
Proceedings of the Seventh Conference on Machine Translation (WMT), pages 1187 - 1191
December 7-8, 2022 ©2022 Association for Computational Linguistics

IIGROUP Submissions for WMT22 Word-Level AutoCompletion Task

Cheng Yang Siheng Li Chufan Shi Yujiu Yang
Tsinghua Shenzhen International Graduate School, Tsinghua University
{yangc21,lisiheng21,scf22}@mails.tsinghua.edu.cn

yang.yujiu@sz.tsinghua.edu.cn

Abstract

This paper presents IIGroup’s submission to the
WMT22 Word-Level AutoCompletion(WLAC)
Shared Task in four language directions. We
propose to use a Generate-then-Rerank frame-
work to solve this task. More specifically, the
generator is used to generate candidate words
and recall as many positive candidates as pos-
sible. To facilitate the training process of the
generator, we propose a span-level mask predic-
tion task. Once we get the candidate words, we
take the top-K candidates and feed them into
the reranker. The reranker is used to select the
most confident candidate. The experimental
results in four language directions demonstrate
the effectiveness of our systems. Our systems
achieve competitive performance ranking 1st in
English to Chinese subtask and 2nd in Chinese
to English subtask.

1 Introduction

Recent advances in neural machine translation
(Bahdanau et al., 2015; Vaswani et al., 2017) al-
low us to generate high-quality translation results.
However, as it’s pointed out by Li et al. (2021) that
in some scenarios(e.g., legal instruments), the re-
sults of machine translation can’t directly replace
human translations due to their imperfections(e.g.,
terminology translation error). Therefore, more
and more researchers pay attention to Computer-
aided translation(CAT)(Barrachina et al., 2009;
Santy et al., 2019; Huang et al., 2021; Xiao et al.,
2022), which focuses on leveraging the advantages
of NMT systems to increase the effectiveness and
efficiency of the human translation process.

To further promote the development of CAT,
WMT22 proposes a novel task —— Word-Level
AutoCompletion(WLAC). In the Word-Level Auto-
Completion task, given a source sentence x, target
context and human-typed characters t, an ideal sys-
tem is expected to be able to predict the target word
w that should be placed in the target context.

We participate in the WMT22 shared Word-
Level AutoCompletion task in four language di-
rections: Chinese ⇒ English, English ⇒ Chinese,
German ⇒ English and English ⇒ German and
submit a system for each language direction.

We develop a Generate-then-Rerank framework-
based system for each language direction. Based
on the vanilla Transformer architecture, we adopt
a bidirectional decoder, which can predict the cur-
rent target word by paying attention to the source
sentence and both the left-side and right-side target
context.

The paper is organized as follows, section 2 gives
the overview of the data used in the shared task and
preprocessing operations for the data, while sec-
tion 3 describes our training techniques, including
model architecture, span-level mask prediction, etc.
Section 4 presents our experimental results. Finally,
our conclusions are summarized in Section 5.

2 Data

In this section, we first introduce the datasets used
to train our systems, then we introduce how to
prepare the simulated training data for the WLAC
shard task and describe the vocabulary for each
language direction.

2.1 Datasets

As the WLAC shared task is a data-constrained
task, we can only use the parallel corpora provided
by the WLAC organizers for all four language di-
rections. Specifically, we use UN Parallel Corpus
V1.01 (WMT 2017) for Chinese ⇒ English and
English ⇒ Chinese. For German ⇒ English and
English ⇒ German, we use the WMT 14 dataset
pre-processed by Stanford NLP Group2. Details
of the training resources provided are shown in
Table 1.

1https://conferences.unite.un.org/
uncorpus

2https://nlp.stanford.edu/projects/nmt

1187

https://conferences.unite.un.org/uncorpus
https://conferences.unite.un.org/uncorpus
https://nlp.stanford.edu/projects/nmt

Zh-En De-En
Train Set 10M 4.5M

Validation Set 3k 3k

Table 1: The detailed statistics of training and validation
data used in our system.

2.2 Simulated Training Data

Since the WLAC shared task only provides raw par-
allel corpora and does not provide supervised data,
which complies with the WLAC shared task setting,
we need to automatically construct supervised data
from the raw parallel corpora.

Specifically, given a raw parallel sentence pair
(x,y), where x = (x1, ..., xm) is the source sen-
tence, y = (y1, ..., yn) is the reference target sen-
tence, we would like to construct a target word w
and its corresponding target context c = (cl, cr)
and human-typed characters t, where the transla-
tion pieces cl and cr are on the left and right side
of the target word w.

According to Li et al. (2021), we first randomly
sample a target word w = yt, and then we sample
four types of context types:

• Zero-context: both cl and cr are empty;

• Prefix: randomly sample a translation piece
cl = yi:j from y, where i < j < t. The cr is
empty.

• Suffix: randomly sample a translation piece
cr = yi:j from y, where t < i < j. The cl is
empty.

• Bi-context: sample cl as in prefix, and sample
cr as in suffix.

Last but not least, we need to generate human-
typed characters t for the target word w, we adopt a
heuristic method - we randomly sample a position
i in the target word w, where 0 < i < |w|, and
simulate human-typed characters t = w1:i. For
languages like Chinese, the human input is the
phonetic symbols of the word, we use pypinyin3 to
implement this conversion. So far, we get the tuple
(x, c, t, w), which can be viewed as a simulated
training example for the WLAC shared task.

3https://github.com/mozillazg/
python-pinyin

Zh⇒En En⇒Zh De⇒En En⇒De
source 60k 50k 50k 50k
target 50k 60k 50k 50k

Table 2: The vocabulary size of different language di-
rections.

2.3 Vocabulary
Considering that WLAC is a word-level task, we
don’t use tools to do any subword segmentation.
We directly use Moses scripts4 to tokenize English
and German sentences, and jieba5 for Chinese sen-
tences. The vocabulary size for each language di-
rection is shown in Table 2.

3 Word-Level AutoCompletion Systems

In this section, we mainly introduce the Generate-
then-Rerank framework. Both the generator and
the reranker’s architecture are based on Trans-
former(Vaswani et al., 2017) with the modification
that the decoder is bi-directional to leverage more
context information. It is important to note that
we borrow the idea from Li et al. (2021) that we
view WLAC as a word prediction task and only use
human-typed characters t as hard constraints.

3.1 Model Architecture: Transformer
The vanilla Transformer (Vaswani et al., 2017)
adopts a sequence-to-sequence architecture con-
sisting of an encoder and a decoder. Specifically,
the encoder is a stack of L encoder blocks and each
block consists of a multi-head self-attention mod-
ule and a feed-forward network (FFN). The decoder
is also a stack of L decoder blocks, the main differ-
ences between the Transformer encoder and Trans-
former decoder are mainly reflected in two aspects:
First, in each decoder block, there is an additional
cross-attention module between the multi-head self-
attention module and the feed-forward network.
Second, the multi-head self-attention modules in
the decoder are uni-directional while they are bi-
directional in the encoder.

In the neural machine translation task setting,
given a source sentence x and a target sentence y,
the decoder generates y as:

P (y|x; θ) =
|y|∏

t=1

P (yt|y<t,x; θ) (1)

4https://github.com/moses-smt/
mosesdecoder

5https://github.com/fxsjy/jieba

1188

https://github.com/mozillazg/python-pinyin
https://github.com/mozillazg/python-pinyin
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/fxsjy/jieba

Thus, the Transformer model is typically trained
by minimizing the cross entropy:

LNMT = −
|y|∑

t=1

logP (yt|y<t,x; θ) (2)

Since Transformer is designed for auto-
regressive generation tasks, we cannot directly
adopt it to the WLAC task, which is essentially
a natural language understanding task. Inspired
by the successful practice of Conditional Masked
Language Modeling (Ghazvininejad et al., 2019)
in non-autoregressive machine translation, we take
the same idea to train our model for the WLAC
shared task.

Bi-directional Decoder Our decoder’s architec-
ture is roughly the same as the standard Trans-
former decoder except that the multi-head self-
attention sub-layer. The standard Transformer de-
coder can only attend the left-side target context,
while in our model, it can attend to all target words
and make use of both left-side and right-side con-
text information to better predict the <mask> to-
ken.

3.2 Generator

Span-Level Mask Prediction The primitive ob-
ject function for a simulated training example in
Generator is as follows:

LG = − logP (w|x, c; θG) (3)

In our preliminary experiments, we find that it is
hard to train the generator because, in every mini-
batch, a simulated training example provides only
one training signal, which makes the model easy to
overfit. The importance of the density of training
signals has been discussed in the Pretrained Lan-
guage Model(Clark et al., 2020). To this end, we
adopt an efficient sampling approach —— Span-
Level Mask Prediction. As described in section 2.2,
once we get the tuple (x, c), we use it to predict all
the missing words in the masked span between cl
and cr. In the Pretrained Language Model, Joshi
et al. (2020) has adopted the same idea as in our
work. But one major difference is that, unlike Joshi
et al. (2020), we have to set the position id of the
masked word to be the same; otherwise, there will
be a large gap between the training stage and the
inference stage.

3.3 Reranker

So far, we have modeled the WLAC task as a clas-
sification task, that is, an extreme classification
task. Inspired by recent works to introduce label
knowledge to enhance text representation (Yang
et al., 2021; Ma et al., 2022), we propose to use a
generator-reranker framework to solve the WLAC
task. We use the generator to recall positive and
negative labels and use a reranker to distinguish
positive labels from these labels. Specifically, we
use the same Transformer architecture as the gener-
ator. But the reranker’s input and objective function
are different from the generator.

Input We obtain top-K labels W =
{w1, w2, ..., wK} through ranking the scores
generated by the generator. Then, for each
candidate label wi in W , we replace the <mask>
token with wi. So the input tuple becomes
(x, c, wi). And the multi-class classification
head of the original decoder becomes a binary
classification head, which is used to measure
whether the candidate label wi matches the source
sentence and target context.

Objective Function The objective function is as
follows.

LR =

{
− logP (wi,x, c; θR), if wi = w

−(1− logP (wi,x, c; θR)), otherwise.
(4)

3.4 Model Configuration

We implement our models with Fairseq toolkit(Ott
et al., 2019)6. Our models follow the Transformer-
Base architecture(Vaswani et al., 2017), the key
model architecture configurations and training con-
figurations are listed in Table 4 and Table 5. Each
model is trained on 8 NVIDIA Tesla V100 GPUs,
each of which has 32GB memory.

4 Experimental Results

We report experimental results in four language di-
rections: Chinese ⇒ English, English ⇒ Chinese,
German ⇒ English and English ⇒ German. Ta-
ble 3 shows the main experimental results on the
official test sets with automatic accuracy evaluation
and human accuracy evaluation.

6https://github.com/facebookresearch/
fairseq

1189

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq

Systems
Zh⇒En En⇒Zh De⇒En En⇒De

Auto Human Auto Human Auto Human Auto Human
1 Generator 54.05 85.00 53.98 83.25 57.27 78.75 41.82 55.50
2 Reranker 51.11 83.75 48.90 77.50 54.32 76.25 40.69 53.50

Table 3: The main results of different systems in four language directions. The results are the averaged automatic
accuracy and human accuracy on four types of translation context (i.e., zero context, prefix, suffix, and bi-context).

Configuration Name Configuration Value
encoder layers 6
decoder layers 6
attention heads 8
word embedding dim 512
FFN embedding dim 2048
hidden dim 512
dropout 0.1
attention dropout 0.0
activation droupout 0.0
Pre-LN False
share decoder input
output embed

True

Table 4: The exact specifications of the Transformer we
adopt.

The performance of the generator is as expected,
and as demonstrated in Li et al. (2021), without
using the bi-directional decoder, the generator per-
forms relatively poorly. Additionally, we conduct
an ablation study on Chinese ⇒ English subtask
to demonstrate the effectiveness of the span-level
mask prediction, the model without leveraging
the span-level mask prediction strategy performs
poorly, with a drop of -10.1 in accuracy on the
validation set.

However, the performance of the reranker is
not as expected. We conjecture that this is due
to the insufficiency of the training procedure of the
reranker. Initializing reranker’s weights with gen-
erator’s weights or with PLM’s weight will boost
the performance of reranker, we leave this as future
work.

5 Conclusion

This paper describes the IIGROUP’s systems sub-
mitted to the Word-Level AutoCompletion task at
WMT22. We adopt a Generate-then-Rerank frame-
work. The experimental results demonstrate the
effectiveness of the generator.

However, due to the lack of computing power
and time, the results of our experiments don’t show

Configuration Name Configuration Value
number of training steps 10000
update freq 1
learning rate scheduler inverse sqrt
warmup updates 4000
warmup init learning rate 1e-7
learning rate (generator) 5e-3
learning rate (reranker) 1e-3
max tokens per batch 32k
optimizer Adam

Table 5: Training configuration for our generator model
and reranker model.

the effectiveness of our reranker. We discuss this
issue in section 4 and we will try to solve this in
future work.

References

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Sergio Barrachina, Oliver Bender, Francisco Casacu-
berta, Jorge Civera, Elsa Cubel, Shahram Khadivi,
Antonio Lagarda, Hermann Ney, Jesús Tomás, En-
rique Vidal, et al. 2009. Statistical approaches to
computer-assisted translation. Computational Lin-
guistics, 35(1):3–28.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6112–6121.

Guoping Huang, Lemao Liu, Xing Wang, Longyue
Wang, Huayang Li, Zhaopeng Tu, Chengyan Huang,

1190

and Shuming Shi. 2021. Transmart: A practical in-
teractive machine translation system. arXiv preprint
arXiv:2105.13072.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Huayang Li, Lemao Liu, Guoping Huang, and Shuming
Shi. 2021. Gwlan: General word-level autocomple-
tion for computer-aided translation. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4792–4802.

Jie Ma, Miguel Ballesteros, Srikanth Doss, Rishita
Anubhai, Sunil Mallya, Yaser Al-Onaizan, and Dan
Roth. 2022. Label semantics for few shot named
entity recognition. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 1956–
1971.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53.

Sebastin Santy, Sandipan Dandapat, Monojit Choud-
hury, and Kalika Bali. 2019. Inmt: Interactive neural
machine translation prediction. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
103–108.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yanling Xiao, Lemao Liu, Guoping Huang, Qu Cui,
Shujian Huang, Shuming Shi, and Jiajun Chen. 2022.
Bitiimt: A bilingual text-infilling method for inter-
active machine translation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1958–1969.

Pan Yang, Xin Cong, Zhenyu Sun, and Xingwu Liu.
2021. Enhanced language representation with label
knowledge for span extraction. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4623–4635.

1191

