@inproceedings{wang-etal-2022-huawei,
title = "Huawei {B}abel{T}ar {NMT} at {WMT}22 Biomedical Translation Task: How We Further Improve Domain-specific {NMT}",
author = "Wang, Weixuan and
Meng, Xupeng and
Yan, Suqing and
Tian, Ye and
Peng, Wei",
editor = {Koehn, Philipp and
Barrault, Lo{\"i}c and
Bojar, Ond{\v{r}}ej and
Bougares, Fethi and
Chatterjee, Rajen and
Costa-juss{\`a}, Marta R. and
Federmann, Christian and
Fishel, Mark and
Fraser, Alexander and
Freitag, Markus and
Graham, Yvette and
Grundkiewicz, Roman and
Guzman, Paco and
Haddow, Barry and
Huck, Matthias and
Jimeno Yepes, Antonio and
Kocmi, Tom and
Martins, Andr{\'e} and
Morishita, Makoto and
Monz, Christof and
Nagata, Masaaki and
Nakazawa, Toshiaki and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Popel, Martin and
Turchi, Marco and
Zampieri, Marcos},
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/add-emnlp-2024-awards/2022.wmt-1.87/",
pages = "930--935",
abstract = "This paper describes Huawei Artificial Intelligence Application Research Center`s neural machine translation system ({\textquotedblleft}BabelTar{\textquotedblright}). Our submission to the WMT22 biomedical translation shared task covers language directions between English and the other seven languages (French, German, Italian, Spanish, Portuguese, Russian, and Chinese). During the past four years, our participation in this domain-specific track has witnessed a paradigm shift of methodology from a purely data-driven focus to embracing diversified techniques, including pre-trained multilingual NMT models, homograph disambiguation, ensemble learning, and preprocessing methods. We illustrate practical insights and measured performance improvements relating to how we further improve our domain-specific NMT system."
}