
models for mining report extraction include the
availability of text corpus that contains useful ge-
ological terms, and industry-level terminology as
shown in Tessarollo and Rademaker (2020).

2.2 Deep Learning for Sequence Labelling

Various neural network models have been used
for NLP. LSTM models and their variations have
proven to be robust against newer models in natural
language tasks including sequence labelling(Melis
et al., 2017). Newer models are being developed
to better handle more complex language structure,
more recently with transformers-based models such
as BERT (Devlin et al., 2018). Drillhole sentences
are in a structured format, contained in unstruc-
tured text. The Bi-LSTM-CRF and BERT bench-
mark models used to perform sequence labelling on
the drillhole sentence implement model tuning for
structured data in their loss functions. BERT make
use of the cross-entropy loss function to tune the
model weights to sentence structure while the Bi-
LSTM-CRF model uses an individual CRF layer on
top of the Bi-LSTM layers that is tuned to sentence
structure. One of the key performance distinctions
transformers have shown is being able to better
recognise sentence-level context of words, beyond
just feature-based models Ghaddar et al. (2021),
hence the addition of a CRF layer to a base LSTM

model (Lample et al., 2016).

3 Data

The dataset consists of 50 reports from 23 ASX-
listed mining exploration companies. The selection
criteria for reports, extraction and segmentation of
text from the PDF files and the annotation process
are reported in this section. Additionally, to test
the generalisation ability of the models, the dataset
is split into training, dev and test sets based on a)
random; b) material; and c) company, to find out
if the benchmark models will be able to generalise
across materials and companies.

3.1 Selecting Reports

We chose 40 publicly listed mineral companies
on the Australian Stock Exchange (ASX). The se-
lection involved sorting the mining companies ac-
cording to their market capitalisation and randomly
selecting 7, 7, and 6 companies from the top, mid-
dle, and bottom bins, respectively. In addition, we
also included the last 20 mining companies recently
listed on the ASX to include more variety in terms
of formatting and materials. Annual reports dating
back to 2014 were collected from the websites of
these companies. Reports and companies without
any drillhole results were excluded. The final cor-
pus includes 50 reports from 23 companies which
covers a variety of drillhole result formats, materi-
als, localities, and company maturity.

3.2 Preprocessing

The 50 reports included in the corpus are in PDF
format. We extracted the text using a PDF parser.
Due to the inherent nature of automated PDF ex-
traction, it introduced conversion artefacts into the
extracted text resulting in the fragmentation of sen-
tences. To split the extracted text into sentences
for the sequence labelling annotation task, we used
a rule-based tokeniser that splits sentences after
common punctuations and new line characters. Ini-
tially, we used the Punkt sentence tokeniser Kiss
and Strunk (2006), however, it yielded highly irreg-
ular sentence lengths and split drillhole sentences
apart as a result of the quality of text extracted from
the PDF files. The rule-based sentence tokeniser,
however, worked fairly well in comparison. The
corpus contained over 20,000 sentences with the
majority being of a consistent length.
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Set Hole ID Material Percentage Depth Extra Outside Sentence Count
Train 51% 56% 56% 53% 51% 53% 17.2K
Dev 19% 16% 15% 17% 20% 15% 2.2K
Test 31% 28% 29% 30% 29% 32% 3.3K
Count 1.2K 1.4K 1.9K 2.4K 3.7K 667K 22.7K

Table 1: Tag split among each set shown as a percentage of the total count

3.3 Annotation
Annotation of the dataset was performed on the
dataset text files using the IOB sequence tagging
format by the author of this work. Four tags were
chosen to extract the material: hole id, percentage,
material, and depth. A fifth tag was included for
words commonly used in drillhole sentences such
as "from" and "to" when referring to the hole depth.
The tagging schema is shown in Table 2.

Tag Category Example
H Hole ID PLS1328
M Material Li2O
P Percentage 0.23%
D Depth 3m
E Extra from
O Outside This

Table 2: IOB Tags

Due to the varying types of drillhole sentence
formats, a set of rules was adopted to have consis-
tent annotation of the data. The most significant
rules:

• Sentence Length: A drillhole sentences must
be separated by punctuation or words tagged
as outside.

• Non-numerical values: Non-numeral depths
and percentage were included.

• Hole ID Format: Drillhole sentences that use
a location instead of a hole ID were not in-
cluded unless directly adjacent to a hole ID.

• Punctuation: Punctuation that is involved
with the direct indication the start of a drill-
hole sentence was tagged with the extra tag.

• Filler Words: Words that are used inside a
drillhole sentence are tagged as extra when
are used to refer to depth, material, percentage
or Hole ID tags.

One of the challenges faced with tagging the
dataset was the similarity of drillhole sentences
to other geological sentences in the reports. For
example, within a piece of text a part of a drill-
hole result might be mentioned without referring

to a specific drillhole. We decided to tag these
sentences even if they weren’t associated with a
hole ID to improve the performance of the model
as these sentences also contain material, depth, and
percentage attributes. For downstream applications,
it will be easy to ignore such information as they
are not accompanied by a drillhole ID.

3.4 Annotation Quality

In total, the entire corpus contained over 680K
words with 10.8K words being tagged as part of
a drillhole sentence (not tagged as outside) result-
ing in a highly imbalanced dataset. The corpus
contained a total of 22.7K sentences. Resource
constraints meant that the compiling and annota-
tion of the dataset was a result of a single annotator.
Therefore, annotation quality could not be assessed
with an inter-annotator agreement. Some analysis
of the annotation can be inferred from the error
analysis, however the results of the Bi-LSTM-CRF
and BERT models will based on a dataset with
some annotation inconsistencies.

3.5 Dataset Split

The format, placement in text, and materials vary
between reports. For example, a company might
use the drillhole ID in parenthesis at the end of a
drillhole sentence while another company might
use the drillhole ID at the front of a sentence fol-
lowed by a colon. Similarly, the same material
might have various names depending on the type
of nomenclature the geologist use. To find out if
a model trained on a specific variety of data will
generalise on unseen data we split the dataset into
training, dev and test sets based on a) random split;
b) material; and c) company. The split based on
material and company was performed in a way that
materials and companies in the dev and test sets
were disjoint from the training set, however, Gold,
’au’, was the most common material tag, account-
ing for 80% of all material tags, this was assumed
to be in all the material datasets. Table 1 shows the
proportion of each tag in each set. The percentage
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Bi-LSTM-CRF BERT
Dataset P (%) R (%) F1(%) P (%) R (%) F1(%)
Random 91 ± 2 67 ± 11 77 ± 7 91 ± 2 78 ± 4 84 ± 2
Material 86 ± 2 75 ± 3 81 ± 3 87 ± 1 87 ± 1 87 ± 1
Company 89 ± 4 69 ± 12 77 ± 7 87 ± 1 87 ± 1 87 ± 1

Table 3: Test set results evaluated over the three split methods averaged over runs with five different seeds for the
two benchmarks, Bi-LSTM-CRF and BERT. Evaluation measures, P (Precision), R (Recall) and F1 scores show
standard deviation values. For detailed tag-specific results see appendix.

of tags among the training, dev, and test sets were
consistent across the three datasets.

4 Method

To measure the generalisation ability of a sequence
labeling task trained on our dataset we used two
benchmarks, both evaluated by precision, recall,
and f1 using seqeval library (Nakayama, 2018).

Bi-LSTM-CRF: We use the Bi-LSTM-CRF
model proposed in Lample et al. (2016) for the se-
quence labeling task of identifying drillhole result
segments. This model uses both word and character
embeddings which is suitable for our task which
involves chemical formulas and numerical tokens
that might only be captured through character in-
formation. The character and word embeddings are
concatenated and fed to a Bi-LSTM to capture se-
quential and contextual information. The resulting
final hidden states of the two directions are con-
catenated and fed into a Conditional Random Field
layer that models the conditional probability of the
tags.

BERT: We use BERT (Devlin et al., 2019) to find
out the effect of pre-training on massive amounts
of text on the performance of our task given the rel-
atively small training set and the ability of the pre-
trained transformers to transfer knowledge across
tasks in low-resource settings. Due to the com-
putational demands, we only experiment with the
base (uncased) version of BERT which is lighter
compared to BERT-Large in terms of the model
size. Given that BERT does not take into account
the characters, it is interesting to find out if it can
outperform Bi-LSTM-CRF which uses character
information.

4.1 Model Parameters

The Bi-LSTM-CRF model uses a default batch size
of 32 sentences and embedding size of 256. Tun-
ing of the learning rate was done by applying the

"LR Range Test" Smith (2015). A learning rate
value of 0.008 was set for the random and material
split datasets and a learning rate of 0.005 for the
company split dataset. The BERT model uses trans-
formers library with a maximum sequence length
of 512 and a default learning rate of 5e-5 for all
dataset splits.

5 Results

Evaluation results are shown in Table 3. Overall,
both Bi-LSTM-CRF and BERT perform well with
an F1 score of 78% and 86%, respectively. Recall
is considerably lower than precision for both mod-
els which is the result of the class imbalance in
the training set, having a large number of outside
tags. BERT outperforms Bi-LSTM-CRF substan-
tially in terms of recall across the three dataset
splits, demonstrating better adaptation to various
drillhole sentence structures, contexts and nomen-
clature used in the mining reports. The standard
deviation of Bi-LSTM-CRF across the three dataset
splits and the three evaluation measures was much
higher than BERT, indicating that BERT, as ex-
pected, is more robust to variation in language use.
In terms of splits, while Bi-LSTM-CRF shows vari-
ation across the three datasets, BERT is able to
consistently generalise to unseen examples from
various companies and materials.

Upon further inspection of tag-specific results
(shown in appendix), the recall of Bi-LSTM-CRF
is 38% which is substantially lower than that of
BERT with a recall of 66%. The identification of
drillhole is an essential component of extracting the
structured drillhole results from reports as it can
uniquely identify a drillhole across several reports.

5.1 Error Analysis

Given the lower computational demands of the Bi-
LSTM-CRF model, error analysis was performed
on the model to identify the types of errors the
model makes. The most frequent errors can be
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categorised into five classes:
• Context: variability and inconsistency in con-

text.
• Annotation: ambiguity in annotation.
• UNK: unseen words during training.
• Split tag: a tag split across multiple tokens.
• Not O: Correct tag is O, however, the model

predicts otherwise.
The error type counts are shown in Table 4. Overall,
the context and UNK errors are the most frequent
error types that can be addressed by creating noisy
data e.g. replacing unseen materials in various sen-
tences to create noisy supervision or to increase
annotation.

Split Random Material Company
Error Count Count Count

Context 1157 1053 617
Annotation 83 289 218

UNK 408 386 254
Split Tag 22 238 83

Not O 113 471 306
Total 1249 1345 883

Table 4: Error type counts for the three dataset splits for
Bi-LSTM-CRF

6 Conclusion

We present our work in creating a novel dataset for
extracting structured drillhole results from unstruc-
tured mining exploration reports. We formulate this
task as sequence labeling and show that while both
our two benchmarks Bi-LSTM-CRF and BERT
perform well with an F1 score of 77% and 87%,
respectively, BERT substantially outperforms Bi-
LSTM-CRF and is more robust to variation in lan-
guage and format. We performed error analysis on
the Bi-LSTM-CRF predictions and identified con-
text variation and unseen tokens in training data to
be the most frequent error types. Our error analysis
indicates improvement pathways for the Bi-LSTM-
CRF model which is more efficient for use in most
common computing settings.
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A Detailed Results

Bi-LSTM-CRF
Dataset Random Split Material Split ASX Split
Tag P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Depth 89 ± 2 70 ± 14 78 ± 9 85 ± 3 81 ± 2 83 ±2 82 ± 1 69 ± 5 74 ± 3
Extra 91 ± 2 70 ± 10 79 ± 6 86 ± 3 76 ± 3 81 ± 1 91 ± 3 63 ± 6 74 ± 3
Hole ID 88 ± 12 39 ± 4 53 ± 4 82 ± 10 37 ± 8 50 ± 8 84 ± 7 39 ± 6 53 ± 4
Material 95 ± 1 71 ± 12 81 ± 8 90 ± 2 78 ± 3 84 ± 1 92 ± 1 54 ± 4 68 ± 3
Percentage 93 ± 4 70 ± 14 79 ± 11 86 ± 3 76 ± 3 80± 1 92 ± 1 60 ± 5 73 ± 3
Total 91 ± 2 67 ± 11 77 ± 7 86 ± 2 75 ± 3 81 ± 3 89 ± 4 69 ± 12 77 ± 7

BERT
Depth 92 ± 2 83 ± 4 87 ± 2 87 ± 2 92 ± 2 89 ± 1 87 ± 2 92 ± 2 89 ± 1
Extra 91 ± 3 78 ± 5 84 ± 3 84 ± 1 89 ± 2 86 ± 1 84 ± 1 89 ± 2 86 ± 1
Hole ID 86 ± 6 62 ± 7 71 ± 4 88 ± 2 68 ± 9 76 ± 5 89 ± 2 68 ± 9 76 ± 5
Material 96 ± 2 82 ± 4 87 ± 1 92 ± 1 83 ± 2 87 ± 1 92 ± 1 83 ± 2 87 ± 1
Percentage 92 ± 3 80 ± 2 86 ± 2 88 ± 1 88 ± 2 88 ± 1 88 ± 1 88 ± 2 88 ± 1
Total 91 ± 2 78 ± 4 84 ± 2 87 ± 1 87 ± 1 87 ± 1 87 ± 1 87 ± 1 87 ± 1

Table 5: Test set results evaluated over the three split methods averaged over runs with five different seeds for the
two benchmarks, Bi-LSTM-CRF and BERT. Evaluation measures, P (Precision), R (Recall) and F1 scores show
standard deviation values.

It was shown that the variation of the F1 score was higher between datasets for the Bi-LSTM-CRF model
than the BERT model. Additionally, the variation of the F1 score for different seeds was also higher for
the Bi-LSTM-CRF model compared to the BERT model.
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B Detailed Error Analysis

Bi-LSTM-CRF Error Analysis
Dataset Split

Code Description Random Material ASX
1 Probability of O is greatest 1138 874 577
2 Not O prediction. Followed default con-

text when other context is required
24 177 92

3 Unknown word is a specific
depth/material/percentage

408 386 254

5 General Lack/incorrect of Context 596 265 212
5.1 Spurious Tag 201 292 192
5.2 Slightly Dissimilar context 336 319 121
6 Correct, but tagged as O because depth

was not a number
9 11 10

7 Error caused by split tag 280 238 83
9 Correct but not associated with drillhole 49 240 170
10 Error caused by previous error in se-

quence
23 76 225

C Fully Correct 25 38 38
NO Predicted tag was not O 113 471 306
Total 1249 1345 883

Table 6: Detailed Error Results for Bi-LSTM-CRF results

Error analysis was performed on the results for the Bi-LSTM-CRF model. Using a predefined error
schema in Table 6, a rules-based error tagger was implemented to sort the errors into category types.
The errors were further manually assessed for their correct error type and further categorised into error
subtypes. The majority of errors were due to context errors, which were further defined into subcategories;
spurious tags are tags that have been tagged outside of the drillhole sentence and the similar context
subcategory was for incorrect tags that are in an uncommon or irregular form of drillhole sentence.

Errors that were as a result of incorrect annotation and the model made a correct prediction
made up to 5% of all errors. In total, up to 23% of errors were due to inconsistent/incorrect annotation
and the model made the correct prediction.
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Abstract

Code-mixing (CM) is a frequently observed
phenomenon on social media platforms in mul-
tilingual societies such as India. While the
increase in code-mixed content on these plat-
forms provides good amount of data for study-
ing various aspects of code-mixing, the lack
of automated text analysis tools makes such
studies difficult. To overcome the same, tools
such as language identifiers and parts of-speech
(POS) taggers for analysing code-mixed data
have been developed. One such tool is Named
Entity Recognition (NER), an important Natu-
ral Language Processing (NLP) task, which is
not only a subtask of Information Extraction,
but is also needed for downstream NLP tasks
such as semantic role labeling. While entity
extraction from social media data is generally
difficult due to its informal nature, code-mixed
data further complicates the problem due to its
informal, unstructured and incomplete infor-
mation. In this work, we present the first ever
corpus for Kannada-English code-mixed social
media data with the corresponding named en-
tity tags for NER. We provide strong baselines
with machine learning classification models
such as CRF, Bi-LSTM, and Bi-LSTM-CRF
on our corpus with word, character, and lexical
features.

1 Introduction

With the rising popularity of social media platforms
such as Twitter, Facebook and Reddit, the volume
of texts on these platforms has also grown signifi-
cantly. Twitter alone has over 500 million test posts
(tweets) per day1. India, a country with over 300
million multilingual speakers, has over 23 million
users on Twitter as of January 20222, and code-
switching can be observed heavily on this social
media platform (Rijhwani et al., 2017).

1https://www.internetlivestats.com/twitter-statistics/
2https://www.statista.com/statistics/242606/number-of-

active-twitter-users-in-selected-countries/

Code-switching or code-mixing3 occurs when
"lexical items and/or grammatical features from
two languages appear in one sentence"(Muysken,
2000). Multilingual society speakers often tend
to switch back and forth between languages when
speaking or writing, mostly in informal settings. It
is of great interest to linguists because of its rela-
tionship with emotional expression (Rudra et al.,
2016) and identity. However, research efforts are
often hindered by the lack of automated NLP tools
to analyse massive amounts of code-mixed data
(Rudra et al., 2016).

Named Entity Recognition (NER) is the founda-
tion for many tasks related to Information Extrac-
tion. When exploring text corpora, being able to
explore and browse them by the people and places
mentioned in those texts becomes an essential fea-
ture.

Below is an example of a code-mixed Kannada-
English tweet which has also been translated into
English. Named entities have been tagged along
with the language tags (Ka-Kannada, En-English,
NE-Named Entity, Univ-Universal).

T1: Saanu/Person/NE next/Other/En
month/Other/En Gujarat/Location/NE
visit/Other/En madtale/Other/Ka #ex-
cited/Other/En :D/Other/Univ

Translation: Saanu will visit Gujarat
next month #excited :D

Kannada is a Dravidian language spoken ma-
jorly in the Indian state of Karnataka with over
56 million native and second-language (L2) speak-
ers worldwide. Kannada is also one of the six
languages designated as a classical language of
India by the Indian Government. In code-mixed
Kannada-English data, the mixing can happen at
phrase, word, syntactic and morphological levels

3The terms "code-mixing" and "code-switching" are used
interchangeably by many researchers, and we also use these
terms interchangeably
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too (Appidi et al., 2020). This adds to the fact
that the data from Twitter is already difficult to
analyse given its short length, high language varia-
tion, grammatical errors, unorthodox capitalisation,
and frequent use of emoticons, abbreviations and
hashtags.

There are widely known solutions for NER on
monolingual data of high-resource languages like
English (Jiang et al., 2022) and low-resource lan-
guages like Kannada (Pallavi et al., 2018, Ama-
rappa and Sathyanarayana, 2015), but the same is
not true for CM data. NER for code-mixed so-
cial media data in low-resource languages has been
explored only recently (details in section 2).

In this paper, we have tried to address this prob-
lem for Kannada-English code-mixed social media
data by creating the first ever corpus with named
entity tags and providing strong baselines for the
task of NER.

The structure of the paper is as follows. In Sec-
tion 2, we review the related work. In Section 3,
we discuss the annotation methodology and chal-
lenges involved. In Section 4, we describe the steps
involved in corpus creation and data statistics. In
Section 5, we describe our baseline systems. In
Section 6, we present the results of the experiments
conducted. Finally, in section 7, we conclude the
paper and discuss the future prospects.

2 Background and Related Work

A lot of work has been done in Named Entity
Recognition (NER) for resource rich language and
newswire data such as such as English (Finkel et al.,
2005), German (Tjong Kim Sang and De Meul-
der, 2003), and Spanish (Copara Zea et al., 2016).
However, the noisy data from social media plat-
forms like Twitter are different from traditional
textual resources due to slacker grammatical struc-
ture, spelling variations, abbreviations and more
(Ritter et al., 2011). NER for monolingual tweets
was explored in Ritter et al. (2011) and Li et al.
(2012).

Bali et al. (2014) analysed Facebook posts gen-
erated from Hindi-English bilingual users and con-
firmed the presence of significant code mixing in
them. Sharma et al. (2016) addressed the problem
of shallow parsing of Hindi-English code-mixed
social media text and developed a system for Hindi-
English code-mixed text that can identify the lan-
guage of the words, normalise them to their stan-
dard forms, assign them their POS tag and segment

into chunks. Bhargava et al. (2016) proposed a hy-
brid model for NER on Hindi-English and Tamil-
English CM dataset.

Appidi et al. (2020) reported a work on annotat-
ing CM Kannada-English data collected from Twit-
ter and creating POS tags for this corpus. Singh
et al. (2018a) presented an automatic NER of Hindi-
English CM data while Singh et al. (2018b) and
Srirangam et al. (2019) have presented a corpus
for NER in Hindi-English and Telugu-English CM
data respectively. For Kannada-English CM data,
Sowmya Lakshmi and Shambhavi (2017) have pro-
posed an automatic word-level Language Identifica-
tion (LID) system for sentences from social media
posts.

To the best of our knowledge, the corpus created
for this paper is the first ever Kannada-English
code-mixed social media corpus with Named Entity
tags.

3 Annotation Methodology

We label the tags with the present three Named
Entity tags ‘Person’, ‘Organisation’, ‘Location’,
which using the BIO standard become six NE tags.
B-Tag refers to beginning of a named entity and
I-Tag refers to the intermediate of the entity, if
the name is split into multiple tokens. We use the
‘Other’ tag for for tokens that don’t lie in any of the
six NE tags.

‘Per’ tag refers to the ‘Person’ entity which is
the name of a person, twitter handles and common
nick names of people.

The ‘Org’ tag refers to ‘Organisation’ entity
which is the name of a socio-political organisation
like ‘Bharatiya Janatha Party’, ‘BJP’, ‘JDS’; insti-
tutions like ‘RBI’ and ’Canara bank’; social media
companies like ’Youtube’, ‘Twitter’, ‘Facebook’,
’WhatsApp’, ‘Google’, etc.

‘Loc’ tag refers to the location named entity
which is assigned to the names of places for eg.
‘Mysore’, ‘Shimoga’, ‘#Bengaluru’, etc.

The following is an instance of annotation with
these tags-

T2: Tomorrow/Other ,/Other Chandu/B-
Per Reddy/I-Per avru/Other Mysore/B-
Loc alliro/Other NVIDIA/B-Org
Graphics/I-Org office/Other visit/Other
madtaare/Other !/Other

Translation: Tomorrow, Chandu Reddy
will visit NVIDIA Graphics office in
Mysore!
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The ones which does not lie in any of the men-
tioned tags are assigned ‘Other’ tag.

3.1 Challenges
Following are the challenges with annotating
Kannada-English code-mixed social media data-

• Word-level/morpheme-level code mixing be-
tween Kannada and English makes the prob-
lem harder as a CM word is a combination of
two words from different languages. This is
very common for the mixing of a noun from
English language or a named entity and prepo-
sitions from Kannada language.

For example, "companyge" is used as a sin-
gle word in code-mixed Kannada-English sen-
tence which roughly translates (depending on
context) to "to the company" in English.

Another common occurrence is the addition
of "-galu" to indicate plural form of words in
Kanglish. For example - "cargalu" for "cars",
"companygalu" for "companies", "bookgalu"
for "books", etc.

• Users tend to use colloquial words/slang on
social media and have their own preference
of native words. For example, baralilla is a
Kannada word and it can be written as brlilla,
barlilla, etc.

• Misspelled words are very common on so-
cial media. For example, a word like tonight
could be written as tonight, tonite, tonihgt,
ton8, etc., which posed a significant challenge
while building spelling agnostic models.

4 Corpus and statistics

4.1 Data collection
Data collection is a vital step while dealing with
any problem with any neural-network based ap-
proaches (Roh et al., 2021). As there are only a
few sources for code-mixed low-resource language
data, this would be challenging as it is difficult to
build supervised models.

The corpus that we created from Twitter4

for Kannada-English code-mixed tweets contains
tweets from December 2020 to August 2022. We
used hashtags related to city names where Kan-
nada is widely spoken, politics, movies, events,
and trending hashtags in collecting the corpus. We

4http://twitter.com/

Label Count of tokens
Kannada 20,380
English 19,701

Named Entities 8,096
Universal 5,208

Total number of tokens 53,385
Avg. tweet length 14.2

Total tweets 3,759

Table 1: Corpus statistics

Tag Count of tokens
B-Per 3,729
I-Per 787

B-Org 1,338
I-Org 750
B-Loc 1,137
I-Loc 355

Table 2: NER tag statistics

also manually identified some of the Twitter ac-
count that posted often with code mixing between
Kannada and English languages.

Using the twitter API, we retrieved around
222,124 tweets. The following types of tweets
were identified and removed-

• Tweets having only English or only Kannada.

• Tweets having only URLs, emojis or hashtags.

• Tweets with less than 5 tokens.

After manually filtering the data with the steps
mentioned above, we were left with 3,759 code-
mixed Kannada-English tweets. We tokenized
these sentences and removed URLs from the same
in an effort to reduce the noise.

4.2 Data statistics
The corpus has a total of 53,385 tokens which were
tagged for the 7 tags mentioned in the Section 3.
The corpus statistics and the tag statistics can be
seen in Table 1 and Table 2 respectively.

The corpus will be made available online for
public use at the earliest.

4.3 Inter Annotator Agreement
Annotation of the dataset for NE tags in the tweets
was carried out by 2 human annotators having lin-
guistic background and proficiency in both Kan-
nada and English based on the methodology in Sec-
tion 3. In order to validate the quality of annotation,

156



Tag Cohen Kappa score
B-Per 0.97
I-Per 0.96

B-Org 0.97
I-Org 0.91
B-Loc 0.96
I-Loc 0.94

Table 3: Inter Annotator Agreement

we calculated the inter annotator agreement (IAA)
between the 2 annotation sets of 3,759 code-mixed
tweets having 53,385 tokens using Cohen’s Kappa
(Cohen, 1960). Table 3 shows the results of agree-
ment analysis. We find that the agreement is signif-
icantly high. Furthermore, the agreement of ‘I-Loc’
and ‘I-Org’ annotation are relatively lower than
that of ’I-Per’, and this is because of the presence
of uncommon/confusing words in these entities.

Disagreements about the tags were resolved
through discussions between the annotators to
reach a mutual agreement.

5 Experiments

In this section, we present the experiments using
different combinations of features and systems. In
order to determine the effect of each feature and pa-
rameters of the model we performed several exper-
iments using some set of features at once and all at
a time simultaneously changing the parameters of
the model, like criterion (‘Information gain’, ‘gini’)
and maximum depth of the tree for decision tree
model, regularization parameters and algorithms of
optimization like ‘L2 regularization’, ‘Avg. Percep-
tron’ and ‘Passive Aggressive’ for CRF. Optimiza-
tion algorithms and loss functions in LSTM. We
used 5 fold cross validation in order to validate our
classification models. We used ‘scikit-learn’ and
‘keras’ libraries in Python for the implementation
of the above algorithms.

The training, validation, and testing for all our
experiments were 60%, 10%, and 30% of the total
data, respectively.

5.1 Conditional Random Field (CRF)

Conditional Random Fields (CRFs) are a class of
statistical modelling methods applied in machine
learning that takes neighboring sample context into
account for tasks like classification. In NER using
the BIO standard annotation, I-Org cannot follow
I-Per(Tjong Kim Sang and Veenstra, 1999). Since

here we are focusing on sentence level and not
individual positions, CRFs are suitable and produce
better performance measures for NER task.

5.2 Random Forests
Random Forest is a classifier that fits a number of
decision trees on various subsets of the dataset and
uses averaging to improve the predictive accuracy
and control over-fitting (Pedregosa et al., 2011).

On our corpus, a random forest with a max depth
of 32, with Gini index as the criterion yielded the
best results.

5.3 BiLSTM
Long Short Term Memory (LSTM) is a special
kind of RNN architecture that is well suited for
classification and making predictions based on time
series data. LSTMs are capable of capturing only
past information. In order to overcome this lim-
itation Bidirectional LSTMs are proposed where
two LSTM networks run in forward and backward
directions capturing the context in either directions.

The best result that we came through on our cor-
pus was with a BiLSTM using ‘softmax’ as activa-
tion function, ‘adam’ as optimizer and ‘sparse cate-
gorical cross-entropy’ for our loss function along
with random initialisations of embedding vectors.

5.4 BiLSTM-CRF
The BiLSTM-CRF is a combination of bidirec-
tional LSTM and CRF (Huang et al., 2015;Lample
et al., 2016). The BiLSTM model can be combined
with CRF to enhance recognition accuracy. This
combined model of BiLSTM-CRF inherits the abil-
ity to learn past and future context features from
the BiLSTM model and use sentence-level tags to
predict possible tags using the CRF layer. BiLSTM-
CRF has been proved to be a powerful model for
sequence labeling tasks like NER (Panchendrarajan
and Amaresan, 2018).

After hyperparameter tuning, we found that ’soft-
max’ as activation function, ’rmsprop’ for opti-
miser, ’categorical cross-entropy’ as loss function
and random initialisations of embedding vectors
yielded the best results on our corpus.

5.5 Features
The features to our machine learning models con-
sist of lexical, word-level and character features
such as char N-Grams of size 2 and 3 in order
to capture the information from emojis, mentions,
suffixes in social media like ’#’, ‘@’, numbers in
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the string, numbers, punctuation. Features from
adjacent tokens are used as contextual features.

1. Capitalization: In social media, people tend
to use capital letters to refer to the names of
persons, organizations and persons; at times,
they write the entire name in capitals(von
Däniken and Cieliebak, 2017)to give particu-
lar importance or to denote aggression. This
gives rise to a couple of binary features. One
feature is to indicate if the beginning letter
of a word is capitalized, and the other is to
indicate if the entire word is capitalized.

2. Mentions and Hashtags: People use ‘@’
mentions to refer to persons or organizations,
they use ‘#’ hashtags in order to make some-
thing notable or to make a topic trending.
Thus the presence of these two gives a reason-
able probability for the word being a named
entity which counts under proper nouns.

Take the following sentence for exam-
ple - "@rakshit nim movies andre tumba
ishta, namma #Sandalwood industry improve
maadi!".

The token "@rakshit" is referring to a person
(B-Per tag) and "#Sandalwood" is the name of
the Kannada film industry (B-Org tag). They
are identified by the symbols @ and #. It is
important to note that not all hashtags will be
a named entity, so we need to understand the
word context to correctly classify.

3. Word N-Grams: Bag of words has been the
standard for languages other than English (Ja-
hangir et al., 2012) in tasks like NER. Thus,
we use adjacent words as a feature vector to
train our model as our word N-Grams. These
are also called contextual features. We used
trigrams in the paper.

4. Character N-Grams: Character N-Grams
are proven to be efficient in the task of classi-
fication of text and are language-independent
(Majumder et al., 2002). They are helpful
when there are misspellings in the text (Cav-
nar and Trenkle, 1994;Huffman, 1995;Lodhi
et al.). Group of chars can help in capturing
the semantic information. Character N-Grams
are especially helpful in cases like code mixed
language where there is free use of words,
which vary significantly from the standard
Kannada-English words.

Tag RF CRF BiLSTM BiL-CRF
B-Per 0.32 0.82 0.81 0.84
B-Org 0.70 0.63 0.65 0.63
B-Loc 0.37 0.70 0.82 0.81
I-Per 0.35 0.55 0.57 0.62
I-Org 0.23 0.52 0.46 0.55
I-Loc 0.30 0.46 0.41 0.45
Other 0.95 0.97 0.96 0.97

Wtd avg 0.89 0.93 0.92 0.94

Table 4: F1-scores for CRF, BiLSTM and BiLSTM-
CRF respectively with the weighted average at the end.

Feature removed Precision Recall F1
Capitalisation 0.74 0.53 0.61

Mentions, hashtags 0.72 0.57 0.63
Char n-gram 0.65 0.41 0.50
Word n-Gram 0.62 0.44 0.51

Common symbols 0.75 0.48 0.58
Numbers in String 0.78 0.56 0.65

Table 5: Weighted average scores when a specific fea-
ture is removed for the BiLSTM-CRF model.

5. Common Symbols: It is observed that cur-
rency symbols as well as brackets like ‘(’,
‘[’, etc. symbols in general are followed by
numbers or some mention not of importance.
Hence, these are a good indicator for the
words following or before to not being an NE.

6. Numbers in String: In social media con-
tent, users often express legitimate vocabulary
words in alphanumeric form for saving typing
effort, to shorten message length, or to express
their style. Examples include words like ’n8’
(’night’), ’b4’ (’before’), etc. We observed by
analyzing the corpus that alphanumeric words
generally are not NEs, therefore, serves as a
good indicator for negative examples.

6 Results and Discussion

Table 4 captures performance of all models for
our dataset. Our best model is the BiLSTM-CRF
which achieved a weighted average F1-score of
0.94 with ’softmax’ activation function, ’rmsprop’
optimiser, ’categorical cross-entropy’ loss function
and random initialisations of embedding vectors.
As BiLSTM-CRF can efficiently use both past and
future input features from BiLSTM and sentence
level tags from CRF, we see that the accuracy is
enhanced.
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Word Truth Predicted
Banashankari B-Loc B-Loc

alliro Other Other
BESCOM B-Org B-Org
kacheeri Other Other

alli Other Other
work Other Other
siktu Other Other

Bharat B-Per B-Loc
annavrige Other Other

Table 6: BiLSTM-CRF example (T1) prediction

Word Truth Predicted
Javalli B-Loc B-Loc
village Other Other

alli Other Other
Jnanadeepa B-Org B-Org

School I-Org I-Org
sersudvi Other Other

nan Other Other
maga Other Other
Suhas B-Per B-Per

puttanige Other I-Per

Table 7: BiLSTM-CRF example (T2) prediction

Table 5 shows results of our abalation study af-
ter removing each particular feature. We can see
that the N-grams features have the most impact on
our F1-scores, and this is understandable as char
n-grams are helpful when there are misspellings
and capturing semantic information when there is
free use of words which vary significantly from
standard word of Kannada and English words.

On analysing some of the results from the model,
we see that the intermediate tags of location and
organisation is lower than that of a name. This
can be explained with the fact that there are un-
common/confusing words in the oraganisation and
location names. For example, the word "Bhaarath",
one of the names for the country India, is "B-Loc"
while the words "Bharat" and "Bhaarti" are com-
mon first names in India which are tagged as "B-
Per". Furthermore, there are confusing words like
"Bali" which is a city in Indonesia, but in Kannada,
it means "near". This can be seen in the example
provided in Table 6 where the word "Bharat" is re-
ferring to a person with that name while our model
is predicting that the word is a location, referring
to the country India.

We tested a random tweet with the BiLSTM-

CRF model that we trained, and here is the model
predicted tags along with the ground truth tags in
the Table 7. We noticed that the I-Per is predicted
incorrectly for the Kannada word puttanige (an en-
dearment word for kids) as this word is very similar
to some of the common last names in southern part
of India such as Puttanna and Puttagere. The low
scores for intermediate tags (I-per, I-Org and I-Loc)
can be attributed to these reasons along with the
"noisiness" of the social media data which tends
to have misspelled words and colloquial forms of
words. This gets more difficult with Kannada-
English code-mixed data as mixing happens at
word-level, mostly for Kannada language preposi-
tions and named entities or English language nouns
(Section 3.1).

7 Conclusion and future work

The following are our contributions in this paper.

1. An annotated code-mixed Kannada-English
corpus for named entity recognition, which to
the best of our knowledge, is the first corpus.
The corpus will be made available online soon
along with the models.

2. Introducing and addressing Named Entity
Recognition (NER) of Kannada-English code-
mixed data as a research problem.

3. We have experimented with the machine
learning models Random Forest, CRF, BiL-
STM and BiLSTM-CRF on our corpus and
achieved an F1-score of 0.89, 0.93, 0.93 and
0.94 respectively, which looks good consider-
ing the complexity of the task and the amount
of research done in this new domain for low
resource languages.

As part of future work, we plan to explore down-
stream tasks like semantic labelling and entity-
specific sentiment analysis which makes use of
NER for code-mixed data. The size of the corpus
can be increased to include more data from varied
topics.
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Abstract

Sentiment classification is a fundamental NLP
task of detecting the sentiment polarity of a
given text. In this paper we show how solv-
ing sentiment span extraction as an auxiliary
task can help improve final sentiment classifica-
tion performance in a low-resource code-mixed
setup. To be precise, we don’t solve a simple
multi-task learning objective, but rather design
a unified transformer framework that exploits
the bidirectional connection between the two
tasks simultaneously. To facilitate research in
this direction we release gold-standard human-
annotated sentiment span extraction dataset for
Tamil-english code-switched texts. Extensive
experiments and strong baselines show that our
proposed approach outperforms sentiment and
span prediction by 1.27% and 2.78% respec-
tively when compared to the best performing
MTL baseline. We also establish the general-
izability of our approach on the Twitter Sen-
timent Extraction dataset. We make our code
and data publicly available on GitHub 1.

1 Introduction

With the rapid growth of social media networks and
the democratization of internet technology, massive
amounts of text-based user-generated content is be-
ing produced everyday. It is essential to understand
the opinion and sentiment of users from these tex-
tual posts. In the past decade the NLP research
community has made several advancements in the
field of language based sentiment analysis. How-
ever most of these advances are in high-resource
languages like English. In contrast there are lim-
ited resources for sentiment analysis for Indian
languages.

In the context of the Indian sub-continent, the
user-generated content on social media is unique
because is not in any one particular language, rather
a single utterance may consist of words, phrases

1https://github.com/ramaneswaran/code
mixed_sentiment_span_extraction
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Figure 1: (a) Multi-task learning setup with parameter-
sharing and joint learning of sentiment prediction and
span extraction tasks (b) Our approach which establishes
bi-directional connection to explicitly model the mutual
interactions between the tasks

and phonemes from multiple different languages.
This phenomenon is code-mixing and is widely
observed in multi-lingual communities such as In-
dia. Although recent advances have been made
in developing sentiment analysis text corpora and
methods for Indian languages such as Hindi and
Bengali there has been little progress for truly low-
resourced languages such as Tamil, a Dravidian
language which is spoken by well over 70 million
people worldwide. (Chakravarthi et al., 2020) is
a seminal work on creating corpora for sentiment
classification of Tamil-English code-mixed text.

While sentiment classification is well researched;
sentiment span extraction on the other hand (Lai
et al., 2020) is a rather new NLP task which in-
volves the extraction of supporting phrases from
text in the form of a sequence of contiguous words,
which reflect the sentiment of the sentence. These
support phrases can be used to further perform fine-
grained analysis of the sentiment to understand the
opinion and feelings of the user. Similar approach
has also been applied to toxicity analysis from text
(Ghosh and Kumar, 2021).
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In this paper we present our hypothesis that solv-
ing sentiment span extraction as an additional task
can help the model learn better semantic represen-
tations of the text which in-turn will improve sen-
timent classification. We explore this hypothesis
for code-mixed Tamil texts. Firstly we develop a
novel Tamil-English code-mixed sentiment extrac-
tion dataset to support the task of sentiment span
extraction. We obtain this dataset by extending
the DravidianCodemix dataset (Chakravarthi et al.,
2022) by adding gold-standard human-annotated
sentiment span labels to it. To the best of our knowl-
edge this is the first code-mixed sentiment span
extraction dataset. The proposed dataset will fa-
cilitate further research in this direction and helps
improve sentiment classification performance in
a low-resource setting in a language spoken by
millions around the globe where annotated data is
scarce.

Secondly we experiment with various single-task
learning and multi-task learning models to evalu-
ate our hypothesis. Further inspired from (Qin
et al., 2021) we explore a methodology based on
transformer architecture which explicitly models
the interactions between the two tasks of sentiment
prediction and sentiment span extraction in a uni-
fied framework (Refer to Fig. 1b . Extensive ex-
periments and ablation study establish the efficacy
of this proposed approach, we also demonstrate
that this model generalizes well to a similar En-
glish dataset for sentiment analysis. To the best
of our knowledge, we are the first to explore the
modelling of the two tasks together for improving
performance on sentiment classification. Moreover,
our framework performs better than the generic
multi-task learning setup which acts as one of our
baselines.

To summarize, the following are our main con-
tributions

• We propose a novel dataset consisting of 2152
user-generated comments along with gold-
standard human-annotated sentiment-span la-
bels.

• We propose a unified sentiment prediction
and span extraction framework based on trans-
former architecture

• Through empirical analysis we establish our
proposed method’s superiority over strong
baselines.

Figure 2: Length of the Positive and Negative comments

Figure 3: Length of the Positive and Negative spans

• We demonstrate the generalizability of our
proposed approach to similar sentiment clas-
sification datasets.

2 Related Work

2.1 Sentiment Classification
Sentiment analysis and sentiment classification are
widely explored problems in the area of Natural
Language Processing. Detecting sentiments in
texts helps in identifying its polarity which in turn
helps understanding people’s opinion.This has been
widely employed in e-commerce sites (Agarap,
2018; Hoang et al., 2019) and social media net-
works (Samuels and Mcgonical, 2020; Aho and
Ullman, 1972). With the growing number of users
and user-generated content, social media networks
are considered a rich data source for this task. Sen-
timent classification in social media is also critical
in tackling mental health problems of its users (Sai-
fullah et al., 2021).

Although most of the advances in sentiment anal-
ysis have been in high-resource languages there
has been a growing interest and recent progress
in low resource and codemixed sentiment analy-
sis. (Patwa et al., 2020) used Twitter to extract the
text from users and construct a codemixed corpus
for Spanglish and Hinglish. (Kaur et al., 2019)
used Youtube to extract hinglish comments from
cooking videos and use that to analyze the polarity
of the viewers. DravidianCodemix (Chakravarthi
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et al., 2022) is a recent work that developed senti-
ment classification corpora for truly low-resourced
dravidian languages such as Tamil. As emphasized
in (Chakravarthi et al., 2022) it takes lot of effort
to obtain and annotate code-mixed sentiment data
hence there is a need to make effort to explore and
utilize the potential in existing resources.

2.1.1 Sentiment Span Extraction
Sentiment span extraction itself has been less ex-
plored in literature.(Pavlopoulos et al., 2021) re-
leased dataset of 10k samples for English lan-
guage.Kaggle hosted a competition for sentiment
extraction, the data released from the competition,
Sentiment Text Extraction 2 consists of English
tweets labelled under three categories- Positive,
Negative and Neutral. The task here was to extract
the span given the sentiment of the text as input.

2.1.2 MultiTask Learning
MultiTask Learning (Caruana, 1993) have been
used for in Machine Learning across the task in Nat-
ural Language Processing and Computer Vision, It
originates from the idea of learning multiple tasks
helps the model to exploit the predictive features
of one task to the other task helping in gaining the
perfomance. (Barnes et al., 2021) used Multi Task
Learning with Attention and LSTM layers for the
task of improving the sentiment detection model by
using an additional auxillary task of Negation de-
tection. MultiTask Learning also has been widely
used in conversational dialogue systems for the task
of jointly training the Intent Detection and Slot Tag-
ging tasks. (S et al., 2022) used a Jointly trained
pretrained transformers model for the task of Intent
Detection and Slot Tagging for Tamil Conversa-
tional Dialogues.

3 Dataset

3.1 Data Collection
We extend the DravidianCodemix dataset
(Chakravarthi et al., 2022) by adding gold-standard
human-annotated sentiment span labels to it.
The dataset consists of code-mixed YouTube
comments in Tamil-English, Malayalam-English
and Kannada-English for the tasks of Sentiment
Detection and Offensive Language Identification.
It is annotated in a five class setting with classes,
Positive state, Negative state, Neutral state and
Mixed Feelings.

2https://www.kaggle.com/competitions/tweet-sentiment-
extraction/

# of unique tokens in a comment 11322
# of unique tokens in a substring 8267
# of unique native Tamil tokens 3435
# of unique romanized Tamil tokens 7885
Avg # of tokens in positive comment 67.07
Avg # of tokens in positive span 32.56
Avg # of tokens in negative comment 82.75
Avg # of tokens in negative span 46.78

Table 1: Corpus analysis of our proposed dataset

Since our goal is to build sentiment span extrac-
tion dataset for Tamil-English, we only use the
Tamil-English subset. We randomly sample 4935
comments from the Tamil-English subset for the
annotation. We only use the comments that were
labelled as Positive, Negative and Neutral and dis-
card other labels for the annotation purposes

3.2 Human Annotation

The proposed dataset was completely annotated by
human experts who are native speakers of Tamil
and who are fluent in English. We hired three an-
notators who are master’s student and native Tamil
speaker. We explained the concept of Positive, Neg-
ative and Neutral sentiments and provided exam-
ples for each. We also explained the concept of
code-mixing, based on our interactions with the an-
notators we found that they also use code-mixing
in their daily conversations. We didn’t collect any
information of annotators other than their educa-
tion details and known languages. Since YouTube
comments may contain comments that are profane
in nature, we inform annotators that the comments
contain words that are profane, offensive and vul-
gar in nature. The annotators are given the liberty
to withdraw from the annotation, if they feel the
necessity.

To aid the annotation effort, we created a cus-
tom tool that provides the annotators with an easy
to-use interface for annotation. Each annotator
was assigned random batches of comments and
they worked independently in their own schedule.
The annotators were asked to follow the annotation
guidelines given below.

• Extract the phrases from the comment which
support the sentiment expressed.

• If the comment does not express any senti-
ment, do not highlight any span.
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Figure 4: Interface of the annotation tool used during
annotation

• If the entire comment expresses a single senti-
ment, highlight the whole comment

• If there are any emoji characters that expresses
the sentiment, highlight that emoji as a span

Dry Run: We first conducted a dry run to ensure
the uniformity in annotation and to check whether
the spans are annotated correctly. We took a subset
of 100 comments and asked the three annotators
to annotate each of the comment independently.
After this annotation, we computed the Cohen’s for
annotated tokens. The Inter-Annotater agreement
k value is 0.60

Final Run: The annotations obtained in the dry
run were evaluated and the annotators were given
feedback on mistakes they made and any doubts
they had. Once the annotators were confident that
they understood the annotation process we pro-
ceeded with the final annotation. At the end of
annotation we got 2152 samples. The majority of
the 3 annotations were then used as the final an-
notation. At the end of the annotation and after
removing wrong samples, we got 2152 samples.
We took the majority of the three annotations as
our final annotation.

3.3 Corpus Analysis

Table 1 contains the summary statistics of the
dataset. From the table we can infer that the av-
erage length of the Negative comments is higher
than the average length of the Positive comment.
The dataset consists of comments written both on
native script and roman script comments labelled

as Positive, Negative and Neutral. The final dataset
consists of 875 Positive, 679 Negative and 598 Neu-
tral comments. Due to the codemixing nature of
the dataset, it consists of Tamil comments written
in both Native script and Roman script. We used
the langid3 framework to find the original language
of the word based on the nature of the script and
found there are 7885 unique English tokens and
3435 unique Tamil tokens. We can also note that,
there are some comments that is written entirely
on English and some comments that are written
entirely on Tamil. The dataset was split into Train,
Dev and Test sets in the ratio of 80:10:10. Our
dataset is released as CSV files.

4 Proposed Approach

In this section we describe our proposed approach.
It takes as input a piece of text x and predicts the
sentiment of the x and the span within x that dis-
play this sentiment.

Fig 5 depicts the architecture of the proposed
model. It consists of a text encoder that provides
contextual representation of x at both sentence and
word level. It then uses a Task Interaction Module
(TIM) to learn the interactions between the two
tasks of sentiment classification and sentiment span
extraction.

4.1 Text Encoder

Given a piece of text x consisting of n tokens
[x1, x2, ...xn] we encode it using a transformer
based text encoder. We use the word-level rep-
resentations H = [h1, h2, ...hn] obtained from the
last hidden layer.

4.2 Task Interaction Module

The Task Interaction Module (TIM) is utilized to
learn the inter-dependencies between the task of
sentiment classification and sentiment span extrac-
tion.

Each encoder block in TIM consists of the fol-
lowing two components; a label attention layer
that produces explicit sentiment and span repre-
sentations; a co-attention mechanism to model the
mutual interactions between the two tasks.

4.2.1 Label Attention Layer
We utilize label attention over the sentiment and
span labels to produce explicit sentiment and span
representations. These representations are then fed

3https://github.com/saffsd/langid.py
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Figure 5: The architecture of our proposed model (left). It uses a transformer based Task Interaction Module (left)
to explicitly model the mutual interactions between the two tasks.

into the co-attention layer to capture the mutual
interactions. We use the parameters of the fully-
connected sentiment and span decoders as senti-
ment and span embeddings matrices (W sent ∈
Rd×3 and W span ∈ Rd×2); as they can be con-
sidered to be label distribution in a sense.

We use H ∈ Rn×d and W v ∈ Rn×|v| (v ∈ sent
or span) to obtain the explicit representation Hv as
follows

A = softmax(HW v) (1)

Hv = H +AW v (2)

Here sent represents sentiment and span repre-
sents span. We finally obtain the explicit sentiment
and span representations Hsent and Hspan, which
capture the sentiment and span semantic informa-
tion respectively.

4.2.2 Co-Attention Layer
Hsent and Hspan are next passed through a co-
attention mechanism to model the mutual interac-
tions between the two tasks of sentiment and span
prediction. Through this mechanism we get senti-
ment representations updated with guidance from
span representation and vice versa. This establishes
a bi-directional connection between the two tasks.

We use linear projections on Hsent and Hspan

to generate the query (Qsent , Qspan),key (Ksent

, Kspan) and value (Vsent , Vspan) vectors respec-
tively.

To incorporate span information in sentiment
representation it is necessary to align sentiment
with its closely related spans. We use Qsent as

query and Kspan, Vspan as key and value vectors
respectively. We then get span-aware sentiment
representation H ′

sent as follows

Csent = softmax

(
QsentK

T
span√

dk

)
Vspan (3)

H ′
sent = LayerNorm(Hsent + csent) (4)

In a similar fashion we obtain sentiment-guided
span representation by treating Ksent, Vsent as
key and value vectors and Qspan as query vector.
Through the co-attention layer we obtain H ′

sent

and H ′
span which can be considered to be span-

guided sentiment representation and sentiment-
guided span representation respectively.

We extend the feed-forward network layer from
a vanilla transformer encoder block to implicitly
fuse sentiment and span information. We concate-
nate H ′

sent and H ′
span to combine the sentiment

and span information.

Hss = H ′
sent +H ′

span (5)

Then we follow (Zhang and Wang, 2016) to use
word features for each token, which is formulated
as

h(f,t) = ht−1
ss htssh

t+1
ss (6)

Finally we use feed-forward networks to fuse the
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Sentiment Classification Span PredictionType Text Encoder Accuracy F1 Precision Recall F1 Exact Match Jaccard Sim.
BERT 59.72% 55.85% 57.16% 57.52% 52.16% 8.33% 50.84%
MBERT 62.96% 61.3% 61.97% 61.28% 54.51% 7.41% 45.68%STL
MURIL 63.01% 61.87% 62.24% 62.84% 54.81% 8.33% 50.12%
BERT 61.11% 59.93% 60.14% 59.90% 53.01% 8.80% 51.32%
MBERT 62.96% 62.22% 62.97% 62.12% 57.80% 9.72% 49.64%MTL
MURIL † 63.43% 62.85% 65.22% 63.05% 57.23% 8.33% 49.25%
BERT 61.57% 62.19% 64.27% 62.34% 53.81% 9.72% 52.37%
MBERT 64.81% 62.80% 64.02% 63.16% 58.83% 9.72% 50.39%OURS
MURIL ⋆ 65.74% 64.12% 67.41% 64.28% 59.94% 11.11% 52.43%

∆(⋆−†)×100(%) ↑ 2.31% ↑ 1.27% ↑ 3.39% ↑ 1.23% ↑ 2.71% ↑ 2.78% ↑ 3.18%

Table 2: Comparison of different approaches on our dataset. The last row shows the absolute improvement of our
approach over the MTL approach with the MURIL as text encoder.

sentiment and span information.

FFN(H(f,t)) = max(0, H(f,t)W1 + b+ 1)W2 + b2
(7)

Ĥsent = LayerNorm(H ′
sent + FFN(H(f,t))

(8)

Ĥspan = LayerNorm(H ′
span + FFN(H(f,t))

(9)

Here H(f,t) = (h1(f,t), h
2
(f,t)...h

t
(f,t)); ˆHsent and

ˆHspan are the final updated sentiment and span
representations that align the corresponding span
and sentiment features respectively.

4.2.3 Decoder For Sentiment And Span
Prediction

We utilize two decoder heads to get the final predic-
tions, one head each for sentiment prediction and
sentiment span extraction task respectively.

Sentiment Prediction We apply max-pooling
operation on Ĥsent to obtain sentence representa-
tion c which is used for sentiment prediction.

ŷsent = softmax(W sentc+ bsent) (10)

Span Classification We pass Ĥspan through
feed-forward networks to obtain the start and end
position as follows

ŷspan = softmax(W spanĤspan + bspan) (11)

5 Experimental Results

In this section we present the results (averaged over
5 independent runs) on our test set and perform

comparative analysis followed qualitative and error
analysis. For comparison we use the following
standard metrics - accuracy, macro averaged F1
score, precision, recall for sentiment prediction task
and F1 score, exact match and jaccard similarity
for the span prediction task.

5.1 Baselines And Compared Methods
We compare our approach with single-task learning
(STL) architectures and multi-task learning (MTL)
architectures.

1. Single-Task Learning In this setup we sep-
arately train two transformer based text en-
coders, one for sentiment prediction and one
for span extraction.

2. Multi-Task Learning In this setup we train
a transformer based text encoder jointly for
sentiment prediction and span extraction

In both STL and MTL setup we use the pooled
representation corresponding to the [CLS] token
as sentence representation for sentiment prediction
and use the token level representations from the
last hidden layer for span extraction.

Text Encoders We experiment with three text
encoders. The first one is the BERT(Devlin
et al., 2018) base model, since the dataset is
codemixed we also experiment with MBERT and
MURIL(Khanuja et al., 2021) which are multi-
lingual models based on BERT architecture. Both
MBERT and MURIL are trained on english and
Tamil text corpus and specifically MURIL is
trained on a romanized Tamil corpus.

5.2 Main Results
Table 2 depicts the results obtained via different
approaches and text encoders on our dataset.
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Sentiment Classification Span Extraction
Text Encoder Accuracy F1 Precision Recall F1 Exact Match Jaccard Sim.

No Label Attention 62.50% 62.36% 64.36% 62.57% 54.11% 9.26% 52.95%
Self Attention Mechanism 64.35% 62.83% 63.41% 62.83% 54.76% 11.11% 53.56%
Sentiment To Span Connection 64.22% 60.88% 64.22% 61.37% 50.20% 9.26% 49.36%
Span To Sentiment Connection 64.43% 61.06% 61.39% 61.28% 53.24% 9.72% 51.30%

Table 3: Each key component in the proposed approach contributes to overall performance. Replacing or removing
a component results in a drop in performance.

Sentiment Classification Span ExtractionType Text Encoder Accuracy F1 Precision Recall F1 Exact Match Jaccard Sim.
STL BERT 75.01% 75.41% 75.85% 74.91% 48.48% 16.62% 44.58%
MTL BERT † 76.47% 76.61% 78.92% 75.63% 49.97% 19.07% 45.70%
OURS BERT ⋆ 78.33% 78.63% 78.97% 78.36% 54.86% 20.16% 50.76%

∆(⋆−†)×100(%) ↑ 1.86% ↑ 2.02% ↑ 0.06% ↑ 2.73% ↑ 4.89% ↑ 1.09% ↑ 5.06%

Table 4: Comparison of different approaches on the Twitter Sentiment Extraction dataset. The last row shows the
absolute improvement of our approach over the MTL approach.

We experiment with three different text encoders,
we observe that among these MURIL performs
better than MBERT and BERT in both STL and
MTL setup, moreover when MURIL is used as
text encoder in our approach it acheives the best
performance for our dataset.

We observe that models trained in MTL setup
perform better than STL models for all the text
encoders across all the metrics, this indicates that
jointly learning the tasks of sentiment prediction
and span extraction can mutually enhance perfor-
mance.

MTL can be seen as considering the mutual-
interaction between the two tasks via parameter
sharing and joint optimization, however our ap-
proach out-performs MTL setup with their respec-
tive text encoders. Moreover when compared to
the best MTL setup which is MTL MURIL, our ap-
proach with MURIL text encoder performs better.

5.3 Ablation Study
In this section we study the efficacy of the key
components present in our approach. Table 3 shows
the sentiment prediction and span prediction results
using our approach on our dataset. We modify
the key components in our proposed approach to
investigate their contribution to the performance.

We drop the label attention layer and replace
Hsent and Hspan with H . From Table 3 we ob-
serve that this leads to a drop in performance. This
demonstrates the usefulness of using label informa-
tion to generate explicit sentiment and span repre-
sentations.

We replace the co-attention mechanism in TIM

with the vanilla self-attention mechanism. This
change means that there is no explicit interaction
between the two tasks. From Table 3 we notice that
this leads to a drop in performance justifying the
use co-attention mechanism. While self-attention
only implicitly models the interaction between the
sentiment and span tasks, co-attention can explic-
itly consider the cross-impact between the two.

We restrict the bi-directional flow of information
so that the information can either from from senti-
ment to span or span to sentiment. We implement
this by using only one type of information represen-
tation as queries to attend to the other information.
In table we refer to this as Sentiment To Span and
Span To Sentiment. From Table 3 we observe that
such a unidirectional flow of information leads to a
performance drop. We can conclude that modelling
the mutual interaction between the sentiment pre-
diction and span prediction task can enhance the
performance in a mutual way.

5.4 Generalizability
In this section we establish the generalizability of
our proposed approach by experimenting on the
Twitter Sentiment Extraction dataset from Kaggle.
The original task for this dataset is to extract the
sentiment span given the sentiment, however we re-
purpose it for our task of joint sentiment prediction
and span extraction. Since the span labels are not
present in the test set, we split the original train set
into a 80/20 split and perform our testing on the
unseen 20 split while the training and validation is
done on the 80 split.

Table 4 shows the results of STL, MTL and our
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proposed appoach on the dataset. We observe that
MTL setup performs better that the STL setup in-
dicating that jointly optimizing for the two tasks
of sentiment prediction and span extraction is mu-
tually beneficial. Our approach shows improve-
ment over the MTL setup across all the metrics
thus demonstrating the capability of our proposed
model to generalize to other sentiment prediction
datasets.

6 Conclusion and Future Work

In this work we explore the use of sentiment span
cues towards improving code-mixed sentiment pre-
diction. We first curate a novel manually anno-
tated dataset to support code-mixed sentiment span
extraction. We then propose a novel methodol-
ogy based on transformer architecture to explic-
itly model the the mutual interactions between sen-
timent prediction and sentiment span extraction
tasks. Empirical evaluation along with an extensive
ablation study suggests the efficacy of our proposed
model and its design choices. We also establish the
generalizability of the proposed model by demon-
strating its performance on the Twitter Sentiment
Extraction dataset.
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Abstract
The tremendous increase in social media us-
age for sharing Television (TV) experiences
has provided a unique opportunity in the Pub-
lic Health and Marketing sectors to under-
stand viewer engagement and attitudes through
viewer-generated content on social media.
However, this opportunity also comes with
associated technical challenges. Specifically,
given a televised event and related tweets about
this event, we need methods to effectively align
these tweets and the corresponding event. In
this paper, we consider the specific ecosys-
tem of the Superbowl 2020 and map viewer
tweets to advertisements they are referring to.
Our proposed model, AdBERT, is an effective
few-shot learning framework that is able to
handle the technical challenges of establishing
ad-relatedness, class imbalance as well as the
scarcity of labeled data. As part of this study,
we have curated and developed two datasets
that can prove to be useful for Social TV re-
search: 1) dataset of ad-related tweets and 2)
dataset of ad descriptions of Superbowl adver-
tisements. Explaining connections to Sentence-
BERT, we describe the advantages of AdBERT
that allow us to make the most out of a chal-
lenging and interesting dataset which we will
open-source along with the models developed
in this paper.

1 Introduction
The joint consumption of television programming and
social media participation has become increasingly pop-
ular, leading to the rise of Social TV ecosystems (Proulx
and Shepatin, 2012; Benton and Hill, 2012; Cesar and
Geerts, 2011). Twitter has become an integral outlet for
TV viewers, with a whopping 85% of users tweeting
while watching television programming (Midha, 2014).
Marketers, television networks, and social media plat-
forms have explored this rising potential of Social TV
ecosystems. For example, Twitter and content providers
on television networks collaborated recently (Crook,
2016) to create social TV experiences, and companies
such as Nielson (Talkwalker, 2020) are investing in tech-
nologies to quantify and analyze social TV audiences.

Figure 1: Mapping the the tweets referring to advertise-
ments telecast during the Superbowl event. For e.g., the
tweet mentioning #diversity and #inclusivity is mapped
to the advertisement by Olay featuring the hashtag
#makespaceforwomen.

Social TV research is still in its infancy stage (Li-
aukonyte et al., 2015). However, a few studies (Di-
akopoulos and Shamma, 2010; Fossen and Schweidel,
2017) have already explored the impact of television on
social media word of mouth (WOM) and “impactful”
factors (celebrity presence) that influence the volume
of social media WOM. Similarly, identifying “attention-
grabbing” moments in media (e.g., the performance of
the speaker during the presidential debate or a funny ad
during the Superbowl), can help gauge the reaction of
the viewers’. Hence, it becomes necessary to build tools
that capture these “attention-grabbing" moments and an-
alyze the subsequent responses. These tools are not only
necessary for program recall and re-contextualization
(Wang, 2006), but also for the design of more personal-
ized recommendations in the future. (Pyo et al., 2014).

With a large amount of social buzz generated online,
analyzing the responses of the viewers towards televised
events has now become much easier as opposed to ear-
lier slow and costly methods that involved surveying
the viewers. However, this also comes with its technical
challenges. For instance, given a televised event and an
associated set of social media posts, an approach that
effectively maps the posts to the parts of the event they
are referring to (Figure 1) is necessary. This raises two
follow-up questions: (a) discretely atomizing the event
into segments and (b) identify if the tweet focuses on a
specific event segment or the event as a whole. For ex-
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ample, tweets can be related to the commercials during
the break or the game as a whole during the Super-
bowl broadcast. Therefore, a method that can align the
tweets and their related televised events is an essential
building block toward answering fundamental questions
regarding the event’s influence on the viewer’s social TV
activity. Machine learning based methods towards this
end have attempted event segmentation (Galley et al.,
2003); however, they analyze events and tweets indepen-
dently. This is a big drawback as the event influences
the viewer’s response; hence there is a need to jointly
model tweets ad televised content information.

Our research study considers the specific social TV
advertising ecosystem during the high-stakes Super
Bowl sporting event. In this event, since the ads telecast
and audience responses are on different media channels
(i.e. TV and Twitter, respectively) over a fixed time, we
view the problem as a closed system consisting of two
interacting sets - the set of stimuli (advertisements) and
the set of responses (tweets). Our research focuses on
modelling the function that maps these two sets to each
other.

∀a ∈ A (Set of all ads)
∀t ∈ T (Set of all tweets)

Estimate a function f : T → A where the mapping is
1-1.

Tweet to Ad mapping is non-trivial problem as the
viewer’s tweet could be about multiple aspects of the
advertisement, such as its creative elements or the brand
making the advertisement. For example, if we con-
sider the tweet,“The pepsi ad was so amazing”, this
is a simplistic case as it is easy to map that the viewer
is talking about the advertisement by Pepsi. How-
ever, in the case of another tweet, “Mc hammer is still
making money with songs low key", it is not easy to un-
derstand that this tweet is even ad-related (MC Hammer
is a celebrity who featured in the Cheetos Advertise-
ment). Moreover, we are trying to capture ad-related
tweets against the general noise of the Superbowl-
related tweets. In this setting, WOM is much less for
ad-related tweets (limited representation) and the view-
ers are also likely to talk about some ads more than
others (class imbalance).

Our mapping methodology AdBERT is an effective
few-shot learning framework that establishes semantic
relatedness between an advertisement and a tweet un-
der the constraints of class imbalance and limited class
representation. Once this mapping is established, it can
be used as an essential building block in an audience
engineering pipeline that can help incorporate a feed-
back loop to an advertisement and aid in downstream
tasks such as ad-engagement measurement and senti-
ment analysis. As a by-product of our experiments,
we also developed a manually annotated rich dataset
of ad-related tweets and a manually annotated dataset
of Superbowl ad descriptions, which can be used for
further research in social TV literature.

2 Related Work

With the rise of social TV technologies, research has
been done to examine how media multitasking affects
viewers’ response to advertisements and how advertisers
can leverage this behaviour (Hu et al., 2017). (Lewis and
Reiley, 2014) find a sudden increase in online searches
for brands shown during Superbowl commercials im-
mediately after the ad is telecast. While the aligning of
real-time social media responses to TV advertising has
been explored in recent years (Hill et al., 2012), their
methods to map the tweets to the advertisement is based
on the underlying assumption that a person tweets about
an advertisement as soon as they see it, which need not
be true (Murphy et al., 2006). Our proposed method
relies on content mapping, which would capture tweets
about an advertisement irrespective of its time of airing.

Though (Hu, 2021) consider the primacy effect, their
topic-model based approach method cannot be applied
to televised segments for which no transcripts are readily
available. Advertisements broadcast on TV are usually
tiny time segments for which auto-generated transcripts
are not meaningful, as they could be theme songs or
even a catchphrase. However, even this kind of short
TV content is impactful enough to generate significant
WOM. Our approach to solving this correspondence
problem with its unique challenges draws inspiration
from some previous research works (Devlin et al., 2018;
Chang et al., 2019; Thakur et al., 2020) which use dif-
ferent encoders for pairwise sentence scoring tasks and
(Reimers and Gurevych, 2019) which inspires the idea
for joint learning. Our approach aligns tweets with their
corresponding TV advertisement through jointly learn-
ing from both the advertisement information and the
tweets.

3 Superbowl 2020 Dataset

Ad Name Ad Description
Audi Maisie Williams, Frozen, etron, sportback, traffic,

letitgo
Doritos Sam Elliott, Lil Nas X, Old Town Road, cowboy,

cool ranch dancer, billy ray cyrus, wild west, wild-
wildwest, makeyourmove

Weather Tech pets, golden retriever, dog

Table 1: Subset of the created ad information dataset,
that contains descriptive phrases or words describing
each advertisement in the Superbowl 2020.

3.1 Data Collection

To validate our idea computationally, our objective was
to collect a data set that would provide us with a high
density of advertisement-related tweets. This meant that
a timed sporting event where a lot of advertisements are
shown to consumers (who happen to respond to these
advertisements) would be perfect for our study. Hence,
the Super Bowl 2020 event was chosen as a use case
because it is a high-stakes national sports event in the
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US watched by a massive audience. This event attracts
multiple advertisers who spend millions of dollars to
place their ads during this game to attract consumers’
eyeballs and spark social media conversations about
their ads and brands.

We collected tweets using the Twitter streaming API
via the AIDR (Imran et al., 2014) tool from the start
of the broadcast (Feb 2nd, 5:30 PM CST) to the end
of the day. For this purpose, we used a set of event-
related keywords (#superbowlads, Superbowl 2020 etc.)
and brand-related keywords (Nike, Pepsi, Olay, etc.).
While the data was being collected, the search terms
on AIDR were modified in real-time to include words
and catchphrases ad-specific to the Super Bowl. The
underlying idea is that the audience could be reacting
to the brand’s message (e.g. #makespaceforwomen is a
catchphrase of the commercial broadcast by Olay) or
specific elements of the commercial (e.g. celebrity Katie
Couric was present in the Olay commercial). This was
done to ensure that most tweets mentioning ad-specific
features were collected. This collection is preferable to
scraping user responses to online advertisements as such
a method would be bottle-necked by fewer responses to
each advertisement.

3.2 Data Preparation

Firstly, we create an ad information dataset, a subset of
which is shown in Table 1. To create this dataset, three
authors watched all of the Superbowl advertisements
and made lists of phrases describing unique elements
(celebrity, hashtag, tagline, etc.) they noticed in each
ad. These lists were then combined to create a compre-
hensive set of phrases that describe each advertisement
from the “annotator’s point of view”. These ad-related
phrases are intended to be unique with respect to each
advertisement, to differentiate ads as best possible and
are agreed upon by all three authors.

Secondly, we prepare the tweet-ads dataset. As
most of the originally collected data (around 1.1 mil-
lion tweets) were event-related tweets, we had to first
filter the general Superbowl-related noise to capture
the candidate ad-related tweets to be used as training
data. After removing the Twitter-specific symbols and
artifacts during the initial tweet pre-processing stages,
we remove retweets and duplicate tweets to retain only
original tweets made by users. To narrow down on can-
didate tweets that are possibly ad-related, we developed
some heuristics (e.g. checking for the presence of brand
names). Another heuristic relied on the ad information
dataset collected (mentioned above) and checked for the
presence of a high degree of overlap between ad-related
information and the tweet by using the Jaccard Index
measure (Niwattanakul et al., 2013). For example, some
of the phrases that describe the brand Olay in the ad
information dataset are {Olay, #makespaceforwomen,
Katie Couric, Lilly Singh}. This kind of Jaccard-based
heuristic could capture candidate tweets mentioning any
of these ad-related features.

A random sample of these candidate tweets was cho-
sen for manual labeling. The tweets were labeled such
that each tweet was assigned to the advertisement it
referred to or labeled as “none” if the tweet was Su-
perbowl related. Tweets mentioning multiple ads were
disregarded in the sample.

For this annotation task, three authors went through
a common training session, where it was agreed that
the annotation would be based on the common ad infor-
mation dataset (Table 1) as well as their own personal
notes on viewing the commercial. This annotation task
involves matching the tweets to the nearest advertise-
ment given the mention of specific elements in the tweet.
Since the advertisements are quite different in terms of
these elements, the degree of subjectivity in this task
is low and we did not require multiple annotations per
tweet. The only advertisements which were similar were
the ones from a common brand, and for these cases, we
combined the advertisements to represent one ad class.
Statistics of the resulting tweet-ads dataset are given in
Table 2.

Collected no of tweet samples 1114931
No of candidate ad-related tweets
(post filtering)

111652

No of tweet samples - training 4656
No of tweet samples - test 1165
No of ad categories 61

Table 2: Statistics about the Superbowl 2020 ad-tweets
dataset

4 Main Technical Challenges
A tweet could be a response to either the advertise-
ment’s creative elements (for example, a cute retriever
in the WeatherTech ad) or the advertisement as a
whole. Therefore, detecting the ad-relatedness re-
quires a holistic understanding of the advertisement’s
content.

Identifying ad-relatedness can be viewed through a
semantic relatedness lens such that we try to establish
a relationship between the tweet and the advertisement
description. However, the short length of tweets and
their characteristic lingo adds to the complexities of
identifying semantic-relatedness. While the tweet is a
short sentence, the ad description is a comma-separated
list of key phrases or words. Hence a semantic gap
exists between the twitter lingo and the advertisement
descriptions (“audience-annotator” gap.)

Identifying ad-relatedness can also be seen through
the lens of multi-class classification, which involves
scoring a set of candidate labels given an input context.
The Superbowl Dataset shows the unique characteristic
of class imbalance with 15 popular or controversial
commercials having high representation in the dataset
and we call these -“majority classes”. For example,
the Hulu advertisement featured Superbowl superstar
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Tom Brady and was a viral ad and hence, a “majority”
class. Our threshold for a majority class is that the num-
ber of samples for that class should be at least 40. 46
other commercials exist in our data with lesser than 40
samples for the model to train on and understand pat-
terns in these cases. We call these classes - “minority
classes”. Each class in our training data also suffered
from limited representation, with the average num-
ber of samples in a majority class being 122 and in a
minority class being 17.

5 Experiments

From a semantic relatedness perspective, we can try to
map the text and ad information into a common feature
space wherein a dot product, cosine or (parameterized)
non-linear function is typically used to measure their
similarity.

SentenceBERT (Reimers and Gurevych, 2019) is a
bi-encoder model, which applies BERT independently
on the two inputs, followed by mean pooling on
the output to create separate fixed-sized sentence
embeddings. As the representations are separate, the
bi-encoders is able to cache the encoded candidates and
reuse these representations for each input resulting in
faster prediction times than cross-encoders. However,
The tweets and ad description information in our
dataset are not in the same vector space because the
tweet has a sentence structure, while the advertisement
information is a set of key phrases describing the ad
from the annotator’s point of view.

Therefore we consider the multi-classification per-
spective where we can try to score a set of candidate ad
descriptions given an input tweet. This kind of multi-
class classification can be done via Classical Machine
Learning approaches (Debole and Sebastiani, 2004)
such as Logistic Regression and Multilayer Percep-
tron (MLP) with TF-IDF vectorization of features. In
these approaches, words characteristic to an ad are given
greater weight than words that frequently appear across
all the ads. Our implementation of the MLP has 12
hidden layers each with dimension of 6000. The model
is trained for categorical entropy loss with a batch size
of 20 and number of epochs as 50.

Deep learning based methods like BERT (Devlin
et al., 2018) uses a cross-encoder (Wolf et al., 2019; Vig
and Ramea, 2019) where a special SEP token separates
the input and label candidate and multi-head attention is
applied over all input tokens. In our implementation of
BERT for multi-class classification, we fine-tune (Sun
et al., 2019) the pre-trained ‘Bert-base-uncased’ model
with 12 layers from Transformers library (Wolf et al.,
2019) to identify if a tweet can be identified as related
to a Super Bowl commercial or not. If the tweet is “Su-
perbowl event related” and does not relate to any ad,
it is categorized as a ‘none’ class. Else, the tweet is
classified as ‘ad-related’. For all the tweets classified
as ad-related, we compute the embeddings from BERT

and run a softmax on similarity scores to identify the
ad class. The model is trained on 4656 tweets and 61
classes. We use a batch size of 32, a learning rate of
2e-5 and the number of epochs as 4. We also use the
epsilon parameter eps with a value 1e-8 to prevent any
division by zero in the implementation.

In our implementation of SentenceBERT, we fine-
tune the pre-trained “nq-distilbert-base-v1” model using
the joint learning setup described in Section 6 and us-
ing cosine similarity loss. We use number of epochs
as 30, warmup_steps as 100 and evaluation_steps as
500. During test time, we compute the maximum co-
sine similarity of the input tweet against all of the ad
descriptions to get the ad class assigned to the tweet,
but with the embeddings obtained from the fine-tuned
SentenceBERT model.

6 AdBERT : Proposed Joint Learning
Approach

Figure 2: AdBERT Architecture

Our AdBERT approach frames the multi-class classi-
fication problem of mapping a tweet to its respective
advertisement as a binary classification and semantic
relatedness task. As we faced a problem of a limited
labeled dataset, we required a better training signal from
our dataset. In order to solve this problem, we use an
approach utilizing class verbalizers as seen in similar
research works for few shot learning (Aly et al., 2021;
Pappas and Henderson, 2019; Obamuyide and Vlachos,
2018). In our case study, we propose learning from
both the tweet as well as the textual descriptions of each
ad class, which is a part of our ad information dataset
(Table 1). This means that instead of using label IDs
as we did in earlier experiments with BERT, we con-
catenate tweet text with contextual descriptions about
the ad labels. The key phrases of the ad description are
concatenated together into a single sequence, which is
the contextual description of the ad.

Specifically, the input to the model is a <tweet, ad-
description> pair, and the output is either 1 (if the tweet
is related to the ad in the included ad-description) or 0
(otherwise). Therefore, given N tweets and K ad cat-

174



Without Ad Information

LogReg MLP BERT

#classes Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

Majority 15 0.88 0.84 0.85 0.94 0.76 0.84 0.59 0.72 0.64

Minority 46 0.66 0.52 0.58 0.55 0.36 0.43 0.60 0.49 0.53

Table 3: Given a multi-classification setting where the input is tweet information and the output is ad class, this
table reports the weighted average Precision, Recall and F1 score metrics of each model, grouped by majority and
minority classes.

egories, the AdBERT model would be trained on NK
instances. For each tweet in the original dataset, K − 1
tweet-ad pairs correspond to negative combinations, and
one pair corresponds to the positive class label. The hy-
perparameters for training remain the same as that used
in our experiments with BERT. This architecture is il-
lustrated in Figure 2.

This kind of joint learning training strategy is able to
handle the class imbalance problem, as the model also
learns from the “negative” combinations. The training
strategy we describe makes no assumptions about the
number of ad categories and is easily extensible. Includ-
ing new ad categories or adapting to newer ad themes
would only require a modification in the ad descriptions
with little to no fine-tuning of the classifier architecture.
We also do not need to handle explicitly the “not ad-
related” case here, as tweets not referring to any ad are
automatically classified as 0 in all cases.

The cross encoder in AdBERT takes as input to the
network both the tweet and the ad description sepa-
rated by a SEP token and multi-head attention, is ap-
plied across all tokens of the inputs. Compared to a
bi-encoder, the cross-encoder offloads the similarity
computation to the self-attention matrices and hence
is able to better learn to identify ad-relatedness. This
implies that both inputs are compared simultaneously
and helps solve the ad-relatedness problem.

The problem task reformulation we suggest, where
we append the label information to the tweet and assist
the cross encoder, also solves the limited representa-
tion problem, thus allowing our model to behave as an
effective few-shot learning framework.

7 Results and Discussion
7.1 Quantitative Analysis
We implement the Logistic Regression, MLP and BERT
models described in Section 5, where the only input
to the model is the tweet information, and the output
is the ad class. Table 3 reports the weighted average
precision, recall and F1 score metrics of each model,
grouped by the majority and minority classes for this
multi-classification setting. In the second round of ex-
periments, we implement our benchmarks but supple-
mented with ad information as per the joint learning
strategy described in Section 6. Table 4 reports the
metrics of each model, grouped by the majority and mi-

nority classes for this setting. Our model, AdBERT is
a joint learning strategy using a modification of BERT,
where the model learns from both the tweet and the ad
descriptions.

In our models, we argue that recall is the more impor-
tant performance metric than precision, given our focus
on identifying all true ads. This is because, in the con-
text of Twitter, ad mentions are rare with less than 1% of
all tweets even mentioning ad names, with our dataset
further highlighting that. For these reasons, we argue
that while precision is relevant, it is not critical since
false positive ads can be filtered out in downstream tasks,
so there is limited harm in falsely identifying ads while
there is significance in correctly identifying ads which
may not be readily identified using current methods.

In the setting where there is no ad information (Ta-
ble 3), we observe that Logistic Regression (0.84 Recall)
and MLP (0.76 Recall) do well when it comes to pre-
diction of the majority classes. This must imply that
there are inherent data patterns in the tweets that can be
captured just using TF-IDF features. However, with mi-
nority classes both models do quite poorly (0.52 Recall
for LogReg and 0.36 Recall for MLP) and cannot handle
the class imbalance or limited representation problem.
BERT in the multi-class classification setting is com-
parable (0.72 Recall) to the classical machine learning
models with the majority classes.

In the setting where we include ad information (Ta-
ble 4), we see that the performance of the classical ma-
chine learning models goes down as expected. Classical
models are known to be sensitive to class imbalance
(Atla et al., 2011; Mirylenka et al., 2017; Santiago et al.,
2012; Cervantes et al., 2017) and with the joint learn-
ing strategy, there is an increase in the size of training
data and class imbalance and noise become more pro-
nounced.

In the earlier experiment with BERT, we used just
the tweet input, so the cross-encoder in BERT could
not be completely harnessed to map the relationship
between the tweet and the ad labels. Therefore, the
joint learning strategy of AdBERT shows very high
performance across all metrics across both majority
and minority classes. AdBERT also does much better
than SentenceBERT in the joint learning setting with
our data (Recall of 0.75 vs 0.41 for minority classes).
This is because the cross-encoder offloads the similarity
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With Ad Information

LogReg_JL MLP_JL SentenceBERT AdBERT

#classes Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

Majority 15 0.66 0.32 0.43 0.67 0.34 0.45 0.65 0.73 0.68 0.91 0.91 0.91

Minority 46 0.42 0.23 0.29 0.36 0.15 0.21 0.39 0.41 0.39 0.74 0.75 0.74

Table 4: Given a binary classification setting where the input is tweet information concatenated with ad description
and the output is 1 (ad-related) or 0 (not-ad-related), this table reports the weighted average Precision, Recall and F1
score metrics of each model, grouped by majority and minority classes. AdBERT outperforms all other baselines.

computation to the self-attention matrices in all the lay-
ers and can better identify ad-relatedness as compared
to the bi-encoder of SentenceBERT. Bi-encoder based
methods usually achieve lower performance than the
cross-encoders method and require a large amount of
training data. The reason is cross-encoders can com-
pare both inputs simultaneously, while the bi-encoders
have to independently map inputs to a meaningful vec-
tor space which requires a sufficient amount of training
examples for fine-tuning. The cross-encoder approach
is typically not computationally feasible, but it is in this
scenario, as the number of ad labels is much less than
the number of tweets.

7.2 Qualititative Analysis
This section discusses the different types of tweet-to-ad
correspondence we observed in our Superbowl 2020
Dataset and how AdBERT handles them.

When tweet mentions the advertiser’s product :
In many cases, the tweet responses directly mention
the advertising brand or the product of the advertiser.
Consider an example tweet, “pepsi is totally copying
#nooriginality”. AdBERT is easily able to establish this
kind of mapping, with the tweet directly mentioning
Pepsi in its response. TF-IDF based models would
also be effective for these cases.

When a tweet is about advertisement’s creative el-
ements : Sometimes the tweets are motivated by the cre-
ative elements in the commercial, such as a celebrity’s
presence. In these cases, the tweet content is not enough
to map the tweet to the correct advertisement, and ad-
ditional commercial-related information is necessary to
establish context for the mapping. Consider the tweet,
"gotta let it go doritos right away" to which our model
gives Doritos a score of 0.98 F1 and Audi a score
of 0.95 F1. This happens because the Audi commer-
cial featured actor Maisie Williams singing “Let it Go”,
and this aspect of the commercial is learned from the
ad information (Table 1). As a result of the combined
contextual BERT embeddings of the tweet response and
ad information, Doritos has a higher probability, and
the tweet is eventually mapped to the Doritos com-
mercial.

Consider another tweet, "@google almost got canine
cancer! who is one actual sucker for golden retriev-
ers?". Our model maps this tweet to the commercial
for Weather Tech, which featured a golden retriever.

Although the word ‘google’ exists in the sentence, con-
text is given preference over mere word matching, and
the AdBERT classifier correctly identifies the appropri-
ate ad mapping.

These examples justify the poor results of TF-IDF
based models and establish the need for context-rich
models like AdBERT for effective mapping.

When a tweet is about multiple commercials: In
our test dataset, we observed several tweets mentioning
multiple commercials. For example, the tweet, "who is
the cool ranch doritos with lil nasx or ellen" is referring
to two advertisements : Doritos featuring celebrity
Lil Nas X, and Amazon Alexa featuring celebrity
Ellen Degeneres. AdBERT is able to understand that
most of this tweet is about the Doritos ad and gives
it a score of 0.98 F1 vs Amazon alexa with 0.67
F1. This is because of the combined learning from ad
information input and tweet content input.

When a tweet is about similar commercials : Ad-
BERT demonstrates a certain degree of confusion when
the tweet is about similar commercials (when you can-
not distinguish based on brand or commercial con-
tent). This is evident in the case of the tweet, “good
on you michelob”. Our model assigns similar scores
to commercials Michelob 6 for 6-pack (0.87)
and Michelob lite (0.98) for this tweet. This is
probably because the tweet only mentions the brand
name, and there is no further information to narrow it
down. Similarly, tweets corresponding to Bud light
seltzer and Tide bud knight show a degree of
overlap in classification. This is perhaps because both
ads are associated with the word ‘bud’.

Table 5 describes the true annotated label vs the
model predicted ad label for some examples from our
tweet-ads dataset and further illustrates the impact of
including ad information for joint learning. The ad in-
formation that is appended jointly with the tweet text,
describes creative elements in the advertisements (such
as a celebrities, taglines, etc.) even while the tweet
might not have any direct reference to the ad class. For
example, “post malone absolutely best ad so far” can-
not be mapped to an ad category without additional
context that the celebrity Post Malone was present in
the Budlight-seltzer ad. Table 5 also illustrates
how multiple minority category advertisements were
mapped accurately by AdBERT.
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Tweet text True ad class Predicted ad class Predicted
Ad category Ad information

post malone absolutely
best ad so far

BudLight Seltzer BudLight Seltzer Majority

bud light bud light seltzer
post malone anheuser-
busch inbev hard seltzer
postmalone budlightbud-
weiser alcohol

john cena with a super
bowl wrap i’m ready to
let it go man

Michelob Michelob Minority

anheuserbusch inbev mich-
elob ultrabeer jimmy fal-
lon working gym john
cena usain bolt brooks
koepka kerri walsh jen-
nings worth enjoy low
carbs jimmyfallon usain-
bolt workingout gymbody
alcohol

so far companies have
spent millions dollars in
ads starring people like
molly ringwald

Avocados-from-
Mexico

Avocados-from-
Mexico Minority

molly ringwald avocados
mexico avonetwork avo-
carriermollyringwald food

mc hammer still making
money with songs low key

Cheetos Cheetos Minority

mc hammer cant touch
popcorn cheetos cheetos
thing cheetle cant-
touchthismchammer food

arya stark nostalgic that
frozen winter is never
coming

Audi None Majority
maisie williams frozen
etron sportback traffic
letitgo

someone please explain
josh jacobs win?

None Kia Minority

josh jacobs running back
kia seltosraiders give ev-
erything joshjacobs kiasel-
tos car

Table 5: This table describes the true ad class vs the predicted ad class for some tweets from our tweet-ads dataset.
We can observe that jointly learning ad information and the tweet text, led to more successful mapping of the tweets
to their ads in both majority and minority represented ad categories.

As a counter example, consider the tweet, "Arya stark
nostalgic that frozen winter is never coming". This tweet
refers to the character played by actor Maisie Williams
in the popular series, Game Of Thrones. "Arya stark"
was not included as a relevant ad-related phrase in our
ad information data. Since neither the ad description
nor the tweet data captured ‘Arya stark’ as a feature of
the Audi ad, this tweet did not get classified correctly.

Similarly, “Someone please explain josh jacobs win”
is annotated as None but the model predicts the ad
class Kia, because Josh Jacobs is a football player men-
tioned in the ad information for this ad class. This is an
ambiguous tweet as it could be related to Josh Jacob’s
performance in the Superbowl or his racing against the
Kia car in the advertisement. Thus, false positives and
false negatives in the prediction indicate towards issues
with using manually annotated class verbalizers.

8 AdBERT used in Downstream Tasks

Our model serves as an essential part of multiple audi-
ence engineering pipelines in a social TV setting. In
the research by (Lu et al., 2022), the aim is to examine
the influence of the viewer’s temporary affective states
during Superbowl ad exposure. In order to compute
the viewer’s affective state, a key step is to be able to
understand which advertisement impacted the user’s af-
fective state, thereby making them tweet in a specific
way. This is done using AdBERT, which proves to be
superior than time-based tweet-ad alignment. This is
because the advertisements are typically very short (10
to 20s) and the user is more likely to tweet much later
(Murphy et al., 2006) than during this brief time period.
Similarly, in the work by (Kim et al., 2021), ad-related
tweets derived through AdBERT are analyzed for evi-
dence of gender-targeted advertising during the Super
Bowl.
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9 Limitations and Future work

Since our current AdBERT approach uses a fine-tuned
Bert-base-uncased model, using fine-tuned BERTweet
(Nguyen et al., 2020), which is a pre-trained language
model for English Tweets, seems like a suitable next
step. AdBERT uses additional information about the ad
classes for joint learning. Three authors manually anno-
tate this information in this research, but manually gener-
ated class verbalizers heavily depend on domain specific
prior knowledge and finding appropriate label descrip-
tions automatically is a challenging research problem
that can be further explored. Similar and multiple ad-
vertisement mentioning commercials pose a problem
in ad-tweet mapping and can be further disambiguated
by considering the tweet’s timestamp in addition to the
tweet content.

The joint learning strategy described in AdBERT can
also be extended to other social TV datasets. For exam-
ple, in the Social TV ecosystem of Presidential Debates
telecast on television, tweets could be mapped to seg-
ments of the debates. This could have multiple down-
stream implications such as viewer stance detection,
viewer engagement analysis etc.

10 Conclusion

In this paper, we develop a model, AdBERT, that aligns
tweets to the advertisements they refer to in the context
of the Social TV ecosystem of Superbowl 2020. This
problem is technically challenging because of the diffi-
culties in establishing ad-relatedness of a tweet, class
imbalance in the dataset and limited representation for
each ad class. We find that framing this multi-class clas-
sification problem as a binary classification and seman-
tic relatedness task results in superior F1 performance
compared to our baseline models. In the joint learn-
ing setting, the model learns from both the input and
label information together, leading to better classifica-
tion even in lesser represented classes. Thus our model
generalizes well despite the class imbalance and limited
labelling problems in the dataset. AdBERT makes no
assumptions about the number of ad categories and is
easily extensible. Our model can be highly useful as a
step toward incorporating feedback into advertisements
and analyzing viewer engagement and attitudes. As a
by-product of this research, we also developed a dataset
of ad-related tweets and a dataset of ad descriptions of
Superbowl ads, which can be used to further Social TV
research.
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Abstract

Automatically detecting the intent of an utter-
ance is important for various downstream nat-
ural language processing tasks. This task is
also called Dialogue Act Classification (DAC)
and was primarily researched on spoken one-
to-one conversations. The rise of social media
has made this an interesting data source to ex-
plore within DAC, although it comes with some
difficulties: non-standard form, variety of lan-
guage types (across and within platforms), and
quickly evolving norms. We therefore inves-
tigate the robustness of DAC on social media
data in this paper. More concretely, we pro-
vide a benchmark that includes cross-domain
data splits, as well as a variety of improvements
on our transformer-based baseline. Our exper-
iments show that lexical normalization is not
beneficial in this setup, balancing the labels
through resampling is beneficial in some cases,
and incorporating context is crucial for this task
and leads to the highest performance improve-
ments (~7 F1 percentage points in-domain and
~20 cross-domain).1

1 Introduction

The rise of social media and digital assistants has
led to new forms of communication, where an enor-
mous amount of data is available, and automatically
understanding this has become an important quest.
Automatically identifying the intent of an utterance
is therefore highly relevant for automatically inter-
acting with humans (i.e. chatbots), or to analyze
people’s behaviour online. This task is also called
Dialogue Act Classification (DAC). An example of
two social media utterances annotated for DAC is
shown in Table 1. DAC has traditionally mainly
been investigated in the context of one-to-one spo-
ken conversations, which is drastically different
from one-to-many written conversations.

1Code/data available on https://github.com/
marcusvielsted/DialogueActClassification

Utterance Label

“We are free tomorrow night,
right?”

propositional
question

“No, the final Grand Prix is
on!”

disagreement

Table 1: Example utterances annotated for DAC

On top of this, language use on social media is
evolving rapidly (Eisenstein, 2013). This makes
the automatic processing of this data complex, and
the standard setup in Natural Language Processing
(NLP), where taking train and test data from the
same domain is less relevant. New platforms are
created while old ones are abandoned, and each
platform comes with its own language norms and
varieties. Hence we argue for a setup with two test
sets, one in-domain and one cross-domain, and aim
to improve the robustness of the current state-of-
the-art models in NLP, transformers (Wolf et al.,
2020; Devlin et al., 2019).

This leads to our research question: How can
dialogue act classification models be made more
robust for in-domain and cross-domain appli-
cations on social media data?, followed by our
sub-questions:

• SQ1: Can lexical normalization improve the
robustness of a DAC Model?

• SQ2: Can resampling of label distributions
improve the robustness of a DAC Model?

• SQ3: Can incorporating utterance context
improve the robustness of a DAC Model?

Contributions 1) we provide an annotation
schema adapted from the ISO 24617-2:2020 stan-
dard, which we modify to better fit the task
of annotating social media data 2) we provide
DAC-annotated datasets for two domains, one
large enough to train on, and one from another
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domain/time-span to evaluate for robustness. 3) We
evaluate and compare three methods to improve the
robustness of DAC models: lexical normalization,
label resampling, and exploiting context

2 Related Work

Social Media Despite the prevalence of social
media in modern society, little research presently
exists on the application of dialogue act classi-
fication on social media domains. The task has
primarily been researched with a focus on verbal
communication. Recently, some work has evalu-
ated a CNN for Twitter data (Saha et al., 2019)
and LSTMs on Reddit and Facebook data (Dutta
et al., 2019). Unfortunately, these datasets are not
publicly available.

Cross-domain In relation to the task of DAC,
there has been limited research into model per-
formance when predicting across unseen domains.
Given the plurality of social media domains and
their differences in communication structure, it
is an opportune target for cross-domain classifi-
cation. Dutta et al. (2019) evaluated cross-domain
performance from Reddit to Facebook, reporting
a drop of 5 absolute points F1 score, showing
that the domains are relatively close. Additionally,
cross-domain transfer learning between Human-
Human and Human-Machine communication has
been tested by Ahmadvand et al. (2019), who
managed to outperform a state-of-the-art Hidden
Markov Model through the use of transfer learning.

Context While some research into DAC has been
applied to a single utterance in isolation of its con-
text, dialogue acts are often context-dependent or
context-sensitive (Bothe et al., 2018b). Although
merely applying the preceding utterance provides
performance improvements, Bothe et al. (2018a)
demonstrate that using an utterance-level attention-
based bidirectional recurrent neural network to an-
alyze the importance of preceding utterances to
classify the current one, provides additional perfor-
mance. This is underlined by Raheja and Tetreault
(2019), who use a conditional random field for
sequence labeling of preceding utterances in com-
bination with a self-attention recurrent neural net-
work for text classification to achieve similar per-
formance gains.

Transformer-Based Language Models As is
the case for most NLP tasks, transformer-based
language models finetuned on the target tasks

have recently been shown to outperform previ-
ous approaches. This was shown by Duran et al.
(2021), who comparatively analyzed six different
supervised learning models and ten pre-trained
language models on DAC; the best performance
was obtained by BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models.

3 Data

3.1 Datasets

Dialogue acts are commonly annotated on the
smallest functional segment of a text that conveys
an intended goal. Therefore, in this work, we an-
notate (multiple) utterances within a single social
media post. For instance, while it is possible to
encapsulate the following utterance within one sin-
gle social media post: “Hi! How are you? Did
you see the final Grand Prix last night?”, should
not be interpreted as a single utterance, but rather
split up and interpreted as three separate utterances,
as it aims to convey three different dialogue acts.
Additionally, for all input datasets, we assume that
context is provided. Therefore, if the information
is not present in a dataset, we enrich the dataset
with columns containing these.

We will make use of two social media domains.
For in-domain DAC, this project utilized the “NPS
Chat Corpus” (Eric Forsyth et al., 2008) as source
domain, consisting of 10,567 textual utterances col-
lected through various chat forums in 2006 and
thus presents a unique collection of early-day so-
cial media data. As social media domains can vary
substantially in language and structure, we con-
sidered the NPS Chat Corpus to be an interesting
source domain for cross-domain application, as we
hypothesize that the similarities in utterance struc-
ture compared to a modern domain, such as Reddit,
would be small. Therefore, we would be able to
investigate and evaluate our models against two
drastically different social media domains, and test
the robustness of a given model.

For our cross-domain target, we compiled a Red-
dit dataset from the “Reddit Corpus (small)” dataset
from “Convokit” (CornellNLP, 2021). Reddit is
particularly interesting as subreddits potentially
have variances in their use of language, vocabulary,
and communication structure. Therefore, we are
able to get a broader representation of the social
media landscape compared to using other social
media domains. By imposing our rules for select-
ing relevant utterances, see Appendix A, we ended
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Figure 1: Learning curve of an SVM-based model on
the NPS Chat corpus (taken from Wallenius and Vielsted
(2021)).

up with a dataset consisting of 1,705 unique utter-
ances from 50 unique threads within 37 different
sub-reddits. Each thread is comprised of at least 20
consecutive utterances.

In previous research (Wallenius and Vielsted,
2021), it was shown that for a bag-of-words SVM
model on the NPS-chat corpus, ~5,000 utterances
is sufficient to train a competitive in-domain model
(see Figure 1). Hence, we choose to annotate train-
ing data of a similar size (4,800 utterances).

Finally, in order to achieve a pure cross-domain
setup for our model (i.e. no target domain data
seen during development), we utilize a develop-
ment split from the in-domain dataset for the tuning
and model selection of all experiments. As such,
the development set from the cross-domain dataset
will only be used for the cross-domain model eval-
uations throughout the experiments. This is done
in order to prevent overfitting of the cross-domain
model improvement towards a single known cross-
domain dataset. As such, this setup prevents over-
estimation of performance for testing on additional
domains not included in the experiments (Artetxe
et al., 2020; Goot, 2021).

3.2 Guidelines
In relation to the task of DAC, various different an-
notation schemas have been developed, depending
on the specific communication format for which a
given task is being applied to. One of the first ex-
amples of DAC annotation schemas is the SWBD-
DAMSL (Dan Jurafsky et al., 1997) intended for
use on the Switchboard corpus (Potts, 1998). The
Switchboard corpus consists of telephone conver-
sations between two participants, i.e., a 1-1 bidi-
rectional communicative relationship, which is re-
flected in the corresponding annotation schema.

Split In-domain Out-of-domain

train 4,800 —
dev 600 853
test 600 852

Table 2: Dataset splits for both in-domain and cross-
domain.

Additional examples of annotation schemas include
the MRDA tag set (Shriberg et al., 2004) created
for dialogue annotation of large meetings, and the
Posting Act Tagging schema (Wu et al., 2005) for
early online chat forums. Though, in the examina-
tion of these annotation schemas, we deemed them
unfit for this task as they emphasize traditional 1-1
bidirectional conversation formats. The Posting
Act Tagging schema initially appeared to better uti-
lized towards unidirectional 1-n social media data,
as it was created to support tasks aimed towards
earlier online chat forums.

However, having applied this tag-set in previ-
ous research, we found it inadequate for captur-
ing many of the nuances of modern unidirectional
social media posts and would skew the data to-
wards one specific label. Therefore, the annotation
schema utilized for this project has been adapted
and modified from the ISO 24617-2:2020 dialogue
act annotation standard (ISO 24617-2, 2020) in
order to fit the specific task. This is done in an
attempt to more accurately capture the nuances
and account for the frequent use of unidirectional
communication in modern social media data. The
ISO 24617-2:2020 standard has specifically been
made to address 3 shortcomings made from a pre-
vious version of the standard, as well as limitations
from other annotation schemas. “These experi-
ences have brought to light (1) that the standard
allowed dialogue act annotations that are slightly
inaccurate in some respects, (2) that some applica-
tions would benefit from the availability of mecha-
nisms for customizing the set of concepts defined
in the standard, and (3) that certain use cases re-
quire the representation of functional dialogue act
information to be extended with semantic content
information.”(ISO 24617-2, 2020). Thus, we have
chosen to adapt and modify this standard, as the
schema has been designed to account for these lim-
itations by being domain-independent, and encour-
aging customization and extension as indicated in
point (2). This allows us to create an annotation
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Label Example
propositionalQuestion “r u serious?”
setQuestion “what list should

i put him in?”
choiceQuestion “shaken or stirred?”
inform “i wonna chat”
elaborate “and dr phil said so.”
continuer “I know, but it

threw me”
agreement “i agree”
disagreement “no, I didnt even look.”
correction “i meant to write

the word may.”
greeting "hey ladies"
goodbye “see u all laters”
positiveExpression “yay!”
negativeExpression “ewwwww lol”
offer “il get you a cheap

flight to hell:)?”
suggestion “We should have

a club”
instruct “shut the fuck up.”
acceptAction “yeah i should toss it”
declineAction “i don’t wanna”
misc :tongue:

Table 3: Tag-set adapted from ISO24617-2:2020 with
examples from NPS Chat Corpus.

schema best suited for the task of labeling social
media data. An overview of the resulting label set
is shown in Table 3.

Schema Adaptations The primary adaptation
involves splitting the generalized Inform label
into 3 separate labels. The standard definition of
the “Inform” label is “Communicative function
of a dialogue act performed by the sender, S, in
order to make the information contained in the
semantic content available to the addressee, A;
S assumes that the information is correct” (ISO
24617-2, 2020). In addition to this, we wanted to
incorporate context into the annotation schema and
distinguish between what dialogue act a given utter-
ance is responding to. The two labels elaborate
and continuer were therefore added. These
categories are distinguishable from inform in the
context of the dialogue act. Both labels imply addi-
tional information being added to a given subject,
while referencing an object previously mentioned
in a conversation. The distinction between the two
labels is that elaborate implies that a sender
is elaborating upon their own previous utterance,
whereas, continuer implies that a sender is con-
tinuing a previous utterance by a different sender.
By splitting the inform label into 3 we are thus
isolating inform for instances where the utter-

ance can be read and fully understood without any
context, which is a common occurrence in social
media data where utterances are often unidirec-
tional. Utterances labeled inform will therefore
never reference named entities from previous utter-
ances.

Other adaptations to the standard involves
generalizing and unifying specific labels to
narrow down the total number of labels. This
was done in order to ensure that all labels
were represented in a dataset. For this purpose,
labels encompassed by the “Action-discussion
functions” category in the ISO 24617-2 standard
(ISO 24617-2, 2020) were reduced to offer,
suggestion, instruct, acceptAction
and declineAction. All accept and
decline “Action-discussions functions” labels in
the ISO 24617-2 were combined into the two labels,
acceptAction and declineAction. The
labels answer, confirm and disconfirm
were removed as their functions could be in-
corporated into continuer, agreement and
disagreement. Lastly, “Social-Expression”
was incorporated through the labels, greeting,
goodbye, negativeExpression and
positiveExpression, as it is a significant
part of communication on social media.

3.3 Annotation

The NPS dataset was annotated with the new tag-
set by two annotators. Across 10 iterations with
50 utterances each, they consistently reached a Co-
hen’s κ score of 0.83, which can be interpreted
as an “almost perfect” agreement (Cohen, 1960).
Given this trend and a stagnation in improvement,
the remaining utterances were then annotated indi-
vidually. The dataset statement (Bender and Fried-
man, 2018) can be found in Appendix B.

4 Models

4.1 Baseline Model

As this research explores methods to improve DAC
performance and robustness for cross-domain so-
cial media data rather than reaching optimal scores
for one specific domain, hyperparameters were
not continuously optimized throughout the experi-
ments. The hyperparameter setup for this project
was therefore to establish an optimized baseline
model and to freeze the hyperparameters in this
configuration throughout the experiments. The
method for obtaining the optimized hyperparame-
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Hyperparameter Value Range

Batch Size 16 [16, 64]
Warmup Steps 125 [75, 125, 250]
Learning Rate 7e-5 [5e-5, 7e-5, 9e-5]
Weight Decay 0.5 [0.1, 0.5]

Table 4: Our hyperparameters test ranges and chosen
values.

ters was a three-step process. Firstly, we used the
BERT-base model (Devlin et al., 2019) to find the
optimal set of hyperparameters fine-tuned for this
specific task. The hyperparameters optimized in
this project can be seen in Table 4.

Secondly, having established the optimal hyper-
parameter values for the BERT-base model, we
tested a total of 17 different transformer models
(see Appendix C for the full list), to determine the
best performing model(s). Lastly, the five best-
performing transformer models from the previous
test were then re-tested with the same range of
hyperparameters as step one, to achieve a single
optimal baseline model. By doing this, we could
limit the scope of our model fine-tuning to 180
models instead of 612 models. Using this setup,
the following five transformer models produced the
best results: “deberta v3 base” , “deberta v3 large”
(He et al., 2021), “bertweet-base” (Quoc Nguyen
et al., 2020), “bertweet-large” (Quoc Nguyen et al.,
2020), and “bert-base-uncased” (Devlin et al.,
2019). Doing hyperparameter optimization for
the five models, we found deberta-v3-large to pro-
vide the best performance. However, we selected
deberta-v3-base as the model for our experiments.
This selection was made due to computational re-
strictions, limiting the number of large models that
we would be able to fine-tune and test. To sup-
port this selection, the large version was shown
to be only slightly better, with an F1 score of
0.325 percentage-points points higher than the base
model, which scored 77.11 F1 in-domain and 53.92
F1 cross-domain averaged over five seeds.

4.2 Lexical Normalization
As a result of the informal nature of social me-
dia data, utterances often include abbreviations,
slang, and misspellings. These language variations
already constitute a significant challenge for tradi-
tional NLP models trained on chronological text
(Baldwin et al., 2013; Eisenstein, 2013). Moreover,
language variations potentially pose an even greater

Figure 2: Label resampling of NPS Chat Corpus

challenge for cross-domain application, since it in-
volves two different domains, likely resulting in
more Out-Of-Vocabulary (OOV) tokens. Therefore,
we hypothesized that applying lexical normaliza-
tion on both our source and target domains could
unify their vocabularies, thus increasing the token
overlap and improving our model performance. An
example of manually annotated normalization is:

Original: “any ladis wanna chat?”

LexNorm: “any ladies want to chat?”

For this task, we used the lexical normalization
tool MoNoise (Van Der Goot, 2019), which pro-
duces performance on par with the state-of-the-art
for English data (van der Goot et al., 2021). We use
the publicly available MoNoise model for English,
trained on data from Li and Liu (2014), to create
parallel datasets for each domain with normalized
text. This allows us to continuously test the results
of lexical normalization, both in isolation and in
combination with methods described in Section 4.

4.3 Multinomial Resampling

For cross-domain applications, we assume that la-
bel distributions within the source domain and tar-
get domain differ. In order to negate a potential
labelling bias towards specific classes, we hypothe-
sized that having more balanced and aligned label
distributions between the datasets would improve
model robustness. For this purpose, we resampled
our datasets with respect to the annotated labels
and according to a multinomial distribution. Using
a multinomial resampling algorithm, each label is
resampled according to the probability of its occur-
rence in our dataset:

1

pi
∗ pαi∑

i p
α
i
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Utterance: I have never used elbow

Context Utt. Label

You only scored the goal because
you used your elbow

disagreement

Did you use your hands or el-
bows to get up there?

inform

Table 5: Impact of differing contexts on dialogue acts.
Note that the label column indicates the label of the
original uterance

where pi represents the probability that a random
sample corresponds to the label i and α is a hy-
perparameter, for our sample smoothing function,
to determine the proportional degree to resample.
α = 1.0 corresponds to the pre-existing distribu-
tion, and α = 0.0 corresponds to an equal distribu-
tion for all labels. The effect of α on the training
data distribution is visualized in Figure 2.

4.4 Utterance Context

Motivated by the defintion of the task and previous
work (Section 2), we hypothesized that integrating
context into the model might increase robustness.
Table 5 exemplifies this: if isolated from context, it
is unclear which label is correct for the utterance.
We found three different context elements to be
relevant. context_Label: the given classification
label for the utterance to which a given utterance
responds. context_Text: the actual utterance text a
given utterance is responding to. context_Sender:
a binary value specifying whether the sender of
the context utterance is the same as the sender for
a given utterance. This would be the case if a
participant responds to their own prior utterance.

These three context elements are concatenated to
the text and are separated with the [SEP] token. A
total of 15 permutations of the three elements were
then combined either pre or post the input text, thus
resulting in 30 different context configurations. An
additional permutation was added for no context
elements (overview in Appendix D).

Gold vs. Predicted Context Label Out of
our three context elements described above, con-
text_Text & context_Sender can be easily gener-
ated using the utterance_ID. context_Label, how-
ever, is not that easily generated: it requires either
manual annotation or an iteration of model predic-
tions for the whole dataset. Therefore, our dataset
has two different context_Label columns, Gold and
Predicted. The Gold labels are used as a baseline to

In-domain Cross-domain

Base 77.11±1.85 53.92±1.06
+Norm 76.81±0.95 54.02±0.72

Table 6: Average results of lexical normalization in
isolation in-domain & cross-domain (dev).

compare the performance for the Predicted labels,
and are therefore only for analytical importance.
The Gold labels were manually annotated, when
the dataset was annotated. We obtained the Pre-
dicted labels through a five-fold cross-validation
setup on our training data, where we trained on 80%
and predicted a label on the remaining 20%. For
each fold, we instantiated a new optimized baseline
model, see section 4.1, so as to avoid overfitting.

5 Results

All results reported are average macro-F1 scores
over 5 random seeds unless mentioned otherwise.
As mentioned in Section 3, we always used the in-
domain dev-set for model picking, as well as for hy-
perparameter tuning. We first evaluate each of our
proposed improvements (Section 5.1-Section 5.3).
Then, we attempt to combine our methods (Sec-
tion 5.4), and confirm our findings on the test data
(Section 5.5). We use Almost Stochastic Order
(ASO) for significance testing (Dror et al., 2019)
as implemented by Ulmer et al. (2022) over the
random seeds, and with an epsilon (ϵ) smaller than
0.5 we reject the null hypothesis.

5.1 Lexical Normalization

As shown in Table 6, we observed a performance
decrease in F1 score of .3 percentage points in-
domain and a negligible gain of 0.1 percentage
points for cross-domain when normalizing the train
and dev data. Based on these scores, we conclude
that lexical normalization is not beneficial for DAC
in our setup. Because the in-domain results show
an opposite trend as we hypothesized, namely that
normalization is not useful, we do an ASO signif-
icance test to confirm whether using the original
data is stochastically dominant over using the nor-
malized data. This test resulted in a minimum
epsilon of 0.0, and we can thus confirm that nor-
malization leads to lower scores, whereas the cross-
domain differences were shown not to be signifi-
cant.
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In-domain Cross-domain

Base 77.11±1.85 53.92±1.06
Resample 78.50±1.80 55.54±1.31

Table 7: Scores on the in-domain and cross-domain data
when using resampling compared to our baseline (dev).
Resampling α is 0.9 and 0.8 respectively.

Setup #cont. F1

Baseline In-domain — 77.11
Gold In-domain 27 85.39
Pred In-domain 27 86.22

Baseline Cross-domain — 53.92
Gold Cross-domain 14 76.35
Pred Cross-domain 22 76.35

Table 8: Best performing context configuration for all
four setups. The 3 context configs (#cont.) used are:
27: [Context Sender + Text + Label] Post Input Text
22: [Context Label + Sender + Text] Post Input Text
14: [Context Sender + Label + Text] Pre Input Text.

5.2 Multinomial Resampling

For multinomial resampling, the best settings we
found where α = 0.9 for in-domain and α = 0.8
for cross-domain (Section 6.3). Results show a
substantial improvement, while keeping standard
deviation in a similar range (Table 7). The resam-
pling ratios (α) tested were 0.60, 0.80 and 0.90
for in-domain and 0.80, 0.85, 0.90 and 0.95 for
cross-domain. These were selected, as they pro-
vided the best results for each domain. Significance
tests resulted in a minimum epsilon value of 0.0
for in-domain and 0.02 for cross-domain compared
to disabling the resampling (α = 1.0), confirm-
ing that multinomial resampling is stochastically
dominant.

5.3 Context

In Table 8, we report the results for the best
permutation of all different elements of context we
consider (Section 4.4). Full results can be found in
Appendix D. Perhaps surprisingly, the predicted
labels perform on par with the gold labels. We hy-
pothesize that a partial explanation for this, is that
our model performs very well on the informative la-
bels our models require to learn context. i.e. labels
inform,instruct,offer,suggestion,
setQuestion, propositionalQuestion
(see appendix E). We confirmed with an ASO

Feature In-domain Cross-domain

Context Conf. [19, 23, 26, 27, 31] [11, 19, 22, 23, 31]
Context label [Gold, Predicted] [Gold, Predicted]
Resampling α [.95, .9, .75, .65, .6] [.95, .9, .85, .7, .4]
Normalization [+,-] [+,-]

Table 9: Feature setup for combined models. The exact
context configurations can be found in Appendix D, but
all of the ones in this table use all three context elements.

In-domain Cross-domain
#cont. α F1 #cont. α F1

27 1.0 86.22 22 0.95 77.17
26 1.0 85.51 11 0.90 76.58
31 1.0 85.48 31 0.70 76.58
23 1.0 85.47 31 0.95 76.48
19 1.0 85.28 31 0.40 76.43

Table 10: The feature values for our best performing
models for both our In-domain(ID) and for our Cross-
domain(CD). All 10 models are using predicted context
labels and the non-normalized dataset. #cont. refers to
the context configuration.

significance test that gold labels are not out-
performing predicted labels with an epsilon of
1.0.

5.4 Combining
We evaluated all combinations for the (max.) five
setups for each of our robustness proposals, which
are summarized in Table 9. Our best performing
model reached a performance of 82.09 (in-domain)
with the following setup from Table 9: [19, Pre-
dicted, 0.95, Original]. This score is lower than
our previous highest score, achieved when only us-
ing context, see Table 8. On average, the top five
feature setups combining resampling and context
tested 2.4 percentage points below the same feature
setup without resampling. This reduction in score
when combining context and resampling could po-
tentially be explained by the two features achieving
improvements in similar situations, and are thus
not complementary. For the cross-domain exper-
iments, the label resampling still contributes, as
the best five combined models (shown in Table 10)
outperform the 76.35 reported in Table 8.

5.5 Test Data
On the test data (Table 11), we see that the model
slightly overfits on the in-domain dev data (from
the lower scores on test), but this does not transfer
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In-domain Cross-domain
Model Dev Test Dev Test

Baseline 77.11 76.27 53.92 55.17
LexNorm 76.81 74.99 54.02 53.35
Resample 78.17 79.09 54.91 55.67
Context 84.42 83.83 75.01 75.18
Best 84.42 83.83 75.70 75.64

Table 11: Development and Test scores for In-Domain
& Cross-Domain for selected models.

to the cross-domain setup (where test>dev). Fur-
thermore, the results align with our observations
on the test data: normalization is not useful, resam-
pling benefits performance to some extent, and the
context is most crucial for performance. Further-
more, combining context and resampling does not
lead to improved performance.

6 Analysis

As our standard deviations were relatively small
and to simplify our analyses (and for computational
efficiency), all results in this section are obtained
over one seed.

6.1 Baseline model

In Appendix E, Figure 6 and 7 we show confu-
sion matrices for both domain’s baseline models
predictions. As can be seen from these matrices,
our baseline models have mostly certain classes
with reoccurring mislabeling. These classes with
reoccurring mislabeling cover the labels where con-
text is a distinguishing factor, and where the vari-
ations of the input text between the labels is of-
ten minor. For this reason, it was expected for
the baseline to struggle to distinguish between the
labels inform, continuer & elaborate,
without the addition of context.

The classes with reoccurring mislabeling are
most evident for the cross-domain baseline model.
We hypothesize that one reason for this could be
that the utterance variations within each label be-
tween our in-domain train-set and dev-set is smaller
compared to the difference between our in-domain
train-set and our cross-domain dev-set. There-
fore, our in-domain model would more likely have
been trained on similar label tendencies as the one
present in the in-domain dev-set, compared to our
cross-domain model. This argument underlines
that social media domains are constantly chang-

Figure 3: Results of Resampling in isolation in-domain
& cross-domain.

ing, and confirms the importance of cross-domain
evaluation.

6.2 Lexical Normalization
The, perhaps surprisingly, negative results obtained
when using lexical normalization can be explained
by a variety of reasons: 1) performance of the nor-
malization model, as it is used out-of-domain (it
is trained on Twitter), performance might be sub-
optimal. Upon inspection, we found that the model
is too conservative, and many non-standard words
are not normalized. 2) removal of information, by
normalizing we are essentially removing informa-
tion, for example: “YOU DID” could be interpreted
as a propositionalQuestion whereas writ-
ing “you did” is more likely to be interpreted as
a continuer. 3) perhaps word overlap has be-
come less important since modern language models
use sub-words.

6.3 Resampling
As the resampling α determines the degree to
which the label distribution is normalized, we have
tested the full range of resampling ratio (from
α = 0.0 to α = 1.0) in increments of 0.05. From
these results, as shown in Figure 3, we were able
to identify the trend that a lower resampling ratio
(i.e., higher α) provides the biggest performance
increase for both in-domain and cross-domain. Fo-
cusing on the in-domain line, we see that lower
rates consistently perform worse, which can be ex-
plained by the fact that the label distribution of
the in-domain dev data is similar to the train data,
and changing this makes the distribution more dis-
tant. On the dev data, there is a slightly increasing
trend up to α = 0.90. The difference between 1.0
is larger compared to the in-domain line. There
is a drop > 0.90 on both dev-sets. As shown in
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Figure 4: Effect of using different amount of context
elements on F1 score.

Figure 2, our dataset has an unequal distribution
in label classes, where labels such as offer and
choiceQuestion are much less occurring than
greeting and inform. We hypothesize that
with such a label distribution as our NPS dataset,
our model does not have enough training data for
these rare classes, thus not being able to accurately
predict on these. By applying a resampling ratio
where one achieves a balance between aligning the
training data with the dev-data and increasing the
occurrences of rare labels, we get the most out of
multinomial resampling.

6.4 Context

The results of all our permutations of using the
context are plotted in boxplots in Figure 4. We
summarize the results over the number of added el-
ements, and plot quartiles. The trend is clear: more
context information leads to higher performance,
and in the case of the cross-domain results, all ele-
ments are necessary to obtain stable results. When
inspecting the individual scores (Appendix D), we
can conclude that the text of the previous utterance
is the most important context feature.

7 Conclusion

Firstly, we found that lexical normalization does
not constitute a stochastically dominant feature for
cross-domain applications, but rather had a nega-
tive effect on F1 performance. By applying lexical
normalization, the performance dropped for both
our in-domain data, while staying the same for our
cross-domain dataset. Additionally, while it de-
creased the standard deviation for our in-domain
model, it almost doubled the standard deviations
for our cross-domain model. We can therefore
state that lexical normalization does not improve
the robustness nor increase the F1 score of either in-

domain or cross-domain DAC model when trained
on social media data.

Secondly, we have seen that multinomial re-
sampling is a stochastically dominant feature in
isolation with regard to increasing the F1 score
for both in-domain and cross-domain. However,
for cross-domain applications it increased the stan-
dard deviation drastically, while maintaining the
same standard deviation for in-domain usage. Used
in combination with context for cross-domain ap-
plications, we were able to both increase the F1
score marginally, while reducing the standard de-
viation from 0.92% to 0.42%. We can therefore
conclude that multinomial resampling can increase
the performance and robustness of a DAC model
for cross-domain applications when combined with
context as a feature, but should not be included for
in-domain models.

Thirdly, we have observed that context has been
the most significant contributing factor to the large
performance increase of both in-domain and cross-
domain models. We have shown that additional
context elements in our setup increase robustness
and constitutes a stochastically dominant feature
compared to fewer context elements. Improv-
ing the F1 scores by 7.28 percentage-points for
in-domain and 21.23 percentage-points for cross-
domain, while also reducing the standard deviation
to 0.65% for in-domain and 0.92% cross-domain,
we have proved that context can improve the ro-
bustness of DAC models for cross-domain as well
as in-domain applications.
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Appendix

A Reddit Dataset Creation

“Reddit Corpus (small)” is composed of 297,132 ut-
terances (Posts) from 8,286 conversations (threads)
within 100 unique Subreddits. From this starting
point, we identified all threads with more than 40
utterances. This limit was set in order to get longer
threads with potentially more conversations con-
taining bidirectional communication, which would
enable us to better investigate context among utter-
ances. Despite this project splitting each social me-
dia post up into multiple different utterances based
on its shortest possible functional segments, we
still wanted posts with a shorter length, as we hyp-
notized this would entail a more accurate real world
version of singular communicative functions. Fur-
thermore, we hypothesized that relying on shorter
posts would balance out the label distribution, as
this implies a greater number of different speakers.
Therefore, we chose to include all threads where
the mean length of posts were between 50 and 150
characters.

Having compiled a list of available treads abid-
ing by the aforementioned rules, we selected 50
random threads, and included the first 20 consecu-
tive utterances from these. This resulted in a total
of 1000 posts which, after splitting each post up
into its smallest possible communicative function,
returns a dataset consisting of 1705 unique utter-
ances from 50 Subreddits.

B Dataset Statement

Following (Bender and Friedman, 2018), the fol-
lowing outlines the data statement:

A. CURATION RATIONALE Collection of
text samples from different social media domains.
The first part (NPS Chat corpus) was sampled from
a variety of platforms in 2006, and the collection
of the Reddit samples is a random sample of long
threads taken from 100 different Subreddits (more
detail in Appendix A)

B. LANGUAGE VARIETY Most of the data is
filtered to be English, it is unknown which variety
of English is dominant.

C. SPEAKER DEMOGRAPHIC Unknown.
D. ANNOTATOR DEMOGRAPHIC Two

software-design master students, both have pre-
vious experience with annotating for dialogue act
classification. Native language: Danish, but profi-
cient in English.
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Figure 5: List of all the models used for testing within
our project

E. SPEECH SITUATION Online, most proba-
bly the old data is typed from a keyboard, whereas
the Reddit part of the data might come from a larger
variety of devices.

F. TEXT CHARACTERISTICS There could
be a variety of noise in the utterances, as well as
utterances that contain mainly canonical text. No
filtering on style was done.

C Model Selections

Figure 5 show the performance of all of the 17
language models evaluated on the in-domain dev
data.

D Context Configurations

Table 12 shows the exact order of each of our con-
text configurations, and their corresponding scores
when using gold or predicted context labels for
both in-domain and cross-domain. Note that these
results are not averaged over 5 random seeds as the
results in the main paper, thus the context config-
urations that do not use context labels still differ
between Gold and Pred.

E Confusion matrices

Figure 6 and Figure 7 show the confusion matrices
of our baseline model on the In-domain and Cross-
domain dev sets.
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In-domain Cross-domain
Id Context config Position # elems. Gold Pred Gold Pred

1 No Context Included 0 76.32 81.41 54.21 52.69
2 Only Context Label Pre 1 78.02 76.77 58.35 63.54
3 Only Context Sender Pre 1 79.27 80.84 70.39 69.80
4 Only Context Text Pre 1 80.72 77.79 60.47 58.72
5 Only Context Label Post 1 78.76 81.35 60.24 62.12
6 Only Context Sender Post 1 79.90 79.51 71.37 72.11
7 Only Context Text Post 1 79.39 78.05 61.76 57.23
8 Context [Label + Sender] Pre 2 82.50 83.53 72.82 74.01
9 Context [Label + Text] Pre 2 81.07 82.55 61.11 61.28
10 Context [Label + Sender + Text] Pre 3 82.93 84.17 74.49 74.41
11 Context [Label + Text + Sender] Pre 3 83.71 85.28 73.97 75.77
12 Context [Sender + Label] Pre 2 81.38 83.35 73.17 74.98
13 Context [Sender + Text] Pre 2 83.73 80.23 75.19 74.71
14 Context [Sender + Label + Text] Pre 3 83.68 84.09 76.35 74.84
15 Context [Sender + Text + Label] Pre 3 84.21 84.42 73.77 75.23
16 Context [Text + Sender] Pre 2 83.86 81.32 75.89 70.99
17 Context [Text + Label] Pre 2 81.37 82.64 60.97 62.90
18 Context [Text + Sender + Label] Pre 3 83.19 85.17 75.74 73.07
19 Context [Text + Label + Sender] Pre 3 83.96 85.28 75.90 76.28
20 Context [Label + Sender] Post 2 82.54 83.63 71.22 74.33
21 Context [Label + Text] Post 2 79.83 82.14 59.39 61.33
22 Context [Label + Sender + Text] Post 3 83.43 84.12 75.07 76.35
23 Context [Label + Text + Sender] Post 3 84.41 85.47 76.14 75.72
24 Context [Sender + Label] Post 2 82.05 84.10 75.58 75.45
25 Context [Sender + Text] Post 2 83.18 81.70 76.02 74.68
26 Context [Sender + Label + Text] Post 3 83.42 85.51 74.97 74.15
27 Context [Sender + Text + Label] Post 3 85.40 86.22 73.64 74.99
28 Context [Text + Sender] Post 2 83.13 82.71 74.59 72.03
29 Context [Text + Label] Post 2 78.64 82.27 59.28 57.91
30 Context [Text + Sender + Label] Post 3 3 82.76 84.92 74.08 75.00
31 Context [Text + Label + Sender] Post 3 83.97 85.48 75.20 76.02

Table 12: Results for all our context configurations (Dev). Position: pre means before the input text, post behind the
input text.
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Figure 6: Confusion matrix for our baseline model for In-domain

Figure 7: Confusion matrix for our baseline model for Cross-domain
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Abstract

In this paper, we present the first empirical
study for Vietnamese disfluency detection. To
conduct this study, we first create a disflu-
ency detection dataset for Vietnamese, with
manual annotations over two disfluency types.
We then empirically perform experiments us-
ing strong baseline models, and find that: au-
tomatic Vietnamese word segmentation im-
proves the disfluency detection performances
of the baselines, and the highest performance
results are obtained by fine-tuning pre-trained
language models in which the monolingual
model PhoBERT for Vietnamese does better
than the multilingual model XLM-R.

1 Introduction

Humans do not always exactly predetermine what
they intend to say, hence leading to interruptions
in natural conversations. This phenomena is in-
formally referred to as disfluency (Godfrey and
Holliman, 1993; Shriberg, 1994). Disfluencies are
highly ubiquitous in human conversations. With
the increasing popularity of task-oriented dialogue
systems, it is essential to improve the capacity of
the systems in dealing with many kinds of distrac-
tor sources. Note that a vast majority of spoken
language understanding (SLU) models used in the
dialogue systems are trained on well-formed in-
put text without disfluencies. However, there is a
significant mismatch between the fluent training
corpora and the real-world inputs of disfluent utter-
ances/speech transcripts for those models, resulting
in serious performance degradation in practical ap-
plications. Hence, disfluency detection that iden-
tifies (and then removes) disfluencies to produce
fluent versions of the disfluent inputs is a crucial
component of real-world SLU/dialogue systems.

Almost all benchmark datasets for the disflu-
ency detection task, such as Switchboard (God-
frey and Holliman, 1993), CALLHOME (Canavan
et al., 1997) and Child (Tran et al., 2020), are ex-

clusively for English. Therefore, the development
of disfluency detection systems has been largely
limited to the English language. From a societal,
linguistic, machine learning, cultural and norma-
tive, and cognitive perspective (Ruder, 2020), it is
worth investigating the disfluency detection task
for languages other than English, e.g. Vietnamese.
In particular, it is interesting to study whether the
difference in linguistic characteristics might add
difficulties to developing disfluency detection sys-
tems to non-English languages, e.g. investigating
the influence of Vietnamese word segmentation
(Dien et al., 2001) on the Vietnamese disfluency
detection task. Despite being the 17th most spoken
language in the world (Eberhard et al., 2019) with
about 100M speakers, to our best knowledge, there
is no previous study as well as no public dataset
available for disfluency detection in Vietnamese.

We fill the gap in the literature by conducting
the first empirical study for Vietnamese disflu-
ency detection. To conduct this study, we first cre-
ate a dataset for Vietnamese disfluency detection
through two manual phases, including: (i) adding
contextual disfluencies into an existing fluent
dataset of 5871 utterances (Dao et al., 2021), and
(ii) annotating the added disfluencies with two dif-
ferent disfluency types. On our dataset, we then for-
mulate the Vietnamese disfluency detection task as
a sequence labeling problem and empirically inves-
tigate strong baselines, including BiLSTM-CNN-
CRF (Ma and Hovy, 2016) and pre-trained lan-
guage models XLM-R (Conneau et al., 2020) and
PhoBERT (Nguyen and Nguyen, 2020). We find
that: (i) automatic Vietnamese word segmentation
helps improve disfluency detection performances,
and (ii) the highest performance results are ob-
tained by fine-tuning the pre-trained language mod-
els, in which the monolingual model PhoBERT out-
performs the multilingual model XLM-R. We pub-
licly release our dataset at: https://github.
com/VinAIResearch/PhoDisfluency.
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2 Related work

Among disfluency detection datasets with manual
annotations for English (Godfrey and Holliman,
1993; Canavan et al., 1997; Tran et al., 2020; Os-
tendorf and Hahn, 2013; Zayats et al., 2014), the
Switchboard dataset (Godfrey and Holliman, 1993)
is the most commonly used benchmark for devel-
oping and evaluating disfluency detection mod-
els. The disfluency detection models generally
fall into three main categories of approaches based
on noisy channel, parsing and sequence tagging.
Noisy channel-based disfluency detection models
use tree adjoining grammar-based channel models
to assign high probabilities to exact copy reparan-
dum words (Johnson and Charniak, 2004; Johnson
et al., 2004), and also use language model scores as
features to a MaxEnt reranker (Zwarts and Johnson,
2011; Jamshid Lou and Johnson, 2017). Parsing-
based models detect disfluencies and the syntactic
structure of the sentence utterance simultaneously
(Rasooli and Tetreault, 2013; Honnibal and John-
son, 2014; Yoshikawa et al., 2016; Jamshid Lou
and Johnson, 2020); however, these models require
large annotated training datasets that contain both
disfluencies and syntactic structures. Sequence
tagging approaches formulate the disfluency detec-
tion task as a sequence labeling problem to label
individual words by disfluency types or simply
fluent/disfluent tags (Ostendorf and Hahn, 2013;
Zayats et al., 2014; Jamshid Lou et al., 2018; Bach
and Huang, 2019; Rocholl et al., 2021). Among
the disfluency detection approaches, the sequence
tagging ones that fine-tune pre-trained language
models (Devlin et al., 2019) produce the state-of-
the-art performances (Bach and Huang, 2019; Ro-
choll et al., 2021).

3 Our dataset

Our approach to creating a disfluency detection
dataset for Vietnamese is first to manually add con-
textual disfluencies as distractors into an existing
fluent dataset. This first phase is inspired by Gupta
et al. (2021) who present a disfluent derivative of
the question answering dataset SQUAD (Rajpurkar
et al., 2016). We choose PhoATIS consisting of
5871 utterance transcripts (Dao et al., 2021) as
our base fluent Vietnamese dataset. After adding
disfluencies to PhoATIS, we manually annotate
disfluent words using disfluency types.

3.1 Disfluency types

A standard annotation of disfluency structure
(Shriberg, 1994) includes three annotation types:
the Reparandum—to annotate word or words that
the speaker intends to be abandoned or corrected by
the following words; the (optional) Interregnum—
to annotate filled pauses, discourse cue words and
the like; and the (optional) Repair—to annotate
words that are used to correct the reparandum. For
example, in the utterance “cho tôi biết các chuyến
bay đến đà nẵng vào ngày 12 mà không ngày 14
tháng sáu” (let me know the flights to da nang
on 12th uh no 14th june): “ngày 12” (12th), “mà
không” (uh no) and “ngày 14” (14th) can be labeled
with types Reparandum, Interregnum and Repair,
respectively. Note that as pointed out in (Ostendorf
and Hahn, 2013; Zayats et al., 2016), most works on
automatic disfluency detection are aimed at clean-
ing speech transcripts to obtain fluent versions for
further processing by removing disfluent Reparan-
dum and Interregnum words. For Vietnamese, we
thus annotate data using only two disfluency types
Reparandum (denoted by RM and illustrated in red
text color) and Interregnum (denoted by IM, in
blue text color).

3.2 Dataset construction

Adding contextual disfluencies: We divide the
PhoATIS’s training set into 5 non-overlapping and
equal subsets and preserve its validation and test
sets, resulting in 7 subsets that are used for craft-
ing disfluencies. We employ 7 annotators who are
undergraduate students strong in linguistics. Here,
each annotator adds disfluent words to all fluent
utterances in a subset. The annotators are required
to generate a disfluent version of each original flu-
ent utterance, which: (i) is semantically equiva-
lent to the original one; (ii) is natural in terms of
human usage, grammatical errors and meaningful
distractors (i.e. the added disfluent words exist in
real-world circumstances); (iii) contains disfluent
words that are corrected by following intent or slot
value keywords in the original utterance; (iv) con-
tains both disfluent RM- and IM-type words where
possible to obtain a non-trivial dataset.

Annotators are shown example disfluencies as
illustrated in Table 1. The annotators are also asked
to make sure that when removing all the added
words in the disfluent version, we can obtain the
exact original utterance. Once the adding process
is completed, the first two authors manually verify
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Example 1:

mã giá vé
RM
to

IM
à xin lỗi tôi nhầm ý tôi là qo nghĩa là gì

what does fare code
RM
to

IM
uh sorry I really mean qo stand for

Example 2:

có chuyến bay nào giữa thành phố hồ chí minh và
RM
hà hà nội với một điểm dừng

RM
ở sân bay

IM
ừm không

ở đà lạt không

is there a flight between ho chi minh city and
RM
ha ha noi with a stopover

RM
at airport

IM
uh no at da lat

Example 3:

có
RM
sân bay

IM
í lộn hãng hàng không nào có các chuyến bay từ điện biên phủ

RM
đến quảng ninh

IM
à chính xác là đến quy nhơn khởi hành trước 6 giờ 30 phút sáng không

is there any
RM
airport

IM
oops airline that flies from dien bien phu

RM
to quang ninh

IM
no actually to quy

nhon departing before 6:30 am
Example 4:

tôi muốn biết thông tin về
IM
ờm chuyến bay từ hạ long

RM
đến

IM
ờ

RM
cát bà

IM
ừm không tôi quên mất đến đâu nhỉ à đúng rồi đến huế bay vào buổi sáng

i’d like information on
IM
uh a flight from ha long

RM
to

IM
uh

RM
cat ba

IM
uh no I forget the destination ah actually to hue a morning flight

Table 1: Disfluent utterance examples with Reparandum (RM) annotations and Interregnum (IM) annotations in
our dataset. “hồ chí minh” (ho chi minh), “hà nội” (ha noi), “đà lạt” (da lat), “điện biên phủ” (dien bien phu),
“quảng ninh” (quang ninh), “quy nhơn” (quy nhon), “hạ long” (ha long), “cát bà” (cat ba) and “huế” (hue) are cities
in Vietnam.

Statistics Train Valid. Test All
(1) # Utterances 4478 500 893 5871
(2) # Utt. w/ RM & IM 4447 499 891 5837
(3) # RM 4889 811 1049 6749
(4) # IM 5237 843 1135 7215
(5) Avg. Utt. length 22.1 24.1 22.2 22.3
(6) Avg. RM length 2.4 2.3 2.8 2.4
(7) Avg. IM length 2.8 2.6 2.9 2.8

Table 2: Statistics of our dataset. (1): The number of
utterances. (2): The number of utterances that contain
both RM and IM annotations. (3) and (4) denote the
numbers of RM and IM annotations, respectively. (5),
(6) and (7) denote the average lengths (i.e. numbers of
syllable tokens) of an utterance, an RM annotation and
an IM annotation, respectively.

each utterance to ensure that all the requirements
are met, discuss ambiguous cases and make further
revisions if needed, resulting in a dataset of 5871
disfluent utterances.

Annotation process: Each disfluent utterance is
independently annotated by the first two authors
who manually annotate disfluent words using the
disfluency types RM and IM. We employ Cohen’s
kappa coefficient score (Cohen, 1960) to measure
the inter-annotator agreement between the two an-
notators, obtaining a substantial agreement score of
0.78. Then the third author hosts and participates
in a discussion session with the first two authors
to resolve annotation conflicts, resulting in a final
gold dataset of 5871 disfluency-annotated utter-
ances. Table 1 shows examples of gold annotated
disfluent utterances in our dataset.

Note that when written in Vietnamese texts, the
white space is used to mark word boundaries as
well as to separate syllables that constitute words.
Thus, the utterances in our dataset are presented
at the syllable level for convenience in annotat-
ing disfluencies (e.g. the examples in Table 1).
To obtain a word-level variant of the dataset, we
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perform automatic Vietnamese word segmenta-
tion by using RDRSegmenter (Nguyen et al., 2018;
Vu et al., 2018). For example, a 7-syllable writ-
ten text “sân bay quốc tế Tân Sơn Nhất” (Tan
Son Nhat international airport) is word-segmented
into 3-word text “sân_bayairport quốc_tếinternational
Tân_Sơn_NhấtTan_Son_Nhat”. Here, automatic word
segmentation outputs do not affect the span bound-
aries of disfluency annotations.

3.3 Dataset statistics

Our disfluency detection dataset for Vietnamese
contains 5871 disfluency-annotated utterances,
thus having a larger number of disfluent regions
than Switchboard (2159), CALLHOME (1068),
and Child (525). Statistic details of our dataset are
reported in Table 2.

3.4 Discussion

Our approach that manually adds contextual dis-
fluencies as distractors into the fluent utterances
results in an artificially generated dataset. So our
dataset might not correctly or fully reflect real-
world scenarios where disfluencies in real-world
speech might be more complex than the added
contextual disfluencies in our dataset. Note that
there is only one public Vietnamese speech dataset
with manual transcripts used for automatic speech
recognition,1 however, the transcripts do not con-
tain disfluencies. Thus, we could not annotate dis-
fluencies on a real-world dataset. Our study is an
attempt to imitate real-world speech and we will
compare the artificially added disfluencies with the
real-world disfluencies in future work.

4 Experiments

4.1 Experimental setup

Recall that the sequence labeling approaches fine-
tuning pre-trained language models produce the
state-of-the-art disfluency detection performances
for English (Bach and Huang, 2019; Rocholl et al.,
2021). Thus we formulate the Vietnamese disflu-
ency detection task as a sequence labeling prob-
lem with the frequently used tagging scheme BIO.
On our dataset, we empirically evaluate baselines
that obtain competitive or state-of-the-art perfor-
mances for other Vietnamese sequence labeling
tasks (Nguyen and Nguyen, 2020; Dao et al., 2021;

1https://institute.
vinbigdata.org/en/events/
vinbigdata-shares-100-hour-data-for-the-community

Truong et al., 2021), to investigate: (i) the influence
of automatic word segmentation on Vietnamese
(here, input utterances can be represented in ei-
ther syllable or word level), and (ii) the effective-
ness of pre-trained language models. Our base-
lines include BiLSTM-CNN-CRF (Ma and Hovy,
2016) and the pre-trained multilingual language
model XLM-R (Conneau et al., 2020) and the pre-
trained monolingual language model PhoBERT for
Vietnamese (Nguyen and Nguyen, 2020). XLM-
R and PhoBERT are multilingual and Vietnamese
monolingual variants of the pre-trained language
model RoBERTa (Liu et al., 2019). XLM-R is
pre-trained on a 2.5TB multilingual dataset that
contains 137GB of syllable-level Vietnamese texts,
while PhoBERT is pre-trained on a 20GB word-
level Vietnamese corpus.

We compute the Micro-average F1 score on the
validation set after each epoch, and we apply early
stopping if there is no performance improvement
after 5 continuous epochs. We select the model
checkpoint that obtains the highest F1 score over
the validation set to report the final score on the
test set. All our reported scores are the average
over 5 runs with 5 different random seeds. See the
Appendix for implementation details.

4.2 Main results

Table 3 presents the final F1 scores (in %) obtained
by the baseline models on the test set. We report the
standard F1 score for each different disfluency type
and the Micro-average F1 score for overall measure-
ment. As the filled pauses and discourse markers
belong to a closed set of words and phrases and are
easier to detect (Johnson and Charniak, 2004), it is
not surprising that baseline models produce about
2+% absolute higher scores for the IM type than
for the RM type.

The obtained scores are categorized into two
comparable settings of using the syllable-level
dataset and its automatically-segmented word-level
variant for training and evaluation. We find that
word-level models outperform their syllable-level
counterparts, thus showing the effectiveness of
automatic Vietnamese word segmentation in de-
tecting disfluent terms, e.g. BiLSTM-CNN-CRF
improves from 91.54 to 92.13. We also find
that fine-tuning XLM-R and PhoBERT helps pro-
duce substantially better performance scores than
BiLSTM-CNN-CRF, thus confirming the effective-
ness of pre-trained language models. In addition,
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Model RM IM Mic-F1
Sy

lla
bl

e BiL-CRF 88.17 94.67 91.54
XLM-Rbase 94.61 97.70 96.21
XLM-Rlarge 95.29 97.75 96.57

W
or

d BiL-CRF 89.44 94.61 92.13
PhoBERTbase 95.61 97.28 96.48
PhoBERTlarge 95.34 98.13 96.79

Table 3: F1 score (in %) for each disluency type and
Micro-average F1 scores (denoted by Mic-F1) on the
test set. BiL-CRF denotes BiLSTM-CNN-CRF, while
Syllable and Word denote scores obtained when using
syllable- and word-level dataset settings, respectively.

Utterance length < 20 [20, 30) >30
44% 44% 12%

Sy
lla

bl
e BiL-CRF 92.80 91.44 88.94

XLM-Rbase 96.52 96.50 94.74
XLM-Rlarge 96.47 97.23 95.03

W
or

d BiL-CRF 93.44 92.10 89.20
PhoBERTbase 96.35 97.23 94.75
PhoBERTlarge 96.92 97.09 95.67

Table 4: Mic-F1 scores (in %) w.r.t. utterance lengths
(i.e. the numbers of syllable tokens). The numbers
(44%, 44% and 12%) right below length buckets denote
the percentages of utterances belonging to the buckets.

PhoBERT does better than XLM-R (“base” ver-
sions: 96.48 vs. 96.21; “large” versions: 96.79
vs. 96.57), however, the score differences be-
tween PhoBERT and XLM-R are not substantial.
It is probably because our utterances are domain-
specific and contain disfluencies, while PhoBERT
is pre-trained on domain-general and fluent data.

We also present the Micro-average F1 scores (in
%) w.r.t. utterance length buckets on the test set
in Table 4. Those obtained scores generally show
that the baseline models perform better when the
input utterances are shorter than 30 tokens. The
longer the input utterances are (i.e. longer than 30
tokens), the more ambiguous their meanings are
and the more confused the baselines get.

4.3 Error analysis

To understand the source of error, we conduct an
error analysis using the best performing model
PhoBERTlarge that returns a total of 45 incorrect
predictions on the validation set (average over the
5 different runs).

The first error group consists of 27/45 instances
with inexact disfluency boundaries (i.e. inexact
spans) overlapped with gold spans but having cor-
rect disfluency labels, while the second error group

consists of 4/45 instances with the overlapped in-
exact spans and incorrect labels. These 27 + 4 =
31 errors are largely caused by the dropping of a
reparandum-related term inside the fluent correc-
tion part, without affecting the utterance’s semantic
meaning, however, resulting in contextual ambi-
guity to the model. For example, in the utterance
“tôi muốn biết giá vé hạng thương gia à nhầm phổ
thông” (I would like to know the ticket price for the
business class oops economy),2 the whole phrase
“hạng thương gia” (business class) is wrongly pre-
dicted as a RM while it must only be “thương gia”
(business). Here, it is worth noting that the con-
textual ambiguity is resulted by a dropping of a
possibly additional secondary term “hạng” (class)
to be coupled “phổ thông” (economy), i.e. “hạng
phổ thông” (economy class).

The third group of 2/45 errors with exact spans
and incorrect disfluency labels does not provide us
with any useful insight. The model also produces
the fourth group of 9 errors where gold-annotated
disfluent words/phrases are predicted with the la-
bel O. The majority of these 9/45 errors are caused
by the fact that disfluencies can exist anywhere in
a Vietnamese utterance, e.g. IM disfluent words
can appear at the end of the utterance. For ex-
ample, with the utterance “chuyến bay buổi sáng à
không tôi đang vội chuyến bay đầu tiên nhé” (morn-
ing flight uh no I’m in hurry first flight please),
the model could not predict the word “nhé” as an
IM. The last error group consists of 3/45 instances
where predicted disfluencies are associated with
the gold label O. They are general terms such as
“sân bay” (airport), “thành phố” (city) and the like,
that frequently used in disfluent phrases. Thus,
when occurred in the fluent parts of an utterance,
these terms are likely predicted as disfluencies,
leading to incorrect predictions.

5 Conclusion

In this paper, we have presented the first study
for Vietnamese disfluency detection. We create a
Vietnamese disfluency detection and empirically
conduct experiments on this dataset to compare
strong baseline models as well as perform detailed
error analysis. Experimental results show that the
input representations and the pre-trained language
models have positive influences on this Vietnamese
disfluency detection task.

2Word segmentation is not shown for simplification. Here,
we also color the gold annotations.
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A Appendix

Experimental models
• BiLSTM-CNN-CRF (Ma and Hovy, 2016)

represents each input token by concatenat-
ing its corresponding pre-trained token em-
bedding and CNN-based character-level token
embedding; then concatenated representations
of input tokens are fed into a BiLSTM en-
coder to extract latent feature vectors for the
input tokens; each latent feature vector is then
linearly transformed before being fed into a
linear-chain CRF layer (Lafferty et al., 2001)
for disfluency label prediction.

• Fine-tuning XLM-R (Conneau et al., 2020)
or PhoBERT (Nguyen and Nguyen, 2020) for
disfluency detection is done in a common ap-
proach that uses a linear prediction layer on
top of its architecture. In other words, we feed

Hyper-parameter Value
Optimizer Adam
Learning rate 0.001
Mini-batch size 36
LSTM hidden state size 200
Number of BiLSTM layers 2
Dropout [0.25, 0.25]
Character embedding size 50
Filter length, i.e. window size 3
Number of filters 30
W2V embedding dimension 300

Table 5: Hyper-parameters for BiLSTM-CNN-CRF.

the XLM-R- or PhoBERT-based contextual-
ized token embeddings as input for the linear
prediction layer, to predict the disfluency label
for each token.

For training the baseline BiLSTM-CNN-CRF,
we employ the pre-trained 300-dimensional
Word2Vec syllable and word embeddings for Viet-
namese from (Nguyen et al., 2020). We fix
these embeddings during training. Optimal hyper-
parameters that we select via performing a grid
search for BiLSTM-CNN-CRF are presented in
Table 5. We fine-tune XLM-R and PhoBERT for
the syllable- and word-level settings, respectively,
using the optimizer Adam (Kingma and Ba, 2014)
with a fixed learning rate of 5e-5 and a batch size
of 32 (Liu et al., 2019). Note that BiLSTM-CNN-
CRF is trained for 50 epochs while XLM-R and
PhoBERT are fine-tuned for 30 training epochs.
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Abstract

The automatic categorization of support tickets
is a fundamental tool for modern businesses.
Such requests are most commonly composed
of concise textual descriptions that are noisy
and filled with technical jargon. In this paper,
we test the effectiveness of pre-trained LMs for
the classification of issues related to software
bugs. First, we test several strategies to pro-
duce single, ticket-wise representations starting
from their BERT-generated word embeddings.
Then, we showcase a simple yet effective way
to build a multi-level classifier for the catego-
rization of documents with two hierarchically
dependent labels. We experiment on a public
bugs dataset and compare our results with stan-
dard BERT-based and traditional SVM classi-
fiers. Our findings suggest that both embedding
strategies and hierarchical label dependencies
considerably impact classification accuracy.

1 Introduction

Support tickets and incident reports are a valuable
point of contact between customers and service
providers (Al-Hawari and Barham, 2021). They
are fundamental tools in the management of the
relationship between businesses and users, allow-
ing for the swift resolution of issues, thus lead-
ing to improved customer satisfaction, productivity,
and compliance which Service-Level Agreements
(SLAs) (Gupta and Sengupta, 2012). Tickets can
be derived from multiple communication channels,
most commonly emails, specialized web forms,
phone calls, live chats, and social media platforms
(Zicari et al., 2021). Help requests are therefore
logged as text, which represents the most impor-
tant source of information to be used for automatic
ticket management. Being conversational by na-
ture, tickets describe the issue or request in an often
noisy and concise format (Cristian et al., 2019).

∗ Authors contributed equally.

As a response to the increasingly high volume of
these requests by customers, researchers have pro-
posed the automation of various steps of the ticket
resolution pipeline (Fuchs et al., 2022; Ali Zaidi
et al., 2022). These include the classification of
tickets into broad topic categories (ticket classifica-
tion) (Zicari et al., 2021; Revina et al., 2020), the
direct assignment of the issue to an expert capable
of resolving it (expert finding) (Husain et al., 2019),
as well as the direct resolution of tickets in a com-
pletely autonomous way (ticket resolution) (Zhou
et al., 2017). Among these tasks, the accurate clas-
sification of incoming tickets within a pre-defined
hierarchy of labels is among the most prevalent, as
well as one of particular importance to ensure that
these requests are dealt with swiftly. Indeed, it is
common for support tickets to be framed within
a multi-level hierarchy such as the one just men-
tioned: each level of the hierarchy describes the
issue at different levels of specificity.

Contributions This work will explore Ticket
Classification (TiC), a sub-task of Text Classifi-
cation (TC), with the following objectives:

• Verifying the effectiveness of contextualized
Language Models (LMs) (Radford et al.,
2018; Marcuzzo et al., 2022) on noisy pieces
of text from this particular domain;

• Exploring the impact of document embedding
strategies on downstream task performance;

• Establishing how much a LM can benefit from
the injection of hierarchy information for topi-
cal classification within a two-level hierarchy.

Our experiments show that both document sum-
marization strategies and hierarchical information
injection can contribute in a major way to TiC accu-
racy. The code and datasets utilized in this work’s
experiments are made publicly available online1.

1https://gitlab.com/distration/
dsi-nlp-publib/-/tree/main/WNUT22
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2 Related work

The task of topical TiC has been explored in recent
works, which we briefly outline. Relatedly, we
also discuss recent advancements in the broader
TC environment, as well as a short mention of
dedicated hierarchical TC methods.

Ticket Classification (TiC) In the particular con-
text of TiC, much work has been done towards the
application of traditional methods, a popular exam-
ple being that of Support Vector Machines (SVMs)
(Boser et al., 1992) applied on simple word-count-
based text representation techniques such as TF-
IDF (Jones, 1972). Recent works such as Yang
(2021); Revina et al. (2020) have argued for the
efficacy of traditional methods, often introducing
more advanced text representation techniques such
as Word2Vec (Mikolov et al., 2013). There has
also been recent interest in the application of Deep
Neural Networks, such as Multilayer Perceptrons
(Kallis et al., 2019), Convolutional Neural Net-
works (Zicari et al., 2021; Pistellato et al., 2018),
and Recurrent Neural Networks (Mani et al., 2019;
Lyubinets et al., 2018).

Text Classification (TC) In the broader environ-
ment of Natural Language Processing (NLP), all
downstream tasks — including TC — have been
recently revolutionized by the introduction of the
Transformer architecture (Vaswani et al., 2017).
This approach to text representation has allowed
for much more meaningful vectorial representa-
tions for words, crucially able to discern context.
Contextualized LMs based on this architecture are
now the staple NLP transfer learning approach, and
have showcased massive performance boosts in TC
benchmarks. Among others, we focus on the influ-
ential Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), which
we utilize in this work. We refer to Gasparetto et al.
(2022a,b) for a thorough description of BERT’s ar-
chitecture. Though succeeded by more refined LMs
in recent years, it is still widely studied and utilized.
BERT-based LMs have been extensively applied
to NLP tasks on user-generated content, such as
tweets (Polignano et al., 2019) and user reviews (Lu
et al., 2020). Interestingly, recent findings suggest
that BERT is quite sensible to the presence of noise
in text (e.g., spelling mistakes) (Kumar et al., 2020).
On the other hand, other works suggest that BERT
is quite resistant to label-noise, and the application
of common noise-handling methods can in fact de-

teriorate BERT’s performance (Zhu et al., 2022).
With this work, we aim to give practitioners some
insights into the usage of BERT for classification
in the support ticket classification domain. While
an excellent source of noisy user-generated data,
we find this context to be understudied at present.

Hierarchical Text Classification As we are dis-
cussing datasets whose labels are hierarchical by
nature, it would be reasonable to utilize Hierarchi-
cal TC approaches. The architecture we propose in
this work is partly inspired by these approaches, in
particular by the distinction between flattened clas-
sifiers (Koller and Sahami, 1997), which simplifies
the hierarchy by flattening it to a single multiclass
or multilabel problem, and global classifiers, which
build upon these classifiers but integrate hierarchy
information within their framework (Labrou and
Finin, 1999). Still, we point out that the amount of
overlap with hierarchical TC literature is somewhat
limited by the fact that the hierarchy in ticketing
systems is usually very shallow (two to three lev-
els), while HTC systems usually operate in multil-
abel environments with very complex hierarchies.

3 The Linux Bugs dataset

To evaluate a TiC scenario, we experiment on a
dataset of bugs crawled from the publicly available
Linux kernel bug-tracker 2, as inspired by Lyubi-
nets et al. (2018). The resulting Linux Bugs dataset
contains tickets organized through the hierarchi-
cal dependent labels of “product” (e.g., Network,
Drivers, etc.) and “component” (e.g., BIOS, sched-
uler, etc.). Therefore, we utilize the former as main
labels and the latter as sub-labels. To be precise, to
avoid redundancies, we utilize the flattened labels
as sub-labels, such as to differentiate sub-labels
that share their name across main categories (e.g.,
Network_Other vs Drivers_Other). More-
over, to reduce class imbalance, we discard all la-
bels and sub-labels that appear less than 100 times.
More details on the dataset, including an exemplary
subset of the resulting hierarchy, reports on the la-
bels’ frequency and an example of the content of a
ticket can be found in Appendix B.

4 Methods

The aforementioned BERT LM has been one of
the most popular contextualized LMs since its in-
ception. Conceptually, BERT is a bidirectional

2https://bugzilla.kernel.org
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Transformer-based neural network, made by stack-
ing multiple encoder blocks. These blocks are en-
tirely based on the self-attention mechanism (Bah-
danau et al., 2015), eliminating the sequential bot-
tleneck of previous recurrent models.

BERT models are pre-trained on two specifically
devised language modeling tasks that allow the
networks to learn semantically and contextually
meaningful representations of text. These mod-
els can then be fine-tuned on specific tasks quite
easily (in the case of classification, by adding a
simple linear layer as a classifier) to obtain state-
of-the-art performances. In our case, we utilize
the models available on HuggingFace (Wolf et al.,
2020), which are pre-trained on BookCorpus (Zhu
et al., 2015) and English Wikipedia, and have a
vocabulary of around 30,500 word segments.

4.1 Document summarization strategies

In terms of text interpretation, BERT first trans-
forms raw text into tokens through the Word-
Piece sub-word tokenization algorithm (Schuster
and Nakajima, 2012). The output is then passed
through the stacked encoder blocks, with each layer
producing an embedding for each token.

A common approach to classification using
BERT is to utilize the [CLS] token as a docu-
ment summary. This special symbol is pre-pended
to each sequence of words and is utilized during
pre-training on the Next Sentence Prediction bi-
nary classification task (NSP). Despite its popu-
larity, several authors suggest that other “summa-
rization strategies” for documents may be prefer-
able (Reimers and Gurevych, 2019). For instance,
Tanaka et al. (2019) experiment with the averag-
ing of the individual word embeddings composing
the sentences rather than the single [CLS] token.
They utilize the output of one or more encoder
blocks and combine them, highlighting classifica-
tion improvements when concatenating the output
of several layers. Researchers have further hinted
at the phenomenon of “layer specialization” within
BERT, arguing that each encoding block may focus
on the extraction of linguistic features at different
levels: syntactic features are mostly extracted in the
first blocks, while deeper layers progressively focus
on semantic features. They also discuss how infor-
mation from each layer can be beneficial to down-
stream tasks, like classification (de Vries et al.,
2020; Jawahar et al., 2019; Torsello et al., 2014).

In this work, we explore the impact of different

approaches to the creation of a condensed docu-
ment representation starting from BERT’s word
vectors. In particular, we test several strategies,
including the usage of the [CLS] token from the
last layer (referred to as cls last), but also the con-
catenation and average of the [CLS] tokens of the
last h hidden layers, respectively indicated with cls
concath and cls avgh. We also experiment with
approaches that do not use such token, such as av-
eraging the embeddings of all words in a document
(avg), taking the maximum (max), or using their
normalized sum (sum nor). A description of each
strategy is given in Appendix A.

4.2 Multi-level classifiers
Our second aim in this work is to design an effec-
tive multi-level architecture able to exploit the hi-
erarchical dependency information between labels.
The following paragraphs detail the two proposed
approaches. Notably, our multi-level classifiers
are based on BERT LMs, but may be used with
any model capable of producing contextualized
word embeddings. In both frameworks, we utilize
two separate LMs trained on the categorization of
macro-labels (task T1) and on the categorization
of flattened sub-labels (T2). A visualization of the
approaches is provided in the Appendix (Fig. 1).

ML-BERT The Multi-Level BERT (ML-BERT)
classifier is a combination of two distinct pre-
trained BERT LMs, previously fine-tuned on the
prediction of the T1 and T2 tasks, respectively
(LM1, LM2). In the ML-BERT model, the weights
of the two base LMs are kept frozen during the fine-
tuning procedure — the output of the pre-trained
classifiers is discarded. Only the word embed-
dings produced by each model are utilized; docu-
ment representations are obtained by using the best-
performing summarization strategy among the ones
mentioned in Section 4.1. Embeddings from both
models are then concatenated into a global ticket
representation and passed through a single linear
layer with a softmax activation function. Therefore,
fine-tuning only requires the learning of the last
layer’s weights, reducing the computational cost.

Supported-BERT The Supported-BERT
classifier similarly utilizes a LM previously trained
on T1 (LM1). However, LM2 is not trained in
isolation but instead utilizes the fine-tuned LM1

as support during its own fine-tuning. As before,
the ticket embeddings from the two LMs are
concatenated and passed to the output layer. Thus,
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the difference from the previous setup is that
LM2 is trained directly with the output layer and
with external influence, instead of being trained
beforehand.

5 Experiments

We report in this section the experiments we con-
ducted to select the most suitable summarization
strategy and to determine the effectiveness of the
multi-level classifiers. While the core of our exper-
iments was performed on BERT’s base pre-trained
model (i.e., “bert-base-uncased”), we also report
results using a larger BERT LM (i.e., “bert-large-
uncased”).

5.1 Experimental setup

We describe our experimental settings in this sec-
tion, adding details on the metrics we choose to use
and on how we select the model hyper-parameters.

Metrics We evaluate the models in a multiclass
setting, where the ground truth label is the concate-
nation of the parent and child categories. There-
fore, the models must predict a single class for each
ticket (e.g., Networking_IPV4 is the target la-
bel for a ticket that belongs to the Networking
category and IPV4 sub-category). This approach
is widely utilized in the evaluation of global HTC
methods, which our approaches can be seen as
(Silla and Freitas, 2011). We use standard clas-
sification metrics, i.e., accuracy and F1-score, to
measure the performance. Briefly, accuracy mea-
sures the ratio of correct predictions over the total
of number predictions, but can give a skewed repre-
sentation of imbalanced datasets. F -score is a com-
bination of precision and recall, which measure a
model’s correctness and completeness, respectively
(Gasparetto et al., 2022a, 2018). We report the F1-
score — the harmonic mean of precision and recall
— in its macro-averaged version, i.e., considering
all class contributions equally.

Hyper-parameter tuning We use a stratified 3-
fold CV to split the dataset into training and testing
subsets. Before testing BERT’s performance with
different summarization strategies on the testing
split, we tune the learning rate and the number
of training epochs on the training split, reserving
20% of it as a validation set. We use the BERT-
base model on task T2 using the standard avg last
strategy with early stopping set on the loss function
to determine the optimal number of epochs.

Table 1: Effect of additional processing procedures on
the performance of a BERT model on the validation set.

Model Clean Weigh Acc F1

BERT
(base)

✗ ✗ 0.533 [± 0.003] 0.396 [± 0.005]
✓ ✗ 0.503 [± 0.003] 0.374 [± 0.006]
✗ ✓ 0.471 [± 0.005] 0.382 [± 0.004]
✓ ✓ 0.464 [± 0.007] 0.371 [± 0.008]

* Standard deviation over 3 runs is reported in brackets.

After validation, the BERT-base models are
trained for 3 epochs with learning rate set to 2e−5

and batch size set to 8. The BERT-large models
were similarly validated and trained with a learning
rate of 1e−5 for 3 epochs, with batch size set to 8.

Following Lyubinets et al. (2018), we test the
impact of a more comprehensive text cleaning pro-
cedure that removes most of the stack traces and
memory addresses, which are quite frequent in this
dataset. Listing 2 in the Appendix showcases an
example of a bug report treated with the more ag-
gressive cleaning procedure. Furthermore, because
our dataset is imbalanced class-wise, we experi-
ment with weighting classes’ contribution to the
loss value based on their support. We find that
neither the additional preprocessing step nor the
weighting scheme improved the performance in
terms of F1 and accuracy scores using the default
avg last strategy, as can be seen in Table 1. We
hypothesize that, even though the representations
of pieces of text such as the hexadecimal codes of
Listing 1 have low syntactic and semantic value,
they still provide discriminative power in the down-
stream classification task.

To train the multi-level models, we separately
train LM1 and LM2 on T1 and T2 tasks respec-
tively, and use the same hyperparameters selected
for the previous tests. Moreover, we select the best
learning rate and number of epochs for the final
classifier using the same procedure as described
above, obtaining the values of 2e−5 (2 epochs) and
1e−5 (3 epochs) for the base and large versions of
BERT, respectively.

5.2 Results

In this section, we report test set results obtained
with the best hyper-parameters as just described.

Document summarization Results with the dif-
ferent summarization strategies introduced in Sec-
tion 4.1 using BERT-base on task T2 are reported in
Table 2. First off, there is a considerable difference
in performance between the pooled and “raw” ver-
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Table 2: Test set results* with BERT classifier on T2
comparing summarization strategies on Linux Bugs.

Basis Strategy Acc F1

last (p)† 0.518 [± 0.006] 0.354 [± 0.009]
last 0.566 [± 0.012] 0.446 [± 0.018]
avg2 0.531 [± 0.010] 0.393 [± 0.012]
concat2 0.535 [± 0.010] 0.400 [± 0.014]
concat3 0.571 [± 0.008] 0.456 [± 0.013]
concat4 0.568 [± 0.009] 0.457 [± 0.014]

cls

concat5 0.565 [± 0.012] 0.456 [± 0.013]
last 0.525 [± 0.008] 0.387 [± 0.010]
avg2 0.522 [± 0.005] 0.383 [± 0.013]avg
concat2 0.523 [± 0.007] 0.390 [± 0.009]
last 0.522 [± 0.011] 0.385 [± 0.014]
avg2 0.519 [± 0.007] 0.375 [± 0.013]max
concat2 0.518 [± 0.006] 0.373 [± 0.015]
last 0.522 [± 0.010] 0.377 [± 0.011]max_min avg2 0.522 [± 0.009] 0.374 [± 0.010]
last 0.516 [± 0.007] 0.381 [± 0.012]max_avg avg2 0.519 [± 0.006] 0.379 [± 0.007]
last 0.406 [± 0.018] 0.171 [± 0.017]
concat2 0.379 [± 0.013] 0.135 [± 0.019]sum_nor
concat5 0.388 [± 0.015] 0.135 [± 0.015]

* Standard deviation over 6 runs is reported in brackets.
† Pooled, using cls pooled strategy.

Table 3: Test set results* for all models on the T2 task.
BERT models utilize the cls concat3 strategy.

Model Acc F1

SVM 0.551 [± 0.004] 0.473 [± 0.006]
ML-BERT (base) 0.602 [± 0.010] 0.500 [± 0.014]
Supp-BERT (base) 0.611 [± 0.007] 0.485 [± 0.013]
BERT (base) 0.571 [± 0.008] 0.456 [± 0.013]
ML-BERT (large) 0.577 [± 0.008] 0.461 [± 0.006]
Supp-BERT (large) 0.597 [± 0.007] 0.480 [± 0.011]
BERT (large) 0.559 [± 0.008] 0.438 [± 0.011]

* Standard deviation over 6 runs is reported in brackets.

sions of the cls last strategy, with the raw [CLS]
token without pooling achieving considerably bet-
ter results. Stacking multiple layers further im-
proved the results; tests with cls concat3 achieved
the best overall performance in terms of accuracy,
precision, and recall (though macro-averaging fa-
vors cls concat4 in terms of F1 score), confirming
that features extracted in other BERT hidden lay-
ers can be beneficial to the classification task (see
Table 5 in the Appendix).

Multi-level classifiers Table 3 reports the clas-
sification performance of both ML-BERT and
Supported-BERT (shortened as Supp-BERT),
utilizing the previously determined best document
summarization strategy (in our case, cls concat3).

The smaller ML-BERT achieves an improve-
ment of 9.7% macro F1-score and 5.4% accuracy
as compared to the BERT model trained on the flat-
tened hierarchy of labels. Supported-BERT’s

improvement amounts instead to 6.4% and
7.0% on the same metrics. While ML-BERT
performed better in terms of macro F1-score,
Supported-BERT resulted in the highest ac-
curacy. The larger pre-trained BERT model
showcases overall a similar trend, though with
lower performance than with the base model in
all experiments. Nevertheless, the multi-level
models still improved results over the flat T2
classifier: ML-BERT (large) achieved 3.1% and
5.2% improvement in macro F1-score and ac-
curacy respectively, while the performance of
Supported-BERT improved by 6.8% and 9.5%.
In practice, we observed that the larger model did
not converge as well as the base one. This is likely
to be a consequence of the limited size of our highly
skewed dataset, as well as the limited semantic sig-
nificance of its composing documents (that contain
many technical bits of text, like stack traces).

The SVM classifier was trained with a simple
one-vs-rest strategy and also performed very well,
surprisingly achieving better macro F1 than the
smaller BERT model in the flattened setting. How-
ever, all base multi-level models perform better on
both metrics. As is also discussed in the literature,
BoW features with TF-IDF weighting are suitable
representations for noisy text, effectively able to fil-
ter out many unimportant words (Das et al., 2021).
On the other hand, contextualized LMs such as
BERT are meant to exploit sentence structure and
word context, which might be insufficiently infor-
mative in such environments.

Error analysis Because of time and space limita-
tions, we do not perform an in-depth error analysis
of our models in this work. However, a discussion
in this regard can be found in Appendix D, in which
we also discuss how we would like to address this
analysis in future work.

6 Conclusion

In this article, we experimented with contextualized
LMs for TiC, and found that different document
embedding summarization strategies are a major
factor in classification performance. Moreover, we
devised two multi-level classification approaches
based on LMs, and found further improvement
by injecting information from the label hierarchy
within the architecture. We hope our work can pro-
vide useful insights into the usage of BERT models
for classification in a previously understudied do-
main.
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A Embedding summarization strategies

Table 4 describes all the summarization strategies
tested in this work. The “cls last (p)” strategy refers
to the one adopted in the original BERT paper, us-
ing the [CLS] token embedding passed through
the NSP prediction layer, with a tanh activation,
commonly referred to as “pooled” embedding. In
contrast, all other cls strategies use the un-pooled
embedding, meaning that it is used directly as pro-
vided by the encoder without additional processing.

Table 5 reports the complete set of performance
metrics measured to test the effectiveness of the
summarization strategies. In the main article, only
the accuracy and F1-score are reported. All met-
rics besides accuracy refer to the macro-averaged
metrics; metrics are computed separately for each
label and then averaged, irrespective of the labels’
frequency.

B Details on the Linux Bugs dataset

The preprocessing procedure applied to the Linux
Bugs dataset discards bug reports without a valid
message text, applies lowercasing to all text, and
concatenates the issue title with the message body.
The final dataset, after preprocessing, contains
35,050 bug descriptions, 17 first-level labels, and
73 sub-labels. The average number of characters
per-ticket is 2,026 and each ticket is labeled with
exactly one label and one sub-label. The label hier-
archy for a subset of 3 macro-labels is shown in Fig.
2, and histograms with the frequency of labels and
sub-labels are shown in Figs. 3 and 4, respectively.

One example of a pre-processed and lowercased
bug report is displayed in Listing 1, and the effect
of the text cleaning procedure described in Sec-
tion 5.1 on the same body of text is showcased in
Listing 2. As can be seen, these tickets are rich in
technical information, like stack traces and error
messages, mixed with text written in natural lan-
guage. Misspellings are also quite frequent, since
bugs are often filed by non-native English speakers.

C Other experimental details

All tests are run using PyTorch 1.11.0 and Python
3.10 using an NVIDIA RTX 2080 Ti. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
during training.

BERT-large validation The BERT-large models
are validated on the T2 task to find the most suitable
learning rate (choosing between 1e−5, 2e−{5,6})

(a) ML-LM.

(b) Supported-LM.

Figure 1: Two-level classification models.

and number of epochs. In this case, we use gradi-
ent accumulation to emulate this batch size value,
due to the larger model size and computational
limitations.

Multi-level validation We search for the best
learning rate and number of epochs for the multi-
level models separately, as Supported-LM con-
tains a trainable LM, while ML-LM does not. In
the first case, we validate with learning rates 1e−5

and 2e−{6,5,4} with both base and large BERT, and
use 2e−5 (2 epochs) and 1e−5 (3 epochs), respec-
tively, during tests. The classification layer of the
ML-LM models is validated with learning rates set
to 1e−{5,3} and 2e−{5,4}, and final tests are run
with 2e−4 (1 epoch) and 1e−3 (1 epoch) respec-
tively for the smaller and larger BERT models.
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D Error analysis

We share a brief analysis of the per-class
performance of our models (ML-BERT and
Supported-BERT) in Table 6. In particular, the
table reports per-class metrics of three of the top-
performing labels, as well as of three of the worst-
performing labels. The average length of tickets in
that class (number of characters) and the number
of samples of that class present in the test and train
splits, respectively, are also displayed. The average
ticket length is, in general, a good representative of
actual length, as the outliers are few in this dataset,
and are usually very long tickets (which will be
truncated by the tokenizer in any case). Classes
with a higher number of samples usually perform
better, though this is not always the case (as ex-
emplified by the Networking_Wireless cat-
egory). Finally, the worst values of the F1 score
seem to be mostly dominated by low recall, which
indicates a high number of false negatives. In this
regard, it would be interesting to test different over-
and under-sampling techniques, such as to verify
whether this can help in the classification of these
classes.

An analysis performed through specialized tools
could reveal whether these classes are hard to clas-
sify because of linguistically-relevant factors, such
as the lack of discriminative terms. For instance,
it could be argued that certain labels are seman-
tically similar (e.g., Drivers_Network,
Drivers_network-wireless, and
Networking_Wireless), and might therefore
contain semantically similar tickets. We plan to
expand this analysis in future work, looking into
more refined tools aimed at interpreting the inner
workings of LMs, such as Errudite (Wu et al.,
2019), the Language Interpretability Tool (LIT)
(Tenney et al., 2020) and iSEA (Yuan et al., 2022).
For example, the LIT would allow to directly
examine individual examples that the model
performs poorly upon as well as performing an
investigation of the reasoning behind the model’s
decisions.
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Table 4: Summarization strategies for document embeddings.

Basis Strategy Emb. size Description
last (p) [CLS] embedding from last layer (default strategy)
last [CLS] embedding from last layer without pooling
avgh

d
Average of the [CLS] embeddings (no pooling) from the last h layers

cls

concath d ∗ h Concatenation of the [CLS] embeddings from the last h layers
last Average of all embeddings∗ from the last layer
avgh

d
Average of the average of embeddings from the last h layersavg

concath d ∗ h Concatenation of the average of embeddings from the last h layers
last Column-wise maximum of all embeddings∗ from the last layer
avgh

d
Average of the max of embeddings from the last h layersmax

concath d ∗ h Concatenation of the max of embeddings from the last h layers
last Concatenation of the max and min of embeddings from the last layer

max_min
avgh

d ∗ 2
As above, but averaging vectors from the last h layers

last Concatenation of the max and avg of embeddings from the last layer
max_avg

avgh
d ∗ 2

As above, but averaging vectors from the last h layers
last d Sum of token embeddings divided by its norm (i.e., normalized sum)

sum_nor
concath d ∗ h Like last but concatenating the last h layers

* Excluding special symbols (e.g. [CLS] and padding).

Table 5: Test set results* with BERT classifier on T2 comparing summarization strategies on the Linux Bugs dataset.
Best results are outlined in bold.

Basis Strategy Acc F1 Prec Rec
last (p)† 0.518 [± 0.006] 0.354 [± 0.009] 0.386 [± 0.009] 0.365 [± 0.006]

last 0.566 [± 0.012] 0.446 [± 0.018] 0.479 [± 0.027] 0.452 [± 0.017]

avg2 0.531 [± 0.010] 0.393 [± 0.012] 0.420 [± 0.018] 0.398 [± 0.012]

concat2 0.535 [± 0.010] 0.400 [± 0.014] 0.426 [± 0.015] 0.401 [± 0.012]

concat3 0.571 [± 0.008] 0.456 [± 0.013] 0.498 [± 0.013] 0.458 [± 0.015]

concat4 0.568 [± 0.009] 0.457 [± 0.014] 0.490 [± 0.013] 0.458 [± 0.017]

cls

concat5 0.565 [± 0.012] 0.456 [± 0.013] 0.486 [± 0.011] 0.458 [± 0.018]

last 0.525 [± 0.008] 0.387 [± 0.010] 0.420 [± 0.015] 0.388 [± 0.010]

avg2 0.522 [± 0.005] 0.383 [± 0.013] 0.409 [± 0.021] 0.387 [± 0.010]avg
concat2 0.523 [± 0.007] 0.390 [± 0.009] 0.411 [± 0.015] 0.394 [± 0.011]

last 0.522 [± 0.011] 0.385 [± 0.014] 0.415 [± 0.011] 0.391 [± 0.014]

avg2 0.519 [± 0.007] 0.375 [± 0.013] 0.395 [± 0.021] 0.387 [± 0.014]max
concat2 0.518 [± 0.006] 0.373 [± 0.015] 0.401 [± 0.021] 0.383 [± 0.012]

last 0.522 [± 0.010] 0.377 [± 0.011] 0.395 [± 0.019] 0.395 [± 0.010]
max_min

avg2 0.522 [± 0.009] 0.374 [± 0.010] 0.395 [± 0.019] 0.385 [± 0.011]

last 0.516 [± 0.007] 0.381 [± 0.012] 0.406 [± 0.017] 0.390 [± 0.012]
max_avg

avg2 0.519 [± 0.006] 0.379 [± 0.007] 0.402 [± 0.011] 0.392 [± 0.007]

last 0.406 [± 0.018] 0.171 [± 0.017] 0.192 [± 0.023] 0.206 [± 0.016]

concat2 0.379 [± 0.013] 0.135 [± 0.019] 0.149 [± 0.022] 0.179 [± 0.021]sum_nor
concat5 0.388 [± 0.015] 0.135 [± 0.015] 0.149 [± 0.015] 0.180 [± 0.014]

* Standard deviation over 6 runs is reported in brackets.
† Pooled, using cls pooled strategy.

211



Figure 2: Example of 3 macro-categories (in blue) and their children from the Linux Bugs dataset.

Figure 3: Frequency count of first-level labels in the Linux Bugs dataset.
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Figure 4: Frequency count of second-level labels in the Linux Bugs dataset, obtained by flattening labels and
sub-labels.
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Product: Drivers
Component: Network
Title: kernel crashes after stop network and remove e100.

Description: exact kernel version:linux-2.5.51 distribution:redhat 8.0+linux2.5.51
hardware environment:intel stl2 mother boar d problem description: compile
e100 as kernel module, insmod e100 and start the network. then stop network and
remove e100 together. then kernel crashes in random places. for example: use
command : insmod e100 /etc/init.d/network start /etc/init.d/network stop; rmmod
e100 then the kernel crashes. eflags: 00010887 eip is at cascade+0x25/0x60
eax: defd02b8 ebx: 00000001 ecx: 00000000 edx: c150a4c0 esi: c150acd4
edi: c150acd4 ebp: c150acd4 esp: c0559f1c ds: 0068 es: 0068 ss: 0068
process swapper (pid: 0, threadinfo=c0558000 task=c0497f60) stack: 00000000
c0559f94 00000001 c150a4c0 fffffffd 00000000 c012abb2 c150a4c0 c150acd4
c010baf5 00000000 00000000 c0559f94 00000001 c0553d68 fffffffd 00000000 c0125bb5
c150a4c0 00000046 00000000 00000000 c0559f94 c01070c0 call trace: [<c012abb2>]
__run_timers+0x1b2/0x202 [<c010baf5>] handle_irq_event+0x45/0x70 [<c0125bb5>]
do_softirq+0xc5/0xd0 [<c01070c0>] default_idle+0x0/0x50 [<c0116f3d>]
smp_apic_timer_interrupt+0xcd/0x130 [<c01070c0>] default_idle+0x0/0x50
[<c010a3a6>] apic_timer_interrupt+0x1a/0x20 [<c01070c0>] default_idle+0x0/0x50
[<c01070c0>] default_idle+0x0/0x50 [<c01070ea>] default_idle+0x2a/0x50
[<c010718a>] cpu_idle+0x3a/0x50 [<c0105000>] rest_init+0x0/0x30 code: 0f 0b
6f 01 ba a7 41 c0 8b 18 89 44 24 04 89 3c 24 e8 a5 0c

Listing 1: A lowercased ticket from the Linux Bugs dataset; Fields “Product” and “Component” are used as
labels and sub-labels respectively.

Product: Drivers
Component: Network
Title: kernel crashes after stop network and remove e100.

Description: exact kernel distribution:redhat hardware environment:intel stl2
mother boar d problem description: compile e100 as kernel module, insmod e100
and start the network. then stop network and remove e100 together. then
kernel crashes in random places. for example: use command : insmod e100
/etc/init.d/network start /etc/init.d/network stop; rmmod e100 then the kernel
crashes. eflags: eip is at eax: ebx: ecx: edx: esi: edi: ebp: esp: ds:
0068 es: 0068 ss: 0068 process swapper (pid: 0, stack: fffffffd fffffffd
call trace: code: 0f 0b 6f 01 ba a7 41 c0 8b 18 89 44 24 04 89 3c 24 e8 a5 0c

Listing 2: The same ticket from Listing 1, preprocessed with the more aggressive strategy.

Table 6: Label-specific performances and statistics for three of the best performing and three of the worse performing
classes. The values are calculated and averaged over the usual 3-fold CV.

Model Label F1 Prec Recall Avg ticket len # in test # in train

ML-BERT
(base)

Drivers_Network 0.958 0.953 0.963 2825.49 379 1008
Drivers_Hardware-Monitoring 0.891 0.861 0.925 1365.25 62 74

File-System_VFS 0.842 0.789 0.905 2494.28 143 110
...

Tools_Trace-cmd-Kernelshark 0.328 0.436 0.268 1429.63 24 80
Documentation_man-pages 0.196 0.284 0.163 907.67 41 242

Networking_Wireless 0.064 0.107 0.074 2406.04 45 434

Supp-BERT
(base)

Drivers_Network 0.963 0.961 0.965 2825.49 379 1008
Drivers_Hardware-Monitoring 0.888 0.887 0.892 1365.25 62 74

File-System_VFS 0.829 0.767 0.902 2494.28 143 110
...

Tools_Trace-cmd-Kernelshark 0.104 0.667 0.057 1429.63 24 80
Documentation_man-pages 0.225 0.472 0.163 907.67 41 242

Networking_Wireless 0.079 0.192 0.052 2406.04 45 434
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Abstract

Web-crawled datasets are known to be noisy, as
they feature a wide range of language use cov-
ering both user-generated and professionally
edited content as well as noise originating from
the crawling process. This article presents one
solution to reduce this noise by using automatic
register (genre) identification—whether the
texts are, e.g., forum discussions, lyrical or
how-to pages. We apply the multilingual
register identification model by Rönnqvist
et al. (2021) and label the widely used Oscar
dataset. Additionally, we evaluate the model
against eight new languages, showing that
the performance is comparable to previous
findings on a restricted set of languages.
Finally, we present and apply a machine
learning method for further cleaning text files
originating from Web crawls from remains of
boilerplate and other elements not belonging
to the main text of the Web page. The register
labeled and cleaned dataset covers 351 million
documents in 14 languages and is available at
https://huggingface.co/datasets/
TurkuNLP/register_oscar.

1 Introduction

Massive Web-crawled datasets are widely used in
Natural Language Processing (NLP), for instance
for training language models (Conneau et al., 2020;
Raffel et al., 2019; Xue et al., 2020). However,
the challenge with these crawled datasets is that
they are typically very noisy. First of all, this noise
originates from the lack of structure and metadata—
the datasets don’t include any information on the
origin of the documents. This complicates their
use, because language on the Web varies extremely,
ranging from toxic language, discussion forums
and other user-generated content to professionally-
like edited texts. Second, the noisiness comes from
the crawling process—despite the cleaning efforts,

∗Work done prior to Amazon.

Web-crawled data still contain remains of boiler-
plate and other elements not belonging to the main
text, such as click here or read more. All these
properties affect the automatic processing of text
(Maharjan et al., 2018; Barbaresi, 2021; Kilgarriff,
2007).

The automatic identification of Web genres or
registers—whether the documents are, e.g., forum
discussions, originally spoken, informative or nar-
rative (Biber and Conrad, 2019)— would offer a
solution to reduce the noisiness of Web data and
to add metadata on the origin of the documents.
However, this has been a challenge. There are
no gatekeepers ensuring that the users follow any
conventions when writing on the Web, and thus,
Web language use has been referred to as a jungle
(Sharoff, 2010). The available register datasets,
almost entirely focusing on English, have been
restricted to only selected and well-defined reg-
isters, and they do not generalize to the entire Web
(Sharoff et al., 2010; Asheghi et al., 2014; Santini,
2008; Madjarov et al., 2019).

Recently, however, the Corpus of Online Regis-
ters of English (CORE) (Egbert et al., 2015) sam-
pled from the unrestricted open Web has allowed
the modeling of the full range of registers found
in Web-crawled datasets. Furthermore, similarly
register-annotated datasets in Finnish, Swedish and
French (Laippala et al., 2019; Repo et al., 2021)
have extended these possibilities to a multilingual
setting (Rönnqvist et al., 2021).

In this paper, we benefit from these advances
and present Register Oscar, a version of the widely
used Oscar dataset (Ortiz Suárez et al., 2019) to
which we have automatically created register labels.
Furthermore, we introduce and apply a machine
learning method for cleaning text files originating
from Web crawls—such as the Oscar documents—
to filter out noise left after boilerplate removal.

Register Oscar covers 14 languages. To iden-
tify the document registers, we use the multilingual
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register model by Rönnqvist et al. (2021) based
on four languages. To evaluate the model on the
wider set of languages included in Register Oscar,
we present new CORE-style annotated evaluation
datasets in eight languages: Arabic, Catalan, Chi-
nese, Hindi, Indonesian, Portuguese, Spanish and
Urdu. We find that the zero-shot performance of
the model on these culturally and linguistically dif-
ferent languages is 0.70 F1-score, similar to the
previously reported zero-shot results.

In sum, our main contributions are:

• We provide automatic register annotations for
351M documents in Oscar in 14 languages,
using the register model by Rönnqvist et al.
(2021).

• We present new manually annotated register
corpora for eight languages and evaluate the
register identification model on these.

• We introduce and apply a new machine learn-
ing method for cleaning text files from Web
crawls.

The register annotations for Oscar are available at
https://huggingface.co/datasets/
TurkuNLP/register_oscar, and the new
manually annotated register corpora and the text
quality annotations used to train the cleaning sys-
tem at https://github.com/TurkuNLP/
multilingual-register-labeling.

2 Data

Oscar (Ortiz Suárez et al., 2019) is our main
source of data. We use the version available at
https://huggingface.co/datasets/
oscar in the following 14 languages: Arabic,
Basque, Bengali, Catalan, Chinese, English,
French, Hindi, Indonesian, Portuguese, Spanish,
Swahili, Urdu and Vietnamese. Following the Big
Science project1, the languages were selected so
that they represent a variety of language families
and geographical locations and include also
low-resource languages.

The new manually annotated multilingual regis-
ter corpora cover eight languages created as a part
of the current study, the main objective being to
allow for a more extensive evaluation of the register
identification model on the Oscar languages. The

1https://bigscience.huggingface.co/

Narrative NA
News report / news blog, narrative blog

Opinion OP
Review, opinion blog, advice

Informational Description IN
Description of a thing or a person, research article

Interactive Discussion ID
How-to HI

How-to / instruction, recipe
Informational Persuasion IP

Description with intent to sell
Lyrical LY
Spoken SP
Machine Translated MT

Table 1: Main registers and examples of sub-registers.

newly annotated datasets include culturally and lin-
guistically varied languages. As register is deeply
associated with the situational context of the text
(Biber, 1988) and, e.g., blogs can have very differ-
ent characteristics in different cultures, this offers
a unique chance to evaluate the robustness of the
register model.

The documents for the annotation were ran-
domly sampled from a recent Common Crawl2

dataset. The annotation was done using a custom
annotation tool. Most of the annotators have a back-
ground in linguistics or NLP. The annotators were
given a detailed tutorial to the register scheme, see
https://turkunlp.org/register
-annotation-docs/.

The annotations of the new datasets follow the
hierarchical CORE register scheme consisting of
eight main registers, tens of subregisters, and the
category Machine Translated, see Table 1. To cover
all the documents found in the online jungle, the
scheme has been created in a data-driven manner
and allows for the annotation of hybrid documents
simultaneously assigned to several registers (Biber
et al., 2020; Egbert et al., 2015). For instance, a
lifestyle blog telling about the writer’s day and
promoting a product would be annotated as both
Narrative and Informational Persuasion.

The newly annotated register corpora are de-
scribed in Table 2. Their sizes vary, Indonesian
being the largest and Arabic the smallest language.
Overall, the sizes are relatively small. Therefore,
we focus here on the main register level. The regis-
ter distributions are also very uneven. This was ex-
pected, as similar distributions have been found for
the four original languages (Laippala et al., 2019;
Repo et al., 2021).
The text quality annotations are used to train the

2https://commoncrawl.org/
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HI ID IN IP LY NA OP SP HYB MT No
label Total

ar 2 3 12 7 32 10 23 3 92
ca 2 2 41 11 2 34 10 2 2 3 2 111
es 6 3 25 27 31 4 3 1 100
hi 3 1 26 12 10 82 6 2 13 5 1 161
id 34 5 153 131 10 239 79 2 504 29 4 1190
pt 24 6 47 101 3 97 23 31 2 334
ur 1 1 13 9 2 94 22 17 1 160
zh 8 5 58 104 1 84 27 1 24 5 317

Table 2: New multilingual register corpora. Hybrids
(HYB) are presented as one class. No label refers to
documents for which the annotators could not find a
suitable register.

Language Texts Accepted
lines

Rejected
lines

Lines
total

English 104 3 360 2 812 6 172
Finnish 89 1 797 2 480 4 277
French 1 807 57 345 26 171 83 516
German 112 2 529 925 3 454
Spanish 70 1 536 1 483 3 019
Swedish 2 114 47 302 51 099 98 401
Total 4 296 113 869 84 970 198 839

Table 3: Text quality annotations.

model behind the cleaning pipeline. The method
is trained on documents annotated line-by-line as
accept or reject according to if the line was part of
the main text or not. The statistics of this dataset are
described in Table 3. The documents were retrieved
from Common Crawl using the same pipeline as the
register annotated documents, and they were pre-
processed for boilerplate removal using Trafilatura
version 0.3.

3 Methods

The register labeling of the Oscar documents is
done using the master multilingual model by Rön-
nqvist et al. (2021). The model is based on a
fine-tuned XLM-R (Conneau et al., 2020) using
French, Finnish and English data, and is available
at https://github.com/TurkuNLP/
multilingual-register-labeling. To
account for hybrid documents (see Section 2), the
model is multi-label allowing to predict several
registers for one document.

The register model has been reported to achieve
an F1-score of 0.77 on a multilingual dataset.
Furthermore, it outperforms also monolingual
language-specific neural classifiers in these lan-
guages (Rönnqvist et al., 2021), and provides much
higher performance than earlier systems based on
SVMs or statistical techniques that additionally
would not allow for the modeling of languages

without training data (Laippala et al., 2021; Biber
and Egbert, 2016). Therefore, the use of the XLM-
R is motivated in the current study despite the
computational costs. Finally, we also evaluate the
performance of the XLM-R-based register iden-
tification model on the new multilingual register
corpora.
The cleaning of the Oscar documents from re-
mains of boilerplate and elements not belonging to
the main text works on text files and is based on
machine learning, unlike boilerplate removal that
is typically rule-based and takes html as input.

The pipeline consists of three steps. First, the
data is run through a heuristic filtering script with
language detection using langdetect to filter out
e.g., documents that are less than 75 words long
or have a high ratio of digit (> 0.075) or foreign
characters (>0.02).

Second, an XLM-R (Conneau et al., 2020) clas-
sifier is trained to predict whether a document is
machine generated or not, using data from our on-
going register annotation projects where Machine
translation and generation is one of the register cat-
egories. We optimize learning rate using a grid of
rates between 1e-7..9e-5.

Third, we filter out lines, defined as sequences
of characters separated by a line break, that do
not belong to the main text of the document. This
step uses the text quality annotations described in
Section 2 and includes two XLM-R models: a bag-
of-lines classifier to predict whether a line is main
text content or not, and another one with an extra
Long Short-Term Memory (LSTM) layer to predict
the line quality based on sequences of embeddings
retrieved from the first model. We optimize the
learning rate within the range of 1e-7..9e-5, and
compare the performances of the first model to the
entire architecture.

4 Evaluation

4.1 Register model performance on the new
languages

Figure 1 presents the performance of the register
identification model on the new multilingual reg-
ister corpora and on English and French already
used in the original model development (Rönnqvist
et al., 2021). The model performance varies be-
tween 0.58 and 0.82 for the new languages, the
lowest being for Indonesian and the highest for
Urdu. Overall, the total average F1-score on all the
evaluation datasets is 0.70.

217



Model Accuracy sd t-value
Bag-of-lines XLM-R 0.84 0.011
Sequential XLM-R 0.88 0.002 t(2) = 45

Table 4: Performances of the line-wise cleaning models.

The performance of the model on the new set of
languages is somewhat lower than the original per-
formance reported by Rönnqvist et al. (2021), 0.77.
However, importantly, the original setting was mul-
tilingual with the same languages included in the
training and testing, whereas ours is zero-shot. This
explains the decrease—similarly, Rönnqvist et al.
(2021) report an F1-score of 0.71% on a zero-shot
experiment.

4.2 Cleaning pipeline

The classifier predicting whether entire documents
are machine generated or not achieved a mean F1-
score of 0.98, averaged over three instances (SD
0.001).

The performances of the bag-of-lines classifier
and the sequence-to-sequence architecture identi-
fying the text quality based on the line-wise anno-
tations are described in Table 4. The results are
means over three runs. We can see that while both
methods achieve competitive results, the sequence-
to-sequence model outperforms the classifier ap-
proach by four percentage points. This was to be
expected considering that lines featuring actual text
and noise are not evenly distributed in a document—
instead, there may be long passages of actual text,
and then again several lines of noise. The sequence-
to-sequence approach can take advantage of this
ordering, resulting in a higher performance.

Texts Main content
lines

Noise
lines Words Cleaned

texts
ar 9.01M 43.5M 901k 2.65B 3.36M
bn 1.11M 7.19M 332k 358M 1.1M
ca 2.46M 9.43M 235k 556M 1.22M
en 304M 2.99B 103M 169B 214M
es 56.3M 393M 8.76M 21.3B 34.6M
eu 257k 835k 12.6k 37.1M 112k
fr 59.4M 360M 9.96M 18.6B 34.2M
hi 1.91M 9.03M 370k 630M 1.13M
id 9.95M 43.4M 590k 2.1B 6.23M
pt 26.9M 162M 2.79M 8.49B 15.9M
sw 24.8k 38.7k 1.19k 1.37M 24.7k
ur 429k 1.86M 51.9k 162M 260k
vi 9.9M 76.5M 2.61M 4.86B 7.09M
zh 41.7M 186M 5.99M 24.7B 31.2M
Total 524M 4.28B 136M 253B 351M

Table 5: Data sizes before and after the cleaning.

4.3 Register Oscar in numbers

Table 5 describes the Oscar dataset we use and the
effect of the cleaning pipeline to its size. The word
counts represent space-separated tokens except for
Arabic and Chinese, where the texts were tokenized
with UDPipe (Straka and Straková, 2017). Over-
all, the filtering reduced the dataset sizes relatively
aggressively to ~30-40% of the original. However,
for most of the languages, the sizes are still giant—
English, French, Spanish, Portuguese and Chinese
cover tens of millions of documents, and Ara-
bic, Bengali, Catalan, Hindi, Indonesian and Viet-
namese 1-10 million documents. Basque, Swahili
and Urdu have only 20,000-260,000 cleaned doc-
uments, but their sizes were small already in the
uncleaned version. Finally, Figure 2 in Appendix
presents the register distributions for each language
in the cleaned dataset. For most languages, the dis-
tributions follow the training data—Narrative and
Informational Description are the most frequent,
while Spoken and Lyrical feature a much smaller
proportion of the data. E.g., English Lyrical cov-
ers 164,105 documents. For some of the lower-
resource languages—Bengali, Hindi, Swahili and
Urdu—the vast majority of the documents are pre-
dicted as Narrative. This can be related to many
aspects of the data collection and processing, and
will be examined in future work.

5 Conclusions

In this paper, we have presented automatically pro-
duced register annotations for the widely used Os-
car dataset in 14 languages, and we have evalu-
ated the register identification model against new
datasets covering eight languages not included in
the original model development. Furthermore,
we have described a machine-learning method for
cleaning text data originating from Web crawls,
and we have applied the method to further clean
the documents in the entire dataset.

The evaluation showed that the performance
of the register model is comparable to previously
reported zero-shot results, although the newly
annotated datasets feature linguistically and
culturally diverse languages. This suggests that
multilingual register identification can be used
to provide structure and improve the usability of
Web-crawled data, where the content ranges from
noisy user-generated text to professionally edited
documents. The register annotations automatically
produced in this study cover altogether eight
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Figure 1: Language-specific performances of the register model.

registers and 351 million documents, available at
https://huggingface.co/datasets
/TurkuNLP/register_oscar. The
new manually annotated register datasets
and the text quality annotations used to de-
velop the cleaning pipeline can be found at
https://github.com/TurkuNLP/
multilingual-register-labeling.
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Figure 2: Register distributions per language in the cleaned dataset. The sizes of the largest and the smallest class
for each language are indicated. Please note the varying scales of the figures.
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Abstract

In recent years, false information such as fake
news, rumors and conspiracy theories on many
relevant issues in society have proliferated.
This phenomenon has been significantly ampli-
fied by the fast and inexorable spread of misin-
formation on social media and instant messag-
ing platforms. With this work, we contribute
to containing the negative impact on society
caused by fake news. We propose a graph neu-
ral network approach for detecting false infor-
mation on Twitter. We leverage the inherent
structure of graph-based social media data ag-
gregating information from short text messages
(tweets), user profiles and social interactions.
We use knowledge from pre-trained language
models efficiently, and show that user-defined
descriptions of profiles provide useful infor-
mation for improved prediction performance.
The empirical results indicate that our proposed
framework significantly outperforms text- and
user-based methods on misinformation datasets
from two different domains, even in a difficult
multilingual setting.

1 Introduction

The spread of misinformation on social media is a
growing problem that can hardly be tackled with-
out the help of AI-based detection methods due to
the large amount of data and its complexity. This is
evident in crisis situations such as the COVID-19
pandemic (Naeem and Boulos, 2021) or Russia’s
attack on Ukraine where a sheer flood of fake news
has exacerbated the situation causing great insecu-
rity and harm among the people.

Previous work has focused primarily on the veri-
fication of news content, taking into account user
profiles and propagation patterns in social networks.
However, in real life scenario, news articles are
not always freely available, and matching user-
generated content from social media to published
articles is often hard to accomplish (Shu et al.,
2017). Therefore, we propose a method for au-

tomatic fake news detection that is based only on
data available on social media. We introduce a uni-
fied framework with graph neural networks (GNNs)
that leverages short text messages, user profile in-
formation and social network properties. As a case
study, we train and evaluate our model on mono-
and multilingual social media content from Twit-
ter. To this end, we jointly model the heteroge-
neous graph structure of the data formed by users,
retweeters and their tweets, and cast the verification
task as a node classification problem. We exploit
self-defined profile descriptions from Twitter users
and retweeters as well as the tweets’ text to create
initial user and tweet node features. Unlike previ-
ous approaches which use pre-trained word embed-
dings to encode text features (Monti et al., 2019) or
learn word-level features during training (Lu and
Li, 2020), we utilize state-of-the-art context-aware
multilingual representations from Sentence-BERT
(Reimers and Gurevych, 2019). Since we avoid ex-
pensive fine-tuning of the text encoders, we make
our model efficient and easily applicable. Finally,
we train our system in an inductive setting, boost-
ing its capability to reliably predict new unseen
instances without the need of re-training.

2 Related Work

Text- or content-based fake news detection models
have been greatly enhanced by the advancement of
pre-trained language models (Hossain et al., 2020;
Kaliyar et al., 2021; Panda and Levitan, 2021; Tzi-
afas et al., 2021). Since GNNs leverage news prop-
agation patterns and user network information, they
are particularly suitable for social media data. How-
ever, GNNs have only recently been introduced
for the detection of false information in social net-
works.

Monti et al. (2019) collect news stories and Twit-
ter content, and are the first to employ a GNN ar-
chitecture to model text and user features together
with the social network properties for fake news
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detection. Lu and Li (2020) extract user and tweet
features, and model user propagation paths with
GRU- and CNN-based models. A graph convolu-
tional network (GCN) is used to learn interactions
among users who share the same content. Chandra
et al. (2020) independently train a text encoder for
news content and a graph encoder for modelling the
follower-following network of users spreading a
new articles. Han et al. (2020) cast fake news detec-
tion as a graph classification task, extract features
from Twitter’s user objects only and use GNNs to
compute the dissemination of news content among
multiple users. The authors tackle the problem of
new, unseen data by using techniques from contin-
ual learning. Finally, Dou et al. (2021) propose a
GNN-based method for user preference-aware fake
news detection which exploits historical user posts
for node generation and models propagation pat-
terns of news articles among respective retweeters.

Except for Lu and Li (2020) and Han et al.
(2020), the above-mentioned approaches incorpo-
rate extensive text content from news articles. We
follow the approach of Lu and Li (2020) by address-
ing the challenge of classifying short and noisy text
documents, but instead of applying GNNs to user
networks only, we propose a unified way of mod-
elling user interactions and user-created content
with a graph-based approach. Moreover, none of
the previous works address multilingual aspects of
social media messages and user origins. We show
that our approach significantly outperforms text-
and user-based baselines even in a multilingual set-
ting.

3 Methodology

3.1 Graph Representation

We model Twitter users, their social media posts
(tweets), and their interrelations by building a net-
work graph with nodes and edges. We denote the
set of user nodes by U and the set of tweet nodes
by T . We establish connections, i.e., graph edges,
between users and their tweets eT and between
tweets and users who re-posted (retweeted) a tweet
eR. For a given dataset, we construct a hetero-
geneous graph G = (V, E) with a set of nodes
V = {U ∪ T } and a set of edges E = {eT ∪ eR}.
We note that an explicit connection between users
and retweeters is not necessary, because these in-
teractions are learned by means of the depth of
our network. Likewise, the model can learn rela-
tions between tweets from users and retweeters if a

tweet-retweeter connection exists.

3.2 Tweet Nodes

Let ti ∈ T = {t1, t2, ..., tN} be a tweet in a
given dataset of size N . We generate the ini-
tial tweet nodes for our network graph by encod-
ing the tweet’s text with a pre-trained language
model. We preprocess the text by replacing URLs
with the ‘HTTPURL’ token, e-mail addresses with
the ‘EMAIL’ token and user mentions with the
‘@USER’ token. We also convert emojis into
their corresponding string shortcodes.1 We use
Sentence-BERT (SBERT) to generate a vector rep-
resentation vti of each processed tweet ti ∈ T .
Specifically, we test two multilingual embedding
models of different sizes from the SentenceTrans-
formers library2 trained in a teacher-student setting
(Reimers and Gurevych, 2020): 1. distiluse-
base-multilingual-cased-v1 which is
based on Multilingual Universal Sentence En-
coder (mUSE) (Chidambaram et al., 2019; Yang
et al., 2019) and a distilled version of mBERT
(Sanh et al., 2019). This model supports 15
languages and has an embedding dimension
dD = 512. 2. paraphrase-multilingual-
mpnet-base-v2, which was trained using
paraphrase-mpnet-base-v2 (Song et al.,
2020) as teacher and the base version of XLM-
RoBERTa (Conneau et al., 2020) as student model.
It supports 50+ languages and has an embedding
dimension dM = 768.

3.3 User Nodes

Each tweet ti is authored or retweeted by a user
uj on Twitter. The set of users in each dataset is
defined as U = {u1, u2, ..., uM}, where M is the
total number of unique users. M includes the num-
ber of authors and the number of retweeters. It
should be noted that a user uj can be the author
and retweeter of one or more tweets at the same
time. To initialize the user nodes in our network
graph, we generate a vector representation vuj of
the user’s description attribute contained in
the user object.3 Again, we use preprocessing and
the two pre-trained multilingual models from Sen-
tenceTransformers introduced in Sec. 3.2. To dis-
tinguish our systems with different initial tweet and

1https://pypi.org/project/emoji/
2https://www.sbert.net/
3https://developer.twitter.com/en/

docs/twitter-api/v1/data-dictionary/
object-model/user
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user node representations in our experiments, we
use the prefixes ‘Distiluse-’ and ‘Mpnet-’.

3.4 Model

Our proposed fake news detection framework has
a 2-layer GNN at its core and takes as input the
heterogeneous graph described in Sec. 3.1. We
initialize the user and the tweet nodes with their
corresponding embeddings vu ∈ Rd and vt ∈ Rd

which we do not fine-tune during training.
Next, we project the embeddings into a lower

dimensional space hvi ∈ R128 using a separate
fully-connected layer followed by a ReLU activa-
tion function for each node type vi ∈ V .

For computing the node representations, we im-
plement the GraphSAGE operator (Hamilton et al.,
2017) according to the PyTorch Geometric4 library,
add a ReLU non-linearity, and apply it to all edge
types specified in E (Sec. 3.1). One operation step
of the GraphSAGE convolution with the mean-
based aggregator at layer k is defined as:

h′
v = ReLU(Wk

1hv +Wk
2 ·meann∈N (v)hn)

where n ∈ N (v) is a node in the neighborhood
of v, hn its hidden representation, and Wk

1 and
Wk

2 are the weight matrices at the k-th layer. Ad-
ditionally, we ℓ2-normalize the output features of
each node and group the features generated by dif-
ferent relations by summation.

We test one variant of our proposed network by
replacing the SAGE operator with a graph attention
network (GAT) (Veličković et al., 2017). By em-
ploying a self-attention mechanism (Vaswani et al.,
2017), GAT learns different parameters for differ-
ent nodes in a neighborhood and has been utilized
in previous works (Monti et al., 2019; Chandra
et al., 2020).

For the final binary node classification of ‘real’
and ‘fake’ tweets, we feed the tweet representations
ht ∈ R128 learned by the GNN into a 2-layer feed-
forward network with a ReLU non-linearity after
the hidden layer and a logistic sigmoid function
after the final layer.

4 Experimental Setup

4.1 Datasets

We collect two published fake news datasets which
provide social media context: FakeNewsNet (Shu

4https://github.com/pyg-team/pytorch_
geometric

et al., 2020), and a multilingual dataset related to
COVID-19 (Alam et al., 2021b) which we refer to
as Covid-19-Disinfo.

FakeNewsNet is a popular dataset for automated
fake news detection which contains English news
articles from two fact-checking websites together
with related content from Twitter. For our study, we
use the ‘fake’ and ‘real’ tweets compiled from Poli-
tiFact5 available at the FakeNewsNet data reposi-
tory website.6 We hydrate the tweet objects via
Twitter’s API using tweepy.7 As many tweets
have been deleted since the date of the publication
of the dataset (Balestrucci and De Nicola, 2020),
we end up with a total size of 289,602 ‘real’ and
111,101 ‘fake’ (unique) tweets, which is 72.54%
and 67.38% of the original dataset size, respec-
tively. To prevent data leakage and bias during
training and evaluation, we remove similar tweet
objects from the dataset by normalizing the tweets’
text (incl. lowercasing, see Sec. 3.2) and applying
exact-duplicate filtering according to Alam et al.
(2021a).This results in a total number of 282,643
instances, with 233,071 tweets being annotated as
‘real’ and 49,572 as ‘fake’. In order to counteract
the impact of an unbalanced dataset, we randomly
sample 49,000 tweets from each class label. Finally,
we randomly split all instances into 70% train, 10%
validation and 20% test sets.

Covid-19-Disinfo is a multilingual Twitter
dataset related to the spread of false information
during the COVID-19 pandemic. The dataset was
compiled for fine-grained disinformation analy-
sis and contains various independent classification
tasks formulated in the form of questions. We
choose the binary classification task ‘Q2’ which
is designed for detecting false information. When
downloading the tweet objects via the Twitter API,
we face similar issues as mentioned above. From
the total number of 9,583 tweet IDs (Q2 task) we
were able to hydrate only 8,810 unique tweet ob-
jects from Twitter, resulting in a predefined train,
validation and test split of 6,462, 602 and 1,746
tweet objects, respectively.

We extend FakeNewsNet and Covid-19-Disinfo
with 73,722 and 57,966 unique retweeter objects,
respectively. Thus, we obtain a total number of
147,690 unique user objects for FakeNewsNet and
62,598 unique user objects for Covid-19-Disinfo.

5https://www.politifact.com/
6https://github.com/KaiDMML/

FakeNewsNet
7https://www.tweepy.org/
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Model FakeNewsNet Covid-19-Disinfo
Mpnet-Tweet .8817 (.0025) .4101 (.0274)
Distiluse-Tweet .8618 (.0013) .3791 (.0243)
Mpnet-Tweet-User .8696 (.0010) .4135 (.0192)
Distiluse-Tweet-User .8650 (.0003) .3310 (.0228)
Mpnet-GAT .9241 (.0016) .4252 (.0193)
Distiluse-GAT .9351 (.0006) .3889 (.0325)
Mpnet-SAGE .9370 (.0008) .4868 (.0172)
Distiluse-SAGE .9467 (.0015) .4421 (.0055)

Table 1: Mean F1 scores (‘fake’ class) and standard
deviation (±) of 5 runs on the test sets of FakeNewsNet
(Politifact) and Covid-19-Disinfo. Bold: Best overall
performance for each dataset.

4.2 Baselines

We use two baseline models to compare the perfor-
mance of our proposed GNN model each with two
input feature variations.

Tweet Neural Network. We encode the tweets’
text adopting the same embedding models de-
scribed in Sec. 3.2. We then compute a predic-
tion for each instance with a 3-layer feed-forward
network similar to the prediction network in our
GNN model. We also use a hidden size of 128, but
add the tanh activation function (instead of ReLU)
after each layer.8 We refer to these baselines as
‘Distiluse-Tweet’ and ‘Mpnet-Tweet’, depending
on the embedding model.

Tweet-User Neural Network. We encode the
tweets’ text and the description attribute of
the user objects (see Sec. 3.3). We use two sepa-
rate 2-layer feed-forward networks to obtain the
hidden representations hu, ht ∈ R128 of user uj
who posted tweet ti in the dataset. Again, we use
the tanh activation function after each layer. Intu-
itively, the network should learn the interrelation
between users and their messages. We compute
h′ = hu ⊕ ht, where ⊕ is the concatenation opera-
tor, and use another fully-connected layer for the
final prediction. We denote this baseline by ‘Tweet-
User’ prepended by the embedding specifier.

5 Results and Analysis

For each model architecture, we report the mean
F1 of the positive class (‘fake’) of five runs with
different random seeds. The results are listed in
Table 1. Overall it can be observed that our pro-
posed GNN model outperforms all baselines on
both datasets, except for ‘GAT’ which is inferior
with initial ‘Distiluse’ features and only marginally

8In our preliminary experiments, the tanh activation func-
tion performed slightly better than ReLU.

better with ‘Mpnet’ on Covid-19-Disinfo. Specifi-
cally designed for inductive graph representation
learning, the SAGE module is more robust than
GAT and can generalize better on unseen test data
(Brody et al., 2021).

As for FakeNewsNet, Distiluse-SAGE outper-
forms all baseline architectures, Mpnet-SAGE
and our proposed GNNs with the GAT operator.
Among the baseline models, additional user infor-
mation (Tweet-User) only helps with ‘Distiluse’
embeddings. However, the best results are achieved
with ‘Mpnet’ representations. Since ‘Mpnet’ em-
beddings have a larger dimension, i.e., dM = 768
vs. dD = 512, they have the ability to capture more
information within shallower networks. Among the
GNN architectures initial ‘Distiluse’ nodes outper-
form their ‘Mpnet’ counterparts.

Regarding Covid-19-Disinfo, all ‘Mpnet’ mod-
els outperform the ‘Distiluse’ models. The larger
embedding size seems to be useful in scenarios
where little training data is available. For our pro-
posed approach, ‘Mpnet’ embeddings outperform
‘Distiluse’ representations by roughly 4 percentage
points in both setups, i.e., ‘GAT’ and ‘SAGE’. The
strongest model, Mpnet-SAGE, is more than 7 per-
centage points better than the strongest baseline,
Mpnet-Tweet-User.

Figure 1: t-SNE (van der Maaten and Hinton, 2008)
plot of Covid-19-Disinfo tweet embeddings (test set)
generated by the baseline Mpnet-Tweet model. Fake
tweets are in red.

In general, the results suggest that the Covid-
19-Disinfo classification task is much harder than
the FakeNewsNet task. Most likely this is due to
the lack of sufficient training and validation data,
since we use regularization methods to mitigate
overfitting. Other reasons could be the multilingual
character of the content and the domain-specific
vocabulary which is difficult to capture for the pre-
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Figure 2: t-SNE plot of Covid-19-Disinfo tweet features
(test set) generated by our Mpnet-SAGE encoder. Fake
tweets are in red.

trained language models. However, the final repre-
sentations of ‘fake’ and ‘real’ tweets generated by
our proposed GNN detection framework are more
distinct than the baseline features, and, therefore,
help to improve detection performance on both
datasets (see Figs. 1 and 2).

Although we use publicly available data in a
purely observational manner, we point out that our
model may learn a ‘semantic bias’ (Shah et al.,
2020) towards user-defined descriptions. Under
certain conditions, this bias could lead to question-
able results that are not intended.

Ablation Study In order to investigate the ef-
fect of the models’ input components to the re-
sults, we conduct a comparative study with the best
performing model on the corresponding dataset.
To this end, we either randomize tweet (‘SAGE
(rnd tweets)’) or user (‘SAGE (rnd users)’) node
features while keeping other model settings con-
stant. The results of 5 runs (Table 2) indicate that in
the balanced dataset scenario with sufficient exam-
ples (FakeNewsNet), pre-trained tweet nodes pri-
marily contribute to the performance of Distiluse-
SAGE. Yet, both node representations modelled
with our proposed GNN lead to the significant per-
formance gain. In the case of the more challeng-
ing Covid-19-Disinfo dataset, we observe for both
model variations a sharp drop in performance to al-
most equal F1 scores. This indicates that both input
components equally contribute to the performance
increase of our proposed model.

6 Conclusion

In this work, we present a simple, yet efficient GNN
approach for the detection of fake news on social

Model FakeNewsNet Covid-19-Disinfo
SAGE (rnd tweets) .6594 (.0138) .2964 (.0318)
SAGE (rnd users) .9102 (.0016) .3019 (.0387)
Mpnet-SAGE – .4868 (.0172)
Distiluse-SAGE .9467 (.0015) –

Table 2: Ablation results (mean F1 scores (‘fake’ class)
and standard deviation (±)) of best performing models
randomizing either tweet or user node features. Bold:
Best performance without random features.

media. Our model employs pre-trained language
models to encode text features of social media mes-
sages and user profile descriptions. By jointly mod-
elling the relations between users and their tweets
and between users who shared similar content, our
GNN architecture outperforms text-based models
as well as models which combine text and user
features from pre-trained language models. In ad-
dition, our model is able to apply its knowledge to
unseen data without the need of re-training. We
show that our approach has limitations in settings
with insufficient training data. But with the right
choice of initial node representations, the model
still outperforms all baselines. In future work, we
will investigate domain-adapted language models
for initializing graph nodes. Further, we plan to
evaluate our model on similar social media content,
such as Reddit (Sakketou et al., 2022).
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A Additional Training Configurations

We use PyTorch9 and the PyTorch Geometric li-
brary to build our models. We train our GNN
framework for 300 epochs with early stopping. We
optimize with Adam (Kingma and Ba, 2014) set-
ting the learning rate to 0.005 and weight decay
to 0.001. For regularization of the whole network,
we use dropout with p = 0.3 before the first fully-
connected layer, after each graph neural network
layer, and after the hidden layer in the prediction
network.

We train all baseline models for 100 epochs with
early stopping and a batchsize of 64. We set the
size of all hidden layers to 128. Again, we optimize
with Adam setting the learning rate to 0.005 and
weight decay to 0.001. We use dropout with p =
0.5 after the first hidden layer for regularization.
All experiments are run on NVIDIA GeForce RTX
3090 24 GB GPUs.

9https://pytorch.org/
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Abstract
Hate speech detection systems have been
shown to be vulnerable against obfuscation at-
tacks, where a potential hater tries to circum-
vent detection by deliberately introducing noise
in their posts. In previous work, noise is of-
ten introduced for all words (which is likely
overestimating the impact) or single untargeted
words (likely underestimating the vulnerabil-
ity). We perform a user study asking people
to select words they would obfuscate in a post.
Using this realistic setting, we find that the
real vulnerability of hate speech detection sys-
tems against deliberately introduced noise is
almost as high as when using a whitebox at-
tack and much more severe than when using a
non-targeted dictionary. Our results are based
on 4 different datasets, 12 different obfuscation
strategies, and hate speech detection systems
using different paradigms.

1 Introduction

Computer-mediated communication is plagued by
toxic and hateful behavior that can cause seri-
ous harm (Waldron, 2012; Gelber and McNa-
mara, 2016). Consequently, automatically detect-
ing such behavior has become a major research area
(Waseem and Hovy, 2016; Waseem et al., 2017; Ku-
mar et al., 2018; Wiegand et al., 2019; Aggarwal
et al., 2019; Kovács et al., 2021).

Whenever there is an automatic system in place
to filter out hateful messages, people will try to
circumvent it by obfuscating their message. How-
ever, there are limits, as the communicative intent
has to stay intact. If the intended audience cannot
relatively easily understand a message, obfuscation
has gone too far. Thus, people will usually only ob-
fuscate a few terms they think will be problematic
or could be responsible for filtering out a message
(see Table 1). Adding to much noise may render the
message unrecognizable even to human readers.

In this paper, we analyze the real vulnerability
of state-of-the-art hate speech detection systems

against targeted obfuscation. We keep a post recog-
nizable by obfuscating at most one target token per
test example. We perform an annotation study to
analyze the target selection strategies in real-world
setting. We use 12 types of plausible obfuscation
strategies and apply them to the targeted tokens.
In order to generalize our analysis, we repeat our
experiments on multiple hate speech datasets. For
future benchmarking, we open-source our code
base, trained models, and obfuscated test samples1.

2 Ethical Considerations

In our research, we are discussing and explain-
ing obfuscation strategies. People could use those
strategies to avoid detection and eventually cause
even more harm (Prabhumoye et al., 2021). We
consider this risk to be small, as people are creative
and would have (and almost certainly already have)
come up with all of the described strategies.

We decided to release all our code (even the parts
obfuscating single words), as we see a clear benefit
in researchers reproducing our results and facili-
tate their own research. This outweighs the risk
caused by people using that code to automatically
obfuscate their messages.

Law enforcement agencies might use our re-
search to build more robust detection systems. This
can be positive, as marginalized groups might not
have to deal with being targets of hate speech all
the time and might dare again to use their free
speech rights without being threatened into silence.
However, social media platforms may use deobfus-
cation to ban words they consider offensive. This
might have unintended consequences, e.g. a person
called Richard Gaywood was not able to use his
name as it include the word gay and consider to
violate community standards (Suzor, 2010).

An even more serious harm are overreaching
governments censoring non-hateful expression of

1https://github.com/aggarwalpiush/
HateSpeechDetection
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Post Obfuscation Level

A** h*te sp**ch res**rchers sh**ld b* b**ten t* d**th High
All h*te speech res**rchers should be b**ten to d**th Medium
All hate speech researchers should be b**ten to d**th Low

Table 1: Trade-off between level of obfuscation and message understandability.

opinions. Over the last years, the web-based cen-
sorship as well as surveillance has significantly in-
creased in some parts of the world (Polyakova and
Meserole, 2019). Improved detection models will
even more empower such authoritarian regimes and
give them the opportunity to increase the severity
of surveillance towards its citizens (Sherman, 2020;
Wright, 2018), as they can no longer circumvent
censorship through obfuscation.

3 Obfuscation Strategies

Obfuscation is the deliberate act of obscuring the
intended meaning of communication by adding
noise to the message. This can happen in many
ways. For example, Gröndahl et al. (2018) show
that appending a positive word like love can al-
ready fool a classifier. Kirk et al. (2022) demon-
strate the vulnerability of hate detection models by
simple replacements of certain tokens with emojis.
Another obfuscation strategy is to paraphrase the
whole message or use a metaphorical expression to
indirectly express the same point. For example, in-
stead of All those researchers are stupid as hell one
could write Those Einsteins are not the sharpest
knife in the drawer. However, this also changes the
meaning and presupposes that the intended audi-
ence is aware of the possible replacement and able
to make the connection. Such a replacement might
also change the perceived severity of a toxic com-
ment, e.g. it is possible that people would consider
the sentence with Einstein as more hateful, as it
adds a potential connotation of Jewish researcher.

In this paper, we only focus on producing simple
obfuscation strategies (Röttger et al., 2020) which
are generally observed to be implemented in realis-
tic settings. Table 2 gives examples of all strategies
that we consider.

Camel Case While camel casing is usually used
to improve the readability of a text (e.g. naming
conventions in computer programming), it can also
be used to add noise. In our camel-casing strategy,
we capitalize every alternate letter (starting from
the second letter).

Char Drop While keeping first and last charac-
ter untouched we either drop a randomly chosen
character from the selected token or drop all vow-
els (Cleary, 1976; Baluch, 1992). We call the later
obfuscation as Vowel Drop. We ensure preserva-
tion of token perception (Baba and Suzuki, 2012;
ThambiJose, 2014; Pruthi et al., 2019)). Therefore,
we only add the noise to tokens with 3 or more
characters.

Char Flip Character shuffling within the bound-
aries of the word (excluding boundary characters)
does not have much effect on word semantics. How-
ever, it would be quite easy to get this implemented
during the message composition. To generate such
noise, we only consider tokens having length more
than 3. Excluding first and last, we randomly select
two characters and flip them.

Diacritics Some non English languages use ex-
tra marks or glyph (such as ˆ) above or below (or
sometimes next to) a letter for explicit enunciation.
We use mapping table to generate diacritic version
of the input token.

Kebab Instances are created by adding a dash
(-) between each letter of the word. This looks like
meat on a kebab stick, hence the name.

Leetspeak Visual resemblance of alphabets
(Simpson et al., 2012) with numbers and mathemat-
ical symbols can also be used to obfuscate token.
Therefore we exploit leetspeak where we consider
commonly used English alphabets namely a, e, l,
o, s and replace with 4, 3, 1, 0, 5 respectively.

Masking Deliberate introduction of symbols
such as mathematical operators are common prac-
tice to obfuscate the disputed tokens. We generate
masking based obfuscation examples where we ran-
domly choose and replace one letter with * (tokens
with two letters are not considered for this obfusca-
tion). To increase the perception of the token, we
do not consider first and last letter of the token for
the replacement.

Mathspeak Similar to leetspeak, mathspeak re-
places characters with mathematical symbols such
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Strategy Example

researcher

Camel Case rEsEaRcHeR
Char Drop researher
Char Flip resaercher
Diacritics résearchêr
Kebab r-e-s-e-a-r-c-h-e-r
Leetspeak re5earc7er
Masking resear**er
Mathspeak ℜesearcher
Phonetic rIs3:Ù@
Spacing r e s e a r c h e r
Snake r_e_s_e_a_r_c_h_e_r
Vowel Drop rsrchr

Table 2: Overview of Obfuscation Strategies.

as R with ℜ.

Phonetic In phonetic obfuscation, the token is
replaced with a representation of how it is pro-
nounced. For our example researcher, this could
be a layperson representation like ‘ri-sur-chur’ or
blending with aspects of mathspeak if using the
international phonetic alphabet (IPA) which would
result in ‘rIs3:Ù@’. In this study, we apply IPA rep-
resentation for obfuscation generation. Though we
do not consider this a very practical obfuscation
strategy outside of ‘Linguistics Twitter’, still keep
it in our experiments as an extreme case.

Spacing In this case, examples are created by
adding spaces between each letter of the word.

Snake Instances are created by adding under-
score (_) mark between each letter of the word.

4 Target Selection

We propose model independent token selection
strategies that range from very broad (all tokens)
to very specific (the words conveying the hateful
intent). Our intention is to provide every possible
cases in order to analyse the model robustness in
depth. Table 3 illustrates how tokens are chosen
based on different target selection strategies. In this
section, we describe each of the strategy in detail.

All We obfuscate all tokens with more than 3
characters (obfuscation of shorter words cannot be
reliably performed). This is the most aggressive
obfuscation strategy that will probably make it un-
readable to humans and machines alike.

Random Any A single word (with more than 3
characters) is randomly selected from the message

text. We do not obfuscate the first and last word of
the text.

Random Content The same strategy as random
word, only that selected words have to be either
nouns, verbs, adjectives, or adverb.

Dict Fixed We collect a number of lexicons with
hateful words from various sources (including Hate-
base2 and published research on lexicons (Bassig-
nana et al., 2018; Wiegand et al., 2018; Chan-
drasekharan et al., 2017)). For each language we
combine all lexicons and remove duplicates. As to-
ken (starting from left side) in the input text found
match in the dictionary is selected for the obfusca-
tion and the remaining available tokens are ignored.

Dict Whitebox Following (Papernot et al., 2016)
hypothesis, we build an in-house lexical dictionary
populated with tokens which are important for an
LSTM-based hate-speech classification model for
hate-labels predictions. We refer these lexicons
as whitebox tokens as they are selected based on
model internal parameters. To extract such tokens,
first we train this model on the existing hate-speech
datasets (see Section 4) and apply a hierarchical
based explanation method (Jin et al., 2020). To
generate explanations, we use the same training
instances on which the model was trained as we are
only interested in hateful tokens. The explanations
are in the form of scores for all possible n-grams
available in the training statements which repre-
sent contribution of the n-grams towards hate label
predictions. Heuristically, we choose all unigrams
having threshold value less than or equal to -0.02
(negative polarity leads to hatefulness). For selec-
tion, among all the token matches, we consider
token with most negative score.

Dict Domain All target selection methods out-
lined so far, are trying to simulate the real obfus-
cation process in a rather crude way. When people
want to obfuscate single words, they know which
are the most problematic ones and focus only on
those. However, for our experiments, we do not
know which words this would be. We thus per-
formed an annotation study (described next), which
resulted in a domain-specific dictionary. We later
use this dictionary (like Dict Whitebox) to obfus-
cate exactly one word in each post that people con-
sider as most problematic. Thus, this target selec-
tion strategy is much more realistic than the other

2https://hatebase.org/
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Target Selection Post

Clean All hate speech researchers should be beaten to death
Random Content All hate speech researchers should be beaten to death
Random Any All hate speech researchers should be beaten to death
Dict Fixed All hate speech researchers should be beaten to death
Dict Whitebox All hate speech researchers should be beaten to death
Dict Domain All hate speech researchers should be beaten to death
All All hate speech researchers should be beaten to death

Table 3: Overview of target selection strategies. They differ in which and how many tokens will be selected for
obfuscation.

ones and will allow us to better estimate the real
vulnerability of hate speech detection systems.

4.1 Annotation Study

To gather a domain specific lexicons, we perform
an annotation study. We chose a random sample
of 100 hate speech statements from the (Davidson
et al., 2017) dataset. We recruited three annotators3

and asked them to think like potential hater and
select three tokens from each statements which
are most likely to be chosen for obfuscation (see
Figure 1) For the annotation study, we used the
inception framework (Klie et al., 2018).

Annotators received the following instructions.
First, we provided the scenario:

Imagine you want to spread hate using social
media platforms. Sooner, you realize most
of these social media platforms are equipped
with hate speech detection systems. Now
you want to fool these systems by playing
with words you used in message. For exam-
ple: Researchers should be banished from holy
places

You can play with words such as banished

and make it ban1shed

Then, we provided the purpose of annotation study:

This annotation process is intended to per-
form sociological analysis. We manually la-
belled the tokens in the social media posts
which potentially be obfuscated during the
post-composition to escape from automatic
hate-speech detection process.

Finally, we explained the annotation process:

For each sentence (total: 100), choose three
tokens and annotate with their priority levels.
For example:

First_Priority: banished

Second_Priority: Researchers

Third_Priority: holy

3university graduates and active social media users.

The study resulted in 455 tokens marked by the
annotators. Inter-annotator agreement (taking pri-
ority into account) was 0.64 gamma (Mathet et al.,
2015). It illustrates that annotators are not only
in high agreement for token selection but also for
priority.

To generate the domain specific dictionary from
the annotations, we assign them with a score. This
score represents the polarity of hatred carried by the
token relative to other tokens available in the list.
We use the scores4 (Equation 1) to prioritize the
token selection strategy during obfuscation process.

Sti =

vti∑

j=1

P⃗tij · W⃗ (1)

To calculate, we create priority vectors (e.g.
[1,0,0] for retard, [0,0,1] for stupid, etc. in Fig-
ure 1) for each token (Sti), we take dot product
of the priority vector (P⃗tij) with constant scalar
weight vector (W⃗ ) [0.5, 0.33, 0.17], summation
over token’s frequency (vti) (as single token can
have multiple priority vectors depending upon its
usage across the statements). The constant weight
vector describe the relative amount of preference
should be given to each token based on its priority
with respect to other token.

5 Experimental Setup

We experiment with all the obfuscation and target
selection strategies outlined above. To make sure
that our results are not specific to a dataset or de-
tection method, we also use multiple dataset and
methods as outlined next.

5.1 Datasets
In order to analyze the vulnerability of available
hate speech classifiers, we have used 4 social media
hatespeech datasets (see Table 4).

4The list of tokens with their scores can be download from
the provided github repository
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Figure 1: A sample hate statement with top three tokens that are most likely to be obfuscated by a potential hater.

Name Reference # posts tokens % hate

T1 (Davidson et al., 2017) 24,783 370k 6
T2 (Waseem and Hovy, 2016) 10,588 160k 26
G (Kennedy et al., 2022) 27,663 590k 12
TF (Mandl et al., 2019) 7,004 170k 36

Table 4: Specification of datasets use to analyze the real
vulnerability against target obfuscations.

• Davidson et al. (2017) (T1) contains Twitter
posts labeled with hate, offensive, not. It con-
tains a wide range of domains as its collec-
tion strategy is based on lexicons provided by
Hatebase.org.

• Waseem and Hovy (2016) (T2) contains
tweets manually tagged with sexist, racist, not.
Like T1, the tweets were collected but with
fewer lexicons.

• Kennedy et al. (2022) (G) contains posts from
social media service gab.ai with multiple hate-
based rhetoric labels.

• Mandl et al. (2019) (TF) contains binary-
labeled Tweets and Facebook posts.

For datasets with non-binary labels, we aggregate
the labels into two categories namely hateful and
not-hateful. We randomly stratified dataset posts
into train, dev and test set in the ratio of 80:10:10
respectively. We apply the proposed obfuscation
attacks only on the test set in order to analyse the
model robustness against unknown attacks.

5.2 Hate Detection Systems

To generalize our study we train 12 different types
of hate detection systems. It include shallow,
deep, deep-attention and deep-contextualized based
paradigm.

Shallow Models Following Davidson et al.
(2017), training shallow machine learning algo-
rithm for hate-speech classification such as support
vector machine and logistic regression can be con-
sidered as strong baseline. In addition, we use
ensemble based classification algorithms such as
AdaBoost, Gradient Boosting and Random Forest.

Deep Models Wide range of approaches have
been used for hate speech detection. We select
a range of reference architectures instead of spe-
cific configurations by certain researchers, as we
are mainly interested in the relative vulnerability
of architectures. Contextualized language model
based classification systems such as BERT (Devlin
et al., 2019) promise state of the art result in wide
domain of downstream tasks. Consequently, for
hate-speech classifications, we perform fine-tuning
of a variant of BERT called Distilbert (Sanh et al.,
2019). Textual classification is often considered a
time-series problem, where the representation of
each token in the text is depends on former and
later tokens available in the text. Therefore, we
train different variants of LSTM based neural net-
work such as LSTM, BILSTM, CNN with attention
networks and CNN-LSTM. Hochreiter and Schmid-
huber (1997); Zhou et al. (2016); Brahma (2018);
Sainath et al. (2015).

5.3 Model Training

Except Distilbert, for training of rest of the sys-
tems, we lowercase all postings for each dataset
and use the Ark Tokenizer (Gimpel et al., 2011) for
word splitting. To extract features, we use word em-
beddings (Zhang and Luo, 2018; Kshirsagar et al.,
2018; Badjatiya et al., 2017). Due to many OOVs
in hate speeches, hate speech models adopt charac-
ter level features (Del Vigna et al., 2017; Warner
and Hirschberg, 2012; Lee et al., 2018) where a
DNN produces local features around each char-
acter of the word and then combines them using
a max operation to create a fixed-sized character-
level embedding of the word. Char-level embed-
dings are more likely to encode all variants of a
word’s morphology closer in the embedded space
(Bojanowski et al., 2017). We use n-char fastext
embeddings trained on Twitter corpus of 400 Mil-
lion tweets (Godin, 2019). For shallow models, we
apply grid-search algorithm using a dev set on all
shallow classifiers (Pedregosa et al., 2011). For
all the deep-neural networks, we use the learning
rate of 10−3 with 16 as batch size. We train each
network for 10 epochs with early stopping on dev
set accuracy and for 4 patience level. In the case of
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Distilbert, we use BERT-base tokenizer and corre-
sponding contextual embeddings for tokenization
and feature extraction respectively. We use default
hyperparameter settings described in the original
Distilbert implementation5

6 Results

We analyze model vulnerability by looking at the
decline in relative performance when they are
tested on obfuscated posts. Since we use unbal-
anced datasets, we estimate the performance using
F1 Macro score evaluate on hate-labels.

Target Selection Table 5 shows relative change
in F1(Hate) averaged over obfuscation strategies
for all systems. We use the broadest as well as the
most specific target selections for obfuscations. As
expected, model performance is worst when All
tokens are obfuscated in the test samples. Since
this is an unrealistic strategy, we do not consider
this effect as real vulnerability. On the other end
of the spectrum, random target selection (Random
Content and Random Any) has little effect. It be-
comes clear that the model are sensitive to specific
and meaningful tokens.

Dict Fixed accommodates meaningful lexicons
towards hatred and therefore makes systems rela-
tively more vulnerable to it. The T2 dataset is an
exception, as it has relatively fewer swear words
and hence less number of target tokens are selected.
It also indicate that reliance on fixed set of tokens
may not be the best solution to generate the obfus-
cation examples.

An important finding is that a model-dependent
dictionary (Dict Whitebox) has a large impact on
model susceptibility, as does Dict Domain. The
comparable performance indicate towards the sim-
ilar ranking order of tokens in both of the dictio-
naries. To estimate the similarity, we calculate the
Spearmanr Coefficient (Schober et al., 2018) and
find it as 0.421 with p < 0.005 which is a moderate
correlation. This shows the promising future di-
rection for conducting annotation studies on larger
datasets to compile a better manual preferences
based dictionary.

Obfuscation Strategies Table 6 shows the aver-
age relative change in F1 (Hate) for all our obfus-
cation strategies, where higher numbers mean that
systems are more vulnerable against this strategy.

5https://huggingface.co/docs/
transformers/model_doc/distilbert

We find that the type of preprocessing might play
an important role as e.g. camelcasing has almost no
effect because lowercasing is performed during pre-
processing. In general, models are more vulnerable
to strategies that insert characters in a token (like
Kebab or Spacing), than to strategies that remove
characters (like Char Drop or Vowel Drop). This
could be linked to the modeling of subwords, but
more research is needed in that direction. Strate-
gies that replace characters sometimes have limited
applicability, e.g. Mathspeak can only be applied
for certain characters limiting its effect.

Distilbert To perform deep analysis, we visual-
ize the fine-grained results for our best performing
model Distilbert (Figure 2 and 3) on T1 dataset.
In most cases, we find the model performance in
accordance with numbers mention in Table 5 and
6. As expected, the effect of Random Content is
more prominent compared to Random Any which
validate the advantages of using limited POS tags.
Multiple edit operations make system more vul-
nerable to Vowel Drop than Char Flip and Char
Drop (need only single edit). We also note that for
this specific classifier (in contrast to the averaged
results discussed above) the Phonetic method is
even better than Kebab and Spacing. Please refer
Appendix A for fine-grained results of Distilbert
evaluated on other datasets.

Other Paradigms Other than Distilbert, we have
evaluated the vulnerability on shallow classifier
such as SVM, LogReg, AdaBoost, Gradient Boost-
ing and Random Forest as well as on Deep Net-
works namely LSTM, BILSTM, CNN with atte-
nion networks, also on CNN-LSTM. We found
the order of model’s vulnerabilities with respect
to obfuscation targets are consistent with distilbert
which can be interpreted by Tables 5. Table 7 in
Appendix B illustrates the performance drop for
each system across T1 dataset.

7 Related Work

Although most of the previous studies raise concern
about model robustness against obfuscation attacks,
the real vulnerability is understudied. Among sim-
ple obfuscation strategies, studies (Gröndahl et al.,
2018; Röttger et al., 2021; Ebrahimi et al., 2018;
Szegedy et al., 2013) introduce syntactic perturba-
tions to validate the robustness of hate detection
models. We find overlapping of some of the obfus-
cation strategies discussed in this paper. Kirk et al.
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Figure 2: Distilbert’s F1 (Hate label) performance on T1 dataset before and after obfuscation on all obfuscation
strategies for all target selections. Except Camel Case, differences are found to be statistically significant based on
McNemar-Test after Bonferroni correction p < 0.05.

Figure 3: Distilbert’s performance decline on T1 dataset based on differences in the True Positives (Hate label)
before and after obfuscation on all obfuscation strategies for all target selections.
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Datasets
Target T1 T2 TF G

All .16 .35 .26 .28

Dict Domain .13 - - -
Dict Whitebox .13 .13 .16 .10
Dict Fixed .11 .01 .06 .11
Random Content .05 .06 .02 .08
Random Any .03 .05 .02 .07

Table 5: Relative change in F1 (Hate) for different target
selection strategies. Results are averaged over obfusca-
tion strategies and detection systems.

Datasets
Strategy T1 T2 TF G

CamelCase .01 .02 .03 .04
Char Drop .12 .11 .09 .13
Char Flip .09 .11 .13 .13
Diacritics .12 .11 .14 .14
Kebab .17 .25 .13 .19
Leetspeak .12 .11 .06 .11
Masking .12 .12 .13 .14
Mathspeak .07 .03 .05 .07
Phonetic .13 .13 .14 .13
Snake .12 .12 .14 .14
Spacing .16 .21 .10 .17
Vowel Drop .12 .10 .10 .14

Table 6: Relative change in F1 (Hate) for different ob-
fuscation strategies. Results are averaged over target
selections and detection systems.

(2022) proposes test-suite contained emoji-based
hateful statements and find high vulnerability of
text based models. The study also proposes adver-
sarial examples to strengthen the model robustness.
Complex obfuscation include VIPER (Eger, 2015)
which is a probabilistic visual perturber that keep
the token recognizable. Target selection has been
studied in both model dependent and independent
settings. Model dependent targets are either se-
lected by looking at model architecture and its pa-
rameters (Goodfellow et al., 2014; Ebrahimi et al.,
2018) or solely depend upon model output (Naro-
dytska and Kasiviswanathan, 2017; Papernot et al.,
2016; Liu et al., 2017). Among model indepen-
dent targets, studies consider all the tokens in the
message (Gröndahl et al., 2018; Jones et al., 2020;
Eger et al., 2019). However, in real time settings,
this type of target selection is not observed. In our
work, we squeeze target selection to maximum of
single token and perform an annotation study, that
estimate real vulnerability of the models.

8 Conclusions

Previous work, simulating the obfuscation behav-
ior of haters in a simplified way, is likely to mis-
analyze the real vulnerability of hate speech de-
tection systems to obfuscation. We have shown
that obfuscating all words in a post is a useful
lower bound, but a very unrealistic strategy (as
the communicative value of the message breaks
down). Note that in this work, we deliberately
limited ourselves to quite simple lexical modifi-
cations. However, detection systems still show a
surprising vulnerability against these simple strate-
gies. While it might be possible (and fairly easy)
to shield a system against particularly known ob-
fuscation strategies (e.g. by detecting K-e-b-a-b or
S_n_a_k_e obfuscation with a regular expression),
we need to aim for systems that are also robust
against unseen strategies.

As the user study conducted in this paper shows,
people have an intuitive understanding of which
words are problematic. By obfuscating a single
word, someone trying to obfuscate their message
can impact the system performance on the same
scale as when using a whitebox attack (that has the
‘unfair’ advantage of having access to the internal
workings of the system). We also show that experi-
ments relying on a fixed dictionary of problematic
words for obfuscation are likely underestimating
the impact of obfuscation on hate speech detection
systems.
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A Fine-Grained Results

Figure 4, 5 and 6 illustrates fine-grained results
for Distilbert evaluated on T2, G and TF datasets.
On all datasets, models are highly susceptible to
Dict Whitebox which is considered to be expected
behavior. We find large influence of static dictionar-
ies (Dict Fixed) on G and TF datasets because of
the availability of larger amount of obscene tokens
which make more target selection. Also Spacing
and Kebab are most sensitive obfuscation strate-
gies.

B System Performance on T1 Dataset

Figure 7 illustrating the performance drop for each
hate speech detection systems on applying obfus-
cation attacks across the targets. We find the con-
sistency in the order of vulnerabilities. We also
find that the drop is proportional to model’s perfor-
mance.
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Figure 4: Distilbert’s F1 (Hate label) performance on T2 dataset.

Figure 5: Distilbert’s F1 (Hate label) performance on G dataset.
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Figure 6: Distilbert’s F1 (Hate label) performance on TF dataset.

Hate Detection Systems
Target Distilbert BILSTM CNN-ATT CNN-LSTM LSTM AdaBoost GradB LogReg RF SVM

All .34 .21 .07 .21 .20 .08 .18 .13 .10 .25

Dict Domain .27 .15 .05 .18 .17 .07 .13 .11 .09 .18
Dict Whitebox .29 .17 .05 .18 .18 .07 .12 .10 .08 .21
Dict Fixed .17 .14 .05 .14 .12 .07 .10 .11 .09 .17
Random Content .06 .06 .03 .07 .04 .03 .05 .05 .04 .08
Random Any .04 .05 .03 .04 .03 .02 .04 .03 .03 .07

Table 7: Relative change in F1 (Hate) performance for each system estimated on the T1 dataset for different
obfuscation strategies. Results are averaged over target selections. GradB, LogReg and RF is abbreviated for
Gradient Boosting, Logistic Regression and Random Forest respectively.
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