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Abstract

In this paper, we describe our submission to
the WMT-2022: Large-Scale Machine Transla-
tion Evaluation for African Languages under
the Constrained Translation track. We intro-
duce DENTRA, a novel pre-training strategy
for a multilingual sequence-to-sequence trans-
former model. DENTRA pre-training combines
denoising and translation objectives to incor-
porate both monolingual and bitext corpora in
24 African, English, and French languages. To
evaluate the quality of DENTRA, we fine-tuned
it with two multilingual machine translation
configurations, one-to-many and many-to-one.
In both pre-training and fine-tuning, we em-
ploy only the datasets provided by the organ-
isers. We compare DENTRA against a strong
baseline, M2M-100, in different African multi-
lingual machine translation scenarios and show
gains in 3 out of 4 subtasks.

1 Introduction

Despite the compelling performance of machine
translation (MT) in many European and Asian lan-
guages, their quality in African languages is rela-
tively low. This is primarily because there are ap-
proximately 2000 known languages in the African
continent, out of which very few languages have
any significant presence on the Web (Eberhard
et al., 2020; Emezue and Dossou, 2021; Adelani
et al., 2022a). As a result, many African languages
are not included in publicly available bitext re-
sources, which are typically created by employing
heuristics on large amounts of data crawled from
the Web (Tiedemann, 2012; El-Kishky et al., 2020;
Schwenk et al., 2021; Goyal et al., 2022).

To take a step towards addressing the under-
representation of African languages in MT, WMT-
2022 presented the Constrained Translation track
under Large-Scale Multilingual African Transla-
tion (Adelani et al., 2022b), which releases bitext
and monolingual corpora for 24 African languages,

and participants are only allowed to use the pro-
vided data. Our submission is to the aforemen-
tioned track.

Roughly 34% of the provided data is monolin-
gual, spread across 24 African languages pertain-
ing to this task. Since the volume of bitext data
provided is limited, our submission aims to lever-
age the monolingual data to improve the perfor-
mance of a multilingual machine translation model.
To leverage monolingual data in translation, pre-
training the model is an obvious choice.

There are several existing multilingual pre-
trained models such as mBART (Liu et al., 2020),
mT5 (Xue et al., 2021), byT5 (Xue et al., 2022),
mRASP (Pan et al., 2021), mRASP2 (Pan et al.,
2021), and M2M-1001 (Fan et al., 2021) that are
trained on monolingual data, bitext data, or both,
and have been demonstrated to improve transla-
tion performance for specific language pairs. But,
these models do not include many of the African
languages of interest. For example, the 50 lan-
guages covered by mBART50 include only two out
of the 24 African languages in the shared task while
M2M-100 includes 14. Moreover, all of these mul-
tilingual models rely on specially designated lan-
guage id tokens to translate between each language
pair. As a result, adding unseen languages requires
pre-training again. Adelani et al. (2022a) investi-
gated a way to leverage pre-trained models includ-
ing M2M-100, mT5, byT5, and mBART for the
translation of unseen languages. But the scarcity of
African language texts in the pre-training corpora
results in a marginal improvement in the transla-
tion quality of the fine-tuned model (Adelani et al.,
2022a). Among the pre-trained models, the authors
have noted that fine-tuning M2M-100 results in the
best translation performance for African languages.

1Although M2M-100 is trained for many-to-many transla-
tion tasks, it has been used as a pre-trained model by Adelani
et al. (2022a) for African MT. Therefore, we also consider it
as a pre-trained model in this work.
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ENCODER DECODER

<SWH> Alifikiria <MASK> urais mnamo 2016.  
<SWH> He considered running for president in 2016. 
<SWH> He <MASK> running president for in 2016.

<s>Alifikiria kugombea urais mnamo 2016. 
<s>Alifikiria kugombea urais mnamo 2016. 
<s>Alifikiria kugombea urais mnamo 2016.

Alifikiria kugombea urais mnamo 2016.<e> 
Alifikiria kugombea urais mnamo 2016.<e> 
Alifikiria kugombea urais mnamo 2016.<e>

<ENG> Dit is Martelly se vyfde CEP in vier jaar. 
<AFR> It <MASK> Martelly's fifth CEP in years four. 
<AFR> It is Martelly's fifth CEP in four years.

<s> It is Martelly's fifth CEP in four years. 
<s> Dit is Martelly se vyfde CEP in vier jaar. 
<s> Dit is Martelly se vyfde CEP in vier jaar.

It is Martelly's fifth CEP in four years. <e> 
Dit is Martelly se vyfde CEP in vier jaar. <e> 
Dit is Martelly se vyfde CEP in vier jaar. <e>

Monolingual
data (SWH)

Biitext data  
(AFR-ENG)

Denoise
Backtranslate (EN)
BT (EN) + Denoising

Translate
Denoise + Tranlsate

Tranlsate

TRANSFORMER SEQ2SEQ

<MASK> Masked span
blue text Shuffled words
Italic text Obtained from Translation Model
<XXX> Target language tag

Figure 1: Pre-training Overview

In its multilingual pre-training strategy, mBART
uses a denoising objective (Liu et al., 2020; Lewis
et al., 2020) on combined monolingual corpora of
several languages to train a Transformer sequence-
to-sequence model (Vaswani et al., 2017). This
strategy reduces the dependency on bitext by learn-
ing meaningful representations for multiple lan-
guages. The pre-trained model is fine-tuned for MT
using bitext data. While this methodology does re-
sult in improved MT performance, the pre-training
objective used does not induce the representation of
similar sentences across languages to align, since
it uses only monolingual data (Lin et al., 2020).

In contrast, mRASP2 combines the use of mono-
lingual and bitext corpora. Their pre-training
methodology is geared towards closing the repre-
sentation gap across languages, bringing words and
phrases with similar meanings across languages
closer in the feature space. This results in better
multilingual translation performance (Pan et al.,
2021). To induce cross-language representations,
mRASP2 uses word or phrase level dictionaries
to augment both monolingual and bitext data, by
replacing randomly chosen tokens in the source
sentence by its corresponding words in another lan-
guage. Since in this work we address primarily
low-resource or under-represented languages, sepa-
rate dictionaries are non-trivial to construct.

M2M-100 is a massively multilingual model
trained on heuristically mined massive bitext cor-
pora spanning 100 languages and 9,900 language
pairs (Fan et al., 2021). Fine-tuning M2M-100 with
bitext data from the shared task results in minimal
improvement over a multilingual model trained

from scratch (Section 6). We hypothesize that this
is due to M2M-100’s subword tokenizer. Since a
majority of African languages are written in the
Latin script, several subword units are common to
many languages. For example, using the M2M-100
tokenizer in the WMT dataset, about 96% of the
distinct subwords in African languages also appear
in English. Since English corpora dominate the
M2M-100 training dataset, the learnt representa-
tion of these common tokens are influenced majorly
by English, limiting the contribution of African lan-
guages.

To address all of the above, we propose DENTRA,
which uses a novel pre-training strategy and is
trained exclusively on languages from the shared
task using both monolingual and bitext data. In-
spired by mRASP2 (Pan et al., 2021), our pre-
training objective is also designed to explicitly
reduce the representation gap between different
languages. Figure 1 shows an overview of our pre-
training technique.

To measure the effect of pre-training, we fine-
tune the pre-trained model in one-to-many and
many-to-one configurations of multilingual MT .
In three out of four setups, average BLEU score
of fine-tuned DENTRA exceeds that of fine-tuned
M2M-100 by up to 1.56 points.

2 Definitions and Model Architecture

Task Description: The constrained translation
track under WMT-2022 (Adelani et al., 2022b)
consists of the following subtasks: English to
22 African languages (eng→{afs}), 22 African
languages to English ({afs}→eng), French to 4
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Monolingual data 
si 
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Translation 
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(a) Monolingual data
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tgt: tj
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Translation 

N(tj)            si

Translation 
si              tj

Translation 
tj              si

(b) Bitext data

Figure 2: Pre-training Data Preparation: Pre-training Objective for each example in the corpora are determined
using the above trees. Solid lines indicate that both paths are executed. Dotted lines from a node indicate that one of
its child nodes are selected at random, with the probability distribution along the edges.

African languages (fra→{afs}), 4 African lan-
guages to French ({afs}→fra) and 48 African to
African languages within geographical and cul-
tural clusters ({afs}→{afs}). In all tasks, training
datasets are from the shared task while the valida-
tion and the test sets are from FLORES 200 (Goyal
et al., 2022).
Multilingual Machine Translation (MMT): An
MMT employs a sequence-to-sequence model
to translate between arbitrarily many language
pairs (Firat et al., 2016; Aharoni et al., 2019).
We denote the set of languages in our corpora
as L = {l1, l2, . . . ln} and the bitext data as
D = {D(li, lj), li, lj ∈ L} where D(li, lj) =
{(si, tj)} is the parallel corpus for languages li
and lj . Monolingual data is denoted M =
{M(li), li ∈ L}, and si ∈ M(li) denotes an
example in the monolingual corpus for language
li. For training MMT on bitext data D, an arti-
ficial token indicating the target language is pre-
fixed to the source, so that (si, tj) ∈ D(li, lj) be-
comes (<J>si, tj) (Johnson et al., 2017). MMT
can be trained in three configurations: one-to-many
(1→M), many-to-one (M→1) and many-to-many
(M→M) (Tang et al., 2021).
Model Architecture: We use the Transformer big
architecture described in (Vaswani et al., 2017),
with 6 encoder and decoder layers, 16 attention
heads, and 1024 model dimension. We train our
models using FAIRSEQ (Ott et al., 2019) toolkit,
and other hyperparameter values listed in Appendix
A.1.

3 Methodology

Our overall methodology employs the pre-training
followed by fine-tuning pipeline used in prior work

in NMT. (Liu et al., 2020; Lin et al., 2020). We
present the pre-training strategy used in this work
in Section 3.1 and discuss the fine-tuning configu-
rations used in our submission in Section 3.2.

3.1 Pre-training

In our pre-training, we combine monolingual and
bitext data in the same corpus. The objective of pre-
training is to either denoise, or translate, or both.
For each individual example in the corpus, we ran-
domly select which of these objectives to apply. By
interleaving denoising and translation, our goal is
to drive the model towards learning cross-lingual
representations while at the same time learning ro-
bust semantic representations. The strong cross
lingual representations enable better few-shot and
zero-shot translation performance (Pan et al., 2021).
Figure 2 illustrates our pre-training methods for
both monolingual and bitext data. N(·) is the nois-
ing function which we describe in detail in Section
3.1.3, while Mj(·) denotes the translation function
using an MMT model for translation to language lj .
In the remainder of this section, we describe each
component of the pre-training individually.

3.1.1 Monolingual Data
Figure 2a shows the two ways in which we utilize
monolingual data in pre-training. Independently,
for each monolingual example si ∈ M(li) one of
denoising or translation is selected with probability
q and 1− q respectively.

If denoising is selected, we apply a denoising
objective similar to mBART (Liu et al., 2020) by
masking or shuffling randomly chosen spans. If
translation is selected, si is first translated to all
languages lj for which D(li, lj) ∈ D. The transla-
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tion is done by MMT models which are obtained
by training Transformer models from scratch on
D, described in Section 5.1. Lets Mj(si) = t′j
is the translation of si into language lj . For the
pair (si, t′j), either translation only, or denoising +
translation is selected with probabilities p and 1−p
respectively. If translation is chosen, si must be
reconstructed from t′j , following traditional back-
translation (Sennrich et al., 2016). If denoising
+ translation is selected, then si must be recon-
structed from the noised version N(t′j). In this
manner, the pre-training also incorporates back-
translation for utilizing monolingual data.

3.1.2 Bitext Data
Figure 2b shows the bitext data usage in pre-
training. Given a pair of sentences (si, tj), the
pre-training procedure treats si as source and tj as
target, and vice versa. Therefore, two pre-training
examples are generated for each example in the
bitext data. This is in contrast to pre-training with
monolingual data described above, where only one
pre-training example was generated per input exam-
ple. Having designated either si or tj as source, the
pre-training procedure follows a path similar to that
of monolingual pre-training with backtranslation.

3.1.3 Noising Function
The noising function N(·) largely follows the nois-
ing techniques used in Liu et al. (2020). Given an
input sentence s, N(s) randomly selects a noising
type and applies it on s.
Mask only: With probability pm, N(s) applies
span masking on s. It randomly samples spans of
tokens from s, with length of the span drawn from
a geometric distribution with parameter msl, and
clipped at 3. The fraction of tokens thus masked is
at most msr. Each masked span is either replaced
by a single <MASK> token, or deleted, or replaced by
randomly selected word in another language with
equal probabilities.
Shuffle only: With probability ps, N(s) applies
shuffling to s. An sr fraction of tokens are selected
at random from tokens in s, and permuted among
each other, leaving the unsampled tokens intact.
Mask and Shuffle: With probability pms, N(s)
applies both masking and shuffling to s. First,
masking is applied as described above. During the
shuffling step, <MASK> tokens are excluded from
the tokens to be sampled for shuffling.
None: With probability 1 − pm − ps − pms, no
noising is applied on the input.

3.1.4 Combining Datasets
We combine both D and M in pre-training. In or-
der to balance the training dataset across language
pairs, we apply temperature based sampling follow-
ing (Fan et al., 2021) with one major change. Since
we are operating in a data constrained setting, we
do not reduce the size of any dataset.

Let N(i,j) = |D(li, lj)| the size of the bi-
text D(li, lj), and ND =

∑
(i,j)N(i,j). Then

the scaled proportion of language pair (li, lj) is

α′
i,j =

α(i,j)∑
(i,j)

α(i,j)
where α(i,j) =

(
N(i,j)

ND

)α
.

The rescaled size of language pair (li, lj) is then
R(i,j) = max(N(i,j), α

′
(i,j)N(i,j))

We train the transformer network on the com-
bined dataset until convergence, and then select the
best checkpoints for further fine-tuning.

3.2 Fine-tuning
For fine-tuning our pre-trained models, we use bi-
text data D. Unlike pre-training, we don’t noise the
source side at all. We apply fine-tuning in 1→M
and M→1 settings. Following the pre-training
setup, we continue to prefix the tag for the target
language in the source side, and also rebalance the
datasets as in Section 3.1.4. The checkpoint with
best BLEU score on validation set is used for final
translations. After fine-tuning, we have the follow-
ing models. (i) eng→{afs}, (ii) {afs}→eng, (iii)
fra→{afs}, and (iv) {afs}→fra. For the remain-
ing pairs, i.e. between African languages, we use
DENTRA directly.

4 Datasets and Pre-processing

For all experiments, we employ the datasets pro-
vided by the organizers, which mainly consist of
datasets from Opus (Tiedemann, 2012), Mafand
(Adelani et al., 2022a) and Web crawled aligned
through LASER (Heffernan et al., 2022). It is
worth mentioning that, in all pre-training and fine-
tuning we only used a monolingual corpus of 26
languages and English and French-centric bitext.
We have not used any African to African bitext in
our experiments. Prior to using for pre-training
or fine-tuning, datasets were filtered, cleaned, and
preprocessed.

4.1 Data Filtering
Based on characteristics of the dataset and a few
observed issues, we employed several heuristics
to reject highly noisy examples from D and M.
Given an example (si, tj) ∈ D(li, lj), we reject
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it if (i) |si| < 3 or |tj | < 3, (ii) |si| > 1000 or
|tj | > 1000, (iii) a character other than . appears
at least 5 consecutive times in either si or tj , (iv)
a word other than . appears at least 3 consecutive
times in either si or tj , (v) si is identical to tj , (vi)
|si|/|tj | < 0.2 or > 5, (vii) langid of si or tj is not
the expected langid with a confidence of at least
80% (where langid is computed using fasttext2),
(viii) the fraction of characters not belonging in this
language are more than 50% 3. For monolinugal
data M, we apply rules corresponding to (i)-(iv) ,
and (vii)-(viii) above.

After filtering and pre-processing the size of the
datasets (combined by English centric, French cen-
tric, or monolingual) obtained are shown in Table
14. Full list is shown in Appendix A.2.

Dataset # Datasets Total Size Min Max ∆

eng-{afs} 22 109.36 0.21 32.01 21.32 %
fra-{afs} 4 13.40 0.22 11.51 3.96 %
Mono 26 34.17 0.0 12.73 0.58 %

Table 1: Data set sizes specified in Million sentence
pairs (or sentences). ∆ refers to the percentage of sen-
tence pairs (or sentences) rejected after filtering and
pre-processing

Param p q pm, ps, pms msl msr sr α

Value 0.25 0.66 0.25 0.15 0.2 0.05 0.7

Table 2: Hyper-parameter values used in our data prepa-
ration

5 Experimental Setup

Table 2 specifies the hyperparameters we have used
in pre-training (Section 3.1). We train the model
for 6 epochs and select the best checkpoint based
on pre-training task performance on a held out val-
idation set.

The best pre-training checkpoint was subse-
quently fine-tuned for various tasks where we con-
sider the concatenation of all FLORES 200 dev sets
for the relevant translation directions as validation
set. The FLORES dev sets have 997 examples for
all language pairs.

2https://fasttext.cc/docs/en/python-module.html
3Character sets for each language are built by manually

curating distinct characters obtained from D
4For the Kinyarwanda language, no monolingual data

was provided. We reused the Kinyarwanda side from the
Kinyarwanda-English bitext for this purpose. For English and
French, we randomly sampled 1 million sentences from the
combined English/French sides of the bitext datasets provided.

For evaluation, we use two test sets. The FLO-
RES devtest set (subsequently, we refer to it as
FLORES test set), which has 1012 examples for
all language pairs, and an in-domain test set, which
is randomly sampled from the provided bitext data
and has about 5000 examples from each language
pair. Unless otherwise specified, we report perfor-
mances on the FLORES test set.

We use tokenized BLEU from Moses5 to mea-
sure the performance of all translations. Prior to
computing BLEU we word tokenize all translations,
also using Moses.

5.1 Models
We prepared following baselines for the compari-
son of our pre-trained and fine-tuned models:
MMT6 is trained from scratch separately for four
tasks with their corresponding bitext: eng→{afs},
{afs}→eng, fra→{afs} and {afs}→fra. We evalu-
ate it in 1→M and M→1 setups.
M2M-100 is trained on many-to-many datasets of
100 languages. We use the trained version provided
by the authors (Fan et al., 2021) and evaluate it in
all setups, 1→M, M→1, and M→M. Note that
M2M-100 does not support all language pairs in
this task and thus, we report performance on only
the common language pairs. In particular, M2M-
100 includes 14/22 languages in eng↔{afs}, 3/4 in
fra↔{afs} and 22/48 in {afs}→{afs}. In all M2M-
100 experiments, we employ its 418M parameters
checkpoint.
M2M_FT employs the pre-trained checkpoint of
M2M-100 and fine-tunes it with bitext data. Similar
to Adelani et al. (2022a), unseen African languages
{kam, kin, luo, nya, orm, sna, tso, umb} are mapped
to {km , ht, lo, yi, fy, ba, kk, uz} respectively for fine-
tuning M2M-100. M2M_FT is used for evaluations
in 1→M and M→1 setups only.

The following are the models trained in this
work for demonstrating the importance of our pre-
training and fine-tuning strategies.
DENTRA is the pre-trained model described in Sec-
tion 3, which we train using (i) monolingual data
in 26 languages and (ii) bitext data for only En-
glish and French centric directions. We compare
DENTRA against the corresponding baselines in all
setups, 1→M, M→1, and M→M.
DENTRA_FT uses bitext data for English and
French centric directions to fine-tune the DENTRA

5https://github.com/moses-smt/mosesdecoder
6These models are also used for backtranslation described

in Section 3.1.1
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Figure 3: BLEU scores for M2M-100 and DENTRA (zero-shot) among African languages on the Flores 200 test set.
Dark colors represent DENTRA and light colors represent M2M-100.

Tasks M2M-100 DENTRA

eng→{afs} 4.51 9.13
fra→{afs} 4.74 9.48
{afs}→eng 9.13 22.63
{afs}→fra 8.21 15.28

Table 3: Average performance for common languages
of DENTRA and M2M-100 before fine-tuning

model. DENTRA_FT is trained and evaluated
against the baselines in only the 1→M and M→1
setups.

6 Comparisons with Baselines

6.1 Without Fine-tuning
In this section, we will show the advantage of
DENTRA over M2M-100 for the 26 languages in
the task without any fine-tuning on either models.
As DENTRA and M2M-100 both include bitext in
their training, we can directly use them for transla-
tion.

Table 3 shows the average performance of M2M-
100 and DENTRA for the 14 English and 3 French
centric tasks in M→1 and 1→M setups. In all four
tasks, DENTRA outperforms M2M-100 by signifi-
cant margins.

Furthermore, in Figure 3 we display the perfor-
mance of M2M-100 and DENTRA on {afs}→{afs}
tasks, i.e. translation between African languages.
Similar to M→1 and 1→M setup, we include only
the 22 common directions of DENTRA and M2M-
100 (Full performance list for DENTRA is provided
in Appendix A.3). Note this is the zero-shot set-
ting (Johnson et al., 2017) for both7. However,

7Our assumption is that M2M-100 is zero shot in these

in all translation directions, DENTRA outperforms
M2M-100 by large margins. These results shows
the advantage of pre-training with combined mono-
lingual and bitext data for only the desired set of
languages, over pre-training with a large number of
additional languages. This confirms our hypothesis
discussed in Section 1.

6.2 With Fine-tuning

We evaluate DENTRA after it is fine-tuned on the
four M→1 and 1→M tasks. Tables 4, 5, 6, and
7 show the BLEU scores for DENTRA_FT along
with all baselines. Following conclusions may be
drawn:

All model variants including DENTRA_FT,
M2M_FT and DENTRA are significantly better than
M2M-100 across all language pairs. The general
trend of performance comparison in best to worst
order is DENTRA_FT, M2M_FT, MMT, DENTRA,
M2M-100, except {afs}→fra where M2M_FT out-
performs DENTRA_FT.

Improvement of M2M_FT and DENTRA_FT
over MMT shows the advantage of fine-tuning
after pre-training in general. Moreover, since
DENTRA_FT typically outperforms M2M_FT also,
this demonstrates the advantage of including the
monolingual corpora and denoising objectives in
the pre-training phase.

Generally, it has been shown that combining low
resource and high resource languages in a single
translation model benefits the low resource lan-
guages. We also observe similar behavior as shown
by our MMT model. However, we find that extreme
multilingual models like M2M-100 must necessar-

settings.
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Model xxx → eng

afr amh ful hau ibo kam kin lug luo nso nya orm

MMT 54.59 22.47 5.51 25.85 19.67 8.38 22.9 15.77 16.58 30.78 21.21 10.61

M2M-100 43.48 6.64 1.98 6.4 5.62 - - 2.63 - 4.05 - -
M2M_FT 53.42 22.87 5.62 23.44 18.34 6.65 20.96 14.17 14.79 29.3 20.56 9.88

DENTRA 51.65 18.85 5.36 23.24 16.73 8.59 22.24 15.12 14.81 27.85 19.57 9.34
DENTRA_FT 54.46 23.7 5.78 26.64 20.05 9.26 22.85 16.25 16.89 31.53 21.8 10.64

sna som ssw swh tsn tso umb xho yor zul AVG MED

MMT 21.7 19.6 23.36 37.35 21.21 23.51 5.27 30.38 13.85 31.12 21.89 21.46

M2M-100 - 2.94 4.95 25.62 0.78 - - 10.35 1.93 10.4 9.13 5.28
M2M_FT 21.29 18.1 23.33 36.54 20.47 22.13 4.95 29.59 11.46 29.93 20.81 20.76

DENTRA 19.77 16.77 20.95 34.16 18.5 21.72 4.9 27.86 11.65 28.08 19.9 19.21
DENTRA_FT 22.53 19.66 23.73 38.77 21.47 23.71 5.32 31.01 13.72 32.41 22.37 22.16

Table 4: BLEU score on the Flores 200 test set, before and after fine-tuning for English centric MT. For each
subtask, the best model is bold

Model eng → xxx

afr amh ful hau ibo kam kin lug luo nso nya orm

MMT 40.65 9.12 0.66 22.64 15.41 3 14.52 6.04 6.49 23.71 13.82 2.1

M2M-100 26.99 0.51 0.25 2.46 2.53 - - 1.09 - 0.65 - -
M2M_FT 38.62 6.85 0.64 18.58 11.72 2.93 14.22 5.93 6.94 24.65 12.38 1.91

DENTRA 40.38 4.45 0.76 21.53 13.72 2.43 12.79 5.53 6.9 21.97 13.13 1.72
DENTRA_FT 40.95 8.42 0.64 22.6 15.69 2.68 14.54 5.97 7.29 24.55 14.14 2.06

sna som ssw swh tsn tso umb xho yor zul AVG MED

MMT 11.57 9.83 7.48 33.92 18.43 16.3 0.96 15.76 2.52 15.08 13.18 12.7

M2M-100 - 0.49 1.05 19.35 2.61 - - 2.03 1.07 2.12 4.51 1.56
M2M_FT 10.33 9.15 7.21 29.43 17.17 16.24 1.15 14.23 2.2 12.96 12.07 11.03

DENTRA 10.73 8.13 6.05 33.08 16.23 13.08 1 13.61 2.39 13.92 11.98 11.76
DENTRA_FT 11.68 9.79 7.42 34.69 18.45 16.24 1.16 15.76 2.41 15.32 13.29 12.91

Table 5: BLEU score on the Flores 200 test set, before and after fine-tuning for English centric MT. For each
subtask, the best model is bold

Model xxx → fra

lin kin swh wol AVG MED

MMT 15.46 17.61 27.29 9.69 17.51 16.54

M2M-100 2.78 - 19.79 2.07 8.21 2.78
M2M_FT 17.02 18.4 28.22 11.44 18.77 17.71

DENTRA 14.38 16.13 22.14 9.33 15.5 15.25
DENTRA_FT 16.27 18.28 28.64 11.28 18.62 17.27

Table 6: BLEU score on the Flores 200 test set, before
and after fine-tuning for French centric MT. For each
subtask, the best model is bold

ily have larger capacity to represent all languages
in its corpora. In particular, if the languages of
interest are restricted, it is better to also restrict
pre-training to these languages only (Adelani et al.,
2022a).

Finally, we note that the performance of transla-
tion models where African languages are the target

Model fra → xxx

lin kin swh wol AVG MED

MMT 13.4 10.08 21.45 4.56 12.37 11.74

M2M-100 0.93 - 12.88 0.42 4.74 0.93
M2M_FT 14.32 10.67 21.1 4.54 12.66 12.49

DENTRA 4.97 9.76 21.02 2.46 9.55 7.365
DENTRA_FT 14.4 10.85 22.09 5.09 13.11 12.62

Table 7: BLEU score on the Flores 200 test set, before
and after fine-tuning for French centric MT. For each
subtask, the best model is bold

language are generally lower than those where En-
glish or French are the target language. This is
expected, since the volume of data where each indi-
vidual African language appears on the target side
is much lower than English or French.
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Figure 4: BLEU score comparison of the DENTRA_FT model for FLORES 200 and in-domain test set (isolated
from bitext training data D for English/ French to African languages.

7 Analysis

In this section, we conduct a set of analytical exper-
iments to better understand the datasets and what
contributes to performance gains.

Figure 4 shows the BLEU scores of the
DENTRA_FT model on {eng,fra}→{afs} transla-
tion directions, on the both FLORES 200 test set
and the in-domain test set sampled from the bitext
data prior to training. The language pairs on the
horizontal axis are ordered by the dataset size (left
to right in increasing order) independently for En-
glish and French centric directions. For the English
centric translation (eng→{afs}), the BLEU scores
on both test sets have little correlation with the
dataset size, indicating noisy data. Some languages,
such as umb, fuv, kam, and yor have stark differ-
ence between FLORES and in-domain test sets,
indicating that these datasets may have predictable
patterns that have no relevance to the translation of
these languages. This is further exemplified by the
comparison to tso, which has a smaller dataset yet
exhibits better generalization.

Further investigations reveal two primary prob-
lems with the bitext data. First, some of these
languages have several duplicates in the African
side of the data. For example, for Kamba-English
(kam-eng) dataset, the distinct number of Kamba
sentences is less than 5% of the total dataset size.
However, this is not consistent across all languages
exhibiting overfitting on the training data, as the
number of distinct Yoruba (yor) sentences in its
bitext is about 95% of the total dataset.

Second, the African side of many datasets con-
tain a large fraction of Indic languages from the

Social Media domain. Strict heuristics designed
based on manual inspection by the authors rejected
about 637, 000 examples as being clearly in the
Hindi language. Clearly, neither langid nor the
LASER encoder (Schwenk and Douze, 2017) are
able to reliably detect and align data for these lan-
guages. We postulate that low resource languages
form a vicious cycle for MT systems trained on bi-
text data created using multilingual encoders. This
opens avenues for future work to explore bitext
creation for low resource languages.

8 Conclusion

DENTRA has shown significant performance gains
in Multilingual Machine Translation for African
languages as demonstrated in this paper. DENTRA

integrates denoising, backtranslation, and trans-
lation into the same pre-training setup, and has
helped to improve MT performance after fine-
tuning for both English and French centric transla-
tion. We have shown that massively multilingual
models like M2M-100 may not be a good choice
for fine-tuning when the languages to be translated
from/to are restricted to a small set. Finally, we
have studied the variation in performance and re-
ported issues seen in heuristically created bitext
data. While this is a known issue, we show this
problem to be exacerbated for low-resource lan-
guages that share the alphabet with high-resource
ones.
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A Appendix

A.1 Model Hyper-parameters
For pre-training and fine-tuning the DENTRA, we
base our experiments on FAIRSEQ toolkit. Table
8 presents the hyper-parameter values used in all
experiments. For fine-tuning, we employ the best
checkpoint obtained from pre-training and continue
to train them without resetting the lr-scheduler.

A.2 Languages in the Dataset
Table 9 shows the languages used in our experi-
ments along with their bitext and monolingual data
sizes.

A.3 Cluster wise Performance
Table 10 shows the performance of DENTRA and
M2M-100 on the FLORES 200 test set for dif-
ferent African language pairs clustered geographi-
cally/culturally.

Params Values
optimizer adam

adam-betas ’(0.9, 0.98)’
clip-norm 0.0

lr 0.0005
lr-scheduler inverse_sqrt

warmup-updates 4000
warmup-init-lr 1e-07

dropout 0.3
criterion label_smoothed_cross_entropy

label-smoothing 0.1
max-tokens (batch size) 3584

num-updates (Pre-training) 1609115
num-updates (Fine-tuning) eng-{af} 548227
num-updates (Fine-tuning) fra-{af} 49600

Table 8: Model hyper-parameters and their values

Languages ISO Bitext Size Monolingual
Size

Rejected Bi-
text Size

Afrikaans afr 13.9 12.732 0.18
Amharic amh 1.02 0.006 0.11
Nigerian Ful-
fulde

fuv 1.3 0.255 0.15

Hausa hau 3.6 3.513 5.5
Igbo ibo 0.4 0.452 0.1
Kamba kam 1.58 0.01 0.08
Kinyarwanda kin 9.6 (eng) - 0.36 (eng)

1.2 (fra) - 0.15 (fra)
Luganda lug 3.39 0.11 0.11
Luo luo 2.6 0.035 0.16
Northern
Sotho

nso 2.9 0.018 0.18

Chichewa nya 1.7 0.261 0.14
Oromo orm 2.7 0.134 0.13
Swati ssw 8.6 0.257 0.02
Shona sna 1.25 0.007 0.3
Somali som 0.2 - 0.15
Swahili swh 31.7 (eng) 12.642 0.8 (eng)

11.4 (fra) - 0.3 (fra)
Tswana tsn 5.6 0.04 0.43
Xitsonga tso 0.6 0.037 0.05
Umbundu umb 0.2 0.043 0.1
Xhosa xho 9.3 0.308 19.78
Yoruba yor 1.6 0.51 0.1
Zulu zul 3.9 0.557 0.23
Lingala lin 0.3 0.042 0.06
Wolof wol 0.2 0.206 0.03
English eng - 1 0
French fra - 1 0

Table 9: Languages, their ISO codes used in the paper,
and their corresponding data sizes (in Million sentences)
.
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Cluster ID Task DENTRA M2M-100

A

xho→zul 4.54 1.7
zul→sna 2.71 -
sna→afr 10.65 -
afr→ssw 3.47 0.95
ssw→tsn 1.58 0.37
tsn→tso 2.28 -
tso→nso 3.8 -
nso→xho 1.69 0.96

B

swh→am 1.41 0.33
amh→swh 10.22 4.35
luo→orm 0.63 -
som→amh 0.46 0.26
orm→som 0.85 -
swh→luo 2.4 -
amh→luo 3.51 -
luo→som 2.37 -

C

hau→ibo 2.64 1.37
ibo→yor 0.92 0.72
yor→fuv 0.76 0.03
fuv→hau 1.58 0.71
ibo→hau 2.06 0.98
yor→ibo 1.55 0.86
fuv→yor 0.71 0.55
hau→fuv 1.49 0.06
wol→hau 2.11 -
hau→wol 1.57 -
fuv→wol 1.24 -
wol→fuv 1.22 -

D

kin→swh 3.42 -
lug→lin 1.87 -
nya→kin 2.22 -
swh→lug 1.73 0.55
lin→nya 2.44 -
lin→kin 2.45 -
kin→lug 1.96 -
nya→swh 3.08 -

E

amh→zul 4.27 0.75
yor→swh 5.21 1.1
swh→yor 0.95 0.72
zul→amh 2 0.5
kin→hau 2.53 -
hau→kin 2.06 -
nya→som 3.27 -
smo→nya 4.28 -
xho→lug 1.82 0.56
lug→xho 1.73 0.85
wol→swh 3.76 -
swh→wol 1.71 -

Table 10: BLEU scores on the FLORES 200 test set
for geographical/cultural clusters. A: South/South East
Africa, B: Horn of Africa, C: Nigerian, D: Central
African, E: Among the regions
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