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Abstract

Scholarly Argumentation Mining (SAM) has
recently gained attention due to its potential
to help scholars with the rapid growth of pub-
lished scientific literature. It comprises two
subtasks: argumentative discourse unit recog-
nition (ADUR) and argumentative relation ex-
traction (ARE), both of which are challeng-
ing since they require e.g. the integration of
domain knowledge, the detection of implicit
statements, and the disambiguation of argu-
ment structure (Al Khatib et al., 2021). While
previous work focused on dataset construction
and baseline methods for specific document
sections, such as abstract or results, full-text
scholarly argumentation mining has seen little
progress. In this work, we introduce a sequen-
tial pipeline model combining ADUR and ARE
for full-text SAM, and provide a first analy-
sis of the performance of pretrained language
models (PLMs) on both subtasks. We estab-
lish a new SotA for ADUR on the Sci-Arg cor-
pus, outperforming the previous best reported
result by a large margin (+7% F1). We also
present the first results for ARE, and thus for
the full AM pipeline, on this benchmark dataset.
Our detailed error analysis reveals that non-
contiguous ADUs as well as the interpretation
of discourse connectors pose major challenges
and that data annotation needs to be more con-
sistent.

1 Introduction

Argumentation Mining (AM) is concerned with
the detection of the argumentative structure of text
(Stede and Schneider, 2018). It is commonly or-
ganized into two subtasks: 1) Recognition of ar-
gumentative discourse units (ADUs), i.e. detecting
argumentative spans of text and classifying them
into types such as claim or premise, and 2) deter-
mining which ADUs have a relationship to each
other and of what kind, e.g. support or attack. Con-
sider the following example, where the premise P
supports the claim C:

:::::::::::
Dot-product

:::::::::
attention

:::
is

::::::
much

::::::
faster

::::
than

::::::::
additive

:::::::::
attentionC, since it can

be implemented using highly optimized
matrix multiplication codeP.1

Since the amount of published scientific liter-
ature is growing exponentially (Fortunato et al.,
2018), there is recently an increased interest in
scholarly argumentation mining (SAM). Under-
standing the argumentative structure is key, not just
to efficiently digest such work, but also to assess
its quality (Walton, 2001). Solving scholarly AM
is challenging, because it requires, among other
things, the use of domain knowledge, the detection
of implicit statements, and the disambiguation of
argument structure (Al Khatib et al., 2021). This
is even harder when handling full-text that is often
less concise and standardized, than, for example,
abstracts.

Previous work in SAM has focused on dataset
construction (Teufel and Moens, 1999; Lauscher
et al., 2018b), ADU recognition (Lauscher et al.,
2018a; Li et al., 2021), and the analysis of spe-
cific document sections, such as abstract or results
(Dasigi et al., 2017; Accuosto and Saggion, 2019;
Mayer et al., 2020). However, to get a thorough un-
derstanding of a scientific publication, all parts of
the document matter. Ideally, they back up the main
argumentation and usually contain details that are
relevant for the knowledgeable reader, thus, they
should not be neglected. However, since the task is
very complex, also for humans, there is not much
training data for full-text SAM available.

Pretrained Language Models (PLMs) such as
SciBERT (Beltagy et al., 2019) may help to address
the above challenges because they contain a lot of
linguistic and domain knowledge and have better
long-range capabilities, allowing for improved con-
textualisation, especially when training data is rare.
We hence propose a PLM based model for full-text

1replicated from Vaswani et al. (2017)
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Figure 1: Example with argumentative structure from the Sci-Arg dataset.

SAM. To summarize, our contributions in this work
are:

• We are the first to investigate PLMs for full-
text SAM, and to present a sequential pipeline
for both ADU recognition and argumentative
RE on full-text scientific publications (Sec-
tion 3).

• Our experimental results show that a
SciBERT-based ADU recognition model im-
proves over the state-of-the-art by +7% F1-
score. We present the first relation extraction
baseline for the Sci-Args corpus and achieve
strong 0.74 F1 (Section 5.1).

• Our detailed error analysis reveals open chal-
lenges and possible ways of improvements
(Section 5.2).

2 Preliminaries

We first define the two tasks of ADUR and ARE,
and discuss differences to the standard Information
Extraction (IE) tasks of Named Entity Recognition
(NER) and Relation Extraction (RE).

An Argumentative Discourse Unit (ADU) can
be defined as “span of text that plays a single role
for an argument being analyzed and is demarcated
by neighboring text spans that play a different role,
or none at all” (Stede and Schneider, 2018). It is
the smallest unit of argumentation, and may span
anything from an in-sentence clause up to multiple
full sentences. ADU recognition requires both de-
tecting argumentative spans, as well as classifying
them into predefined categories. Typically, this is
realised as sequence tagging task similar to NER,
where a sequence of tokens X = {t1, t2, ..., tN} is
assigned with a corresponding N -length sequence
of labels Y = {l1, l2, ..., lN} with li ∈ C where
C is the set of tags that result from converting the
ADU types into a tagging scheme like BIO2.2 In
scholarly AM, common ADU classes are (Own /
Background) Claim, and Evidence, Data, or War-
rant (Green, 2014; Lauscher et al., 2018b).

2BIO2: Begin, Inside, Outside of an entity

In contrast to NER, ADUs typically vary much
more in length than named entities. They are also
highly context dependent and often discontinuous.
ADUR is also related to discourse segmentation,
but depends more on broader context and seman-
tics instead of linguistic structure. Elementary Dis-
course Units (EDUs), the building blocks in the
context of Rethorical Structure Theory (Mann and
Thompson, 1988), are more fine-grained, of shorter
length and usually cover the complete text which
is less the case for argumentative units.

Argumentative Relation Extraction is usually de-
fined as classifying a pair of ADUs, head and tail,
as either an instance of one of the target types or the
artificial NO-RELATION type. In other words, the
task is to assign a label Y ∈ C ∪ {NO-RELATION}
to a given input X = {T, h, t}, where C is the set
of relation types, T is the text and h = (sh, eh, lh)
and t = (st, et, lt) describe the candidate head and
tail entities where s and e are the start and end in-
dices with respect to T and l is the entity type. Typ-
ical relation types for SAM are Supports, Mentions,
Attacks, Contradicts, and Contrasts (Lauscher et al.,
2018b; Accuosto and Saggion, 2019; Nicholson
et al., 2021).

ARE is very similar to standard RE, but SAM
relations are often marked by syntactic cues such
as connectors, e.g. “because”, “however”, or “but”,
whereas in common RE, content words like verbs
and nouns are typical relation triggers. This makes
ARE challenging because these connectors do not
always realise argumentative structure, but also
mark other aspects of discourse. Consider, for ex-
ample, the different meanings of “while” in the
following example:

1. While I love a romantic dinner, I also like fast
food.

2.
:::::
While I prepare dinner, I watch a movie.

Here, the “while” in sentence 1) has a contrastive
meaning, whereas sentence 2) denotes a temporal
aspect.
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(a) ADU Recognition. Tokens are embedded with a frozen
PLM, further contextualized with a trained LSTM followed
by a CRF to calculate the tag sequence.

supports
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ADU embeddings

SciBERT token embeddings

execution substantially ( 4.54ms )Furthermore
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(b) Argumentative RE. Tokens are embedded with a frozen
PLM, ADU tags and argument tags are embedded with simple
embedding matrices. Embeddings are concatenated, contex-
tualized with a LSTM and converted into a single vector that
gets classified by a single fully connected layer.

Figure 2: Model setup for (a) ADUR (top) and (b) ARE
(bottom).

3 Models

We propose a pipeline of two distinct models, one
for each subtask, that are described in the follow-
ing.

ADU Recognition (ADUR). The architecture of
the ADUR model is visualized in Figure 2a. We
first embed the token sequence with a frozen PLM
encoder. For sequences that exceed the maximum
input length of the embedding model, we process
the sequence piece-wise and concatenate the result
afterwards. The embedded tokens are then fed into
a BiLSTM (Schuster and Paliwal, Nov./1997). Fi-
nally, a Conditional Random Field (CRF) (Lafferty
et al., 2001) is used to obtain the label probabilities
for each token. We use a combination of a frozen
PLM with a trainable contextualization (LSTM) on
top because its training requires less resources than
fine-tuning the PLM and initial tests have shown
similar performance.3

Argumentative RE (ARE). The model architec-
ture for the relation extraction subtask is shown in

3Note that the training dataset is relative small, so restrict-
ing the number of trainable parameters seems to mitigate
overfitting.

Train Test Total

ADUs
background claim 2563 661 3224
own claim 4608 1241 5849
data 3346 858 4204

Relations
supports 4426 1260 5686
contradicts 551 133 684
semantically same 36 3 39
parts of same 1000 269 1269

Table 1: Label counts for the Sci-Arg dataset.

Figure 2b. ARE is implemented as a classification
task, where a pair of candidate ADUs is selected
and marked in the input token sequence. To reduce
combinatorial complexity, only ADU pairs with a
distance smaller than some threshold d are consid-
ered. Similar to ADU recognition, we first embed
the token sequence in a window of k tokens around
the candidate entity pair with a frozen PLM model.
We also create non-contextualized embeddings for
the ADU- and argument-tags of the tokens within
the window. As argument tags we simply use head
and tail labels to mark the candidate entity tokens.
All three embedding sequences are concatenated
token-wise and fed into a BiLSTM. The result is
converted into a single vector using a Convolutional
Neural Network (CNN) and max-pooling, which
then is classified as one of the relation labels by a
linear projection with softmax.

4 Experimental Setup

Dataset. We use the Sci-Arg dataset (Lauscher
et al., 2018b) for model training and evaluation. It
is the only available full text argumentation min-
ing dataset for scientific publications. It contains
40 full text publications annotated with ADUs and
argumentative relations. Figure 1 shows an ex-
ample excerpt, and Table 1 summarizes the main
dataset statistics. The PARTS OF SAME relation
type is used to model non-contiguous spans. The
label counts differ slightly from values published
in Lauscher et al. (2018b), because annotations in
one file (A28) caused parsing errors and were ex-
cluded. Furthermore, non-contiguous spans are not
merged. We create a train/test split by using the
first 30 documents for training and the remaining 9
for evaluation.
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system span based token based
exact weak

Lauscher 2018c - - 0.447
ours 0.532 0.668 0.518

human 0.602 0.729 -

Table 2: ADU Recognition Performance as F1 macro
average over classes. For weak metrics, the gold and the
predicted span have to match for at least the half of the
characters of the longer span.

Preprocessing. We preprocess the documents by
removing the initial XML headers. To decrease
the sequence length of the input, we also split the
documents into sections, e.g. introduction or con-
clusion. This is important to lower computational
resource consumption since recent PLMs like SciB-
ERT (Beltagy et al., 2019) usually scale quadratic
with the input length and are restricted to a certain
max input size, e.g. 512 tokens. Unfortunately, this
leads to the removal of all relations labeled with
SEMANTICALLY SAME, since these connect ADUs
from different sections. However, this affects only
0.6% of the argumentative relations instances.

Data Augmentation. If the pair of ADUs (A,B)
is part of an argumentative relation, it is wrong to
assume that B is argumentatively unrelated with A,
i.e. (B,A) should not be in the NO RELATION class.
Thus, we add reversed instances for each available
relation in the dataset with the special label SUP-
PORTS REV in the case of SUPPORTS and keep
the labels for CONTRADICTS and PARTS OF SAME

since these relations are symmetric. In addition
to the positive training instances, we also sample
negative relation instances from all possible ADU
pairs that are no instances of any argumentative
relation.

Training Objective. We use the the cross entropy
loss (Rubinstein, 1999) as the training objective for
both models fADU and fRE :

LCE(y, ŷ;θ) := −fθ(y) · log fθ(ŷ)

where y and ŷ are the target and predicted proba-
bilities for the token or relation labels, respectively,
and θ is the set of trainable model parameters. In
the case of ADU recognition, we obtain the best
tagging sequence via Viterbi Decoding (Viterbi,
1967), as usual for CRF-based models.

F1-exact F1-weak

@gold ADUs 0.739
@predicted ADUs 0.210 0.310

human 0.341 0.469

Table 3: Argumentative RE Performance as micro
average over classes with provided gold ADUs (@gold
ADUS) or ADUs predicted with our entity recogni-
tion model (@predicted ADUs), i.e. the full relation
extraction pipeline. human indicates inter-annotator-
agreement for the corpus data (Lauscher et al., 2018c)
which is comparable to @predicted ADUs. For weak
metrics, best weakly matching ADUs are calculated
first, then predicted relations are mapped to these and
finally metrics are calculated as usual.

Metrics. Since we compare against evaluation
results from Lauscher et al. (2018d), we adopt
their metrics for ADU recognition, namely a token-
based F1-score that is macro-averaged over classes.
However, we also compute span-based macro-F1
scores in two variants as described in Lauscher et al.
(2018b): For exact span-based metrics, the recog-
nized ADU has to match exactly for start and end
indices, as well as ADU type. For weak matches,
the ADU has to match in type, but the target and
predicted spans only have to overlap by at least the
half of the length of the shorter span. Weak match
evaluation is motivated by considerable length and
variance of ADU expressions, which makes ex-
act matches difficult, and also allows for compar-
ison with human annotator agreement scores as
presented in Lauscher et al. (2018c).

For the relation recognition task, we follow the
literature and present micro-averaged F1 scores.
Similar to ADU recognition metrics, we calculate
weak metrics by first determining target ADUs that
can be assigned to predicted ADUs in the way
of weak ADU matching as described above, and
then calculate F1 scores as usual (Lauscher et al.,
2018b). Note that PARTS OF SAME is just a helper
relation, so we merge ADUs connected by this re-
lation type first, and then compute scores over the
remaining relation types.

Training Details & Hyperparameters. For both
tasks, we first conduct a hyperparameter search.
We use token-based macro-F1 as the optimization
target for ADU recognition and micro-F1 as the tar-
get for relation classification. Final hyperparameter
values are listed in Appendix A.2.
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P R F1

background claim 0.56 0.44 0.49
exact own claim 0.48 0.55 0.51

data 0.57 0.62 0.60

background claim 0.77 0.60 0.68
weak own claim 0.63 0.73 0.67

data 0.62 0.69 0.65

Table 4: ADUR Performance per Class. Macro aver-
aged precision (P), recall (R), and F1.

Since there is no dev split, we perform 5-fold
cross validation for each subtask on the train split
with the best hyperparameter settings and differ-
ent random seeds for parameter initialization. The
best of these 5 models are used for the final eval-
uation. Detailed training configurations, logs and
statistics for the ADU recognition and the ARE
subtasks are collected within the Weights & Biases
framework.4 We make these and our source code
publicly available for better reproducibility of our
experiments.5

5 Results and Discussion

This section presents our experimental results.
First, we compare against the ADU recognition
baseline as provided by Lauscher et al. (2018c).
Then, we present findings about prominent error
cases and close with an ablation study.

5.1 Results
Table 2 presents the macro-F1 scores of the ADUR
baseline, our approach, and human performance
in terms of inter-annotator agreement, as reported
in Lauscher et al. (2018c). Our model achieves
0.518 token-based F1, significantly outperforming
the baseline by 7%. The gap to the human per-
formance is also narrow, especially when looking
at the weak metrics with relaxed boundary con-
straints, where our model achieves 92% of to the
human score. For exact metrics, the model reaches
only 88% of the human performance, suggesting
that exact ADU boundary detection is more chal-
lenging. The performance of the model for argu-
mentative RE is a strong 0.739 micro-F1. Note,

4see https://wandb.ai
5For ADU recognition, see https://wandb.ai/

sam_dfki/best_adu_uncased, for argumenta-
tive RE, see https://wandb.ai/sam_dfki/
best_rel_uncased, and for the source code, see
https://github.com/DFKI-NLP/sam.

P R F1

contradicts 0.505 0.724 0.595
supports 0.739 0.774 0.756

Table 5: ARE Performance per Class. Micro averaged
precision (P), recall (R), and F1 on gold ADUs. Note
that non contiguous ADUs linked via predicted PARTS
OF SAME relations are merged first before calculating
the scores.

that we need to merge non-contiguous ADUs first
before calculating the ARE scores. We do this
via predicted PARTS OF SAME relations, which are
recognized with a F1-score of 0.860. For the full
pipeline, the model achieves a respectable 0.210
micro-F1 score, which corresponds to 62% of the
human performance.

5.2 Error Analysis

ADUR Error Analysis. The decrease in perfor-
mance when comparing weak with exact metrics is
high for the classes BACKGROUND CLAIM (−28%)
and OWN CLAIM (−24%), but low for class DATA

(−8%), see Figure 4. This may be because the
latter is mainly about references or mentions of
concise facts where boundaries are much easier to
detect.

Most of the errors originate from detecting
ADUs, i.e. deciding if a text span is an ADU from
any type, in comparison to classifying a detected
ADU span into one of types. The exact span-based
macro-F1 for the subtask of ADU classification is
0.854, whereas the respective score for ADU de-
tection is only 0.617. This difference is even larger
for the RE subtask where the micro-F1 is 0.749 for
relation detection and 0.992 (!) for relation classi-
fication. Figure 3 shows the confusion matrices for
the ADUR and ARE subtasks.

Interestingly, many of ADU classification errors
(48%) are instances of type BACKGROUND CLAIM,
where the model predicts OWN CLAIM instead, indi-
cated by low precision for OWN CLAIM and low re-
call for BACKGROUND CLAIM as shown in Table 4.
Looking into these misclassifications revealed the
following main challenges (in order of decreasing
frequency): 1) an island of one or two background
claims surrounded by many own claims or located
at the border between regions of these two types,
2) the ADU is linked via the structural PARTS OF

SAME relation, i.e. it is split by some other con-
tent and at least one part of the complete ADU is

https://wandb.ai
https://wandb.ai/sam_dfki/best_adu_uncased
https://wandb.ai/sam_dfki/best_adu_uncased
https://wandb.ai/sam_dfki/best_rel_uncased
https://wandb.ai/sam_dfki/best_rel_uncased
https://github.com/DFKI-NLP/sam
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Figure 3: Confusion matrices for ADU recognition (left) and argumentative RE (right).

not detected correctly, and 3) mentions of the au-
thor in a background claim (e.g. "[A] drawback
of this model for our application is [...]" or "It
enables us to model [...]"). Issues 1) and 2) may
suggest that looking at the sequence of ADU types
or linguistic surface features is not enough and a
deeper "understanding" and/or domain knowledge
are required, especially since the training data is
very limited. Lauscher et al. (2018c); Accuosto
and Saggion (2019) analyse the impact of SAM to
related tasks, suggesting to train on these may miti-
gate this issue. Finally, issue 2) may be improved
by using a joint ADUR+ARE model or an ADUR
model that allows to predict non-contiguous spans.
Note that we tackle ADU detection in fact with
both models in combination because we require the
PARTS OF SAME predictions to merge the respec-
tive ADUs. This poses a challenge for both models:
The ADUR model is trained to predict incomplete
instances and the ARE model needs to handle in-
stances from conceptional different types of classes,
i.e. argumentative and structural relations.

ARE Error Analysis. For the relation extraction
subtask, the general performance is higher than
for ADUR with approximately only one third of
false negatives or false positives with respect to
true positive. However, the performance for CON-
TRADICTS is much lower than for SUPPORTS, see
Figure 5. On reason appears to be the class imbal-
ance. There are substantially less training instances
for that class (ratio of 1 : 8, see Figure 1). Fur-
thermore, the model significantly overpredicts the
CONTRADICTS relations (see confusion matrix in

Figure 3). To unravel this phenomenon, we manu-
ally analysed 255 relation candidates from differ-
ent error categories (true positives, false positives,
and false negatives). This revealed, that most of
the instances falsely predicted as CONTRADICTS

can be associated with specific linguistic surface
features, especially occurrences of discourse con-
nectors like “however” that are commonly used to
express contrastive ideas, but not in this case (see
the example in the end of Section 2). Apparently,
the model overfits on these shallow markers which
is further supported by the fact that all analysed
correctly predicted relation instances of that type
could be associated with entries of a small set of
connectors.6

Regarding the SUPPORTS relation, the analysis
revealed that sentence boundaries seem to be a very
strong signal. An over-proportional amount (85%)
of correct predictions has both arguments in the
same sentence compared to 20% and 15% for false
positives and false negatives, respectively. This
is even stronger when taking the argument types
into account: SUPPORTS relations that are in the
same sentence and connect a DATA ADU with any
claim ADU make up for 88% true positives, but
only for 19% and 12% of false positives and false
negatives. Note, that per definition of the Sci-Arg
annotation scheme7 DATA never participates in a
CONTRAST relation which may be one reason why

6Consisting of (in decreasing order of frequency): “how-
ever”, “but”, “while”, “in contrast”, “though”, “despite”, and
“even though”.

7The original annotation guidelines can be found here:
http://data.dws.informatik.uni-mannheim.
de/sci-arg/annotation_guidelines.pdf

http://data.dws.informatik.uni-mannheim.de/sci-arg/annotation_guidelines.pdf
http://data.dws.informatik.uni-mannheim.de/sci-arg/annotation_guidelines.pdf
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relation classification performance is so high. More
detailed results of the manual analysis can be found
in Figure 5 in the Appendix.

During our analysis we noticed a reasonable
amount of potentially mislabeled relation instances
(16%), especially missing support relations be-
tween OWN CLAIMs. Table 6 shows some examples
where relations were correctly detected by the ARE
model, but they do not exist in the gold data.

5.3 Ablation Study

We analysed the effect of our approach to add re-
versed relations. We trained another set of models
in a 5-fold cross validation setting with same hy-
perparameters, but without the augmentation. The
resulting mean bootstrapped micro F1 is 0.601, sig-
nificantly lower than the mean result with augmen-
tation enabled which is 0.762 with p < 1e-10. We
gather bootstrapped scores by randomly sampling
10 test document sections, calculate the scores for
both model variants as usual and repeat that process
for 100 times. Note that there are 114 document
sections in total after preprocessing the test set.

6 Related Work

AM is intensively studied for domains like public
debates, essays, or legal texts (Lawrence and Reed,
2019). As one of the earliest work for the scien-
tific domain, Teufel and Moens (1999) proposed
Argumentative Zoning (AZ) where sentences are
classified as AIM, CONTRAST, TEXTUAL, OWN,
BACKGROUND, BASIS, or OTHER. The authors cre-
ated a corpus of 80 annotated full-text papers. They
trained Naive-Bayes (NB) and Support-Vector-
Machine (SVM) models with hand crafted features
and achieved a performance of 0.442 macro-F1.
Later work defines similar concepts like "zone of
conceptualization" (Liakata, 2010) with classes like
EXPERIMENT, BACKGROUND, or MODEL, and
trained CRF based models on that (Liakata et al.,
2012) (0.18 to 0.76 F1 depending on classes). Guo
et al. (2010) compares these schemes with abstract
section name detection and trains NB and SVM
models. Dasigi et al. (2017) studied the problem
of scientific discourse parsing and annotated the
result sections of 75 papers with a seven label tax-
onomy described in de Waard and Pander Maat
(2012) like GOAL, FACT, or HYPOTHESIS. They
use an LSTM based model augmented with Atten-
tion (Vaswani et al., 2017) to obtain sentence rep-
resentations and present 0.74 F1 performance. In

their follow-up work (Li et al., 2021) they achieve
a strong 0.841 F1 by using a combination of trans-
fer learning from discourse annotated abstracts
(PubMedRCT, Dernoncourt and Lee (2017)) and a
model consisting of SciBERT, Attention, BiLSTM,
and CRF. In that respect, their approach is similar
to ours for ADUR, however, they apply their meth-
ods only on the results section of a document and
detect full sentence ADUs only. In a similar vein,
Achakulvisut et al. (2019) propose a sentence based
claim extraction model consisting of BiLSTM and
a CRF that they pre-trained on the PubMedRCT
dataset. They achieve a performance of 0.790 F1
on a dataset of 1500 abstracts from the Medline
dataset. Lauscher et al. (2018a) proposes a tool for
automatic ADU recognition and other tasks. Their
models are trained on the Sci-Arg dataset and con-
sist of pre-trained word embeddings and a BiLSTM
for token classification tasks (e.g. ADUR) and an
additional Attention mechanism to obtain sentence
representations for the other tasks.

All work mentioned above focuses primarily on
the detection and classification of argumentative
components. Stab et al. (2014) argues for the need
to also analyse argumentative structure, e.g. to auto-
mate knowledge base population or reasonable vali-
date claims because that requires to link the respec-
tive premises. They also highlight that discourse
theory and data is not suited out of the box for ar-
gumentative analysis because discourse relations
do not cover relevant argumentative relation types
and connect primarily neighboring elements which
does not reflect argumentative structure. However,
Accuosto and Saggion (2019) propose to derive ar-
gumentative structure information from discourse
data. They annotate a subset of 60 abstracts from
the SciDTB scientific discourse dataset (Yang and
Li, 2018) with argumentative units and relations.
Then, they train models consisting of a BiLSTM,
CRF, contextualized word embeddings (ELMo, Pe-
ters et al. (2018)) and an encoder pre-trained on
the discourse data. They show that adding the en-
coder significantly improves the performance up
to 0.40 F1 argumentative attachment scores, which
subsumes argumentative component and relation
recognition. Kirschner et al. (2015) created a new
corpus by annotating the introduction and discus-
sion sections of 24 scientific articles. The authors
consider two argumentative relations, SUPPORT

and ATTACK, and also two discourse relations, DE-
TAIL and SEQUENCE borrowed from RST (Mann
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Text with ADUs Annotated Correction

As
:::
the

:::::::::::
calculations

:::
of

::::
the

:::::::::
wrinkling

:::::::::::
coefficients

:::
are

:::::
done

::::
on

:
a
::::

per

:::::::
triangle

:::::
basisADATA, the computational time is linear with respect to

number of trianglesBOWN CLAIM.

A←S B A→S B

:::::
There

::::
are

::::::
several

::::::::::::
possibilities

::
to

::::
deal

:::::
with

::::
this

:::::::::
restrictionAOWN CLAIM.

One could decide to restrict the simulations to small deformations
where the approximation is validBOWN CLAIM.

- A←S B

As stated in Section 3.3ADATA,
:::
two

:::::::::
different

::::::::
wrinkle

:::::::::
patterns

::::
give

:::::::::
different

:::::::::::
wrinkling

::::::::::::
coefficients

:::::
for

:::::
the

::::::
same

:::::::::
triangle

::::::::
geometryBOWN CLAIM. Hence, for the same deformation of the
triangleCDATA, corresponding to each pattern,

:::
the

::::::::::
modulation

:::::::
factors

:::
will

:::
be

::::::::
differentDOWN CLAIM.

A→S B
C →S D

A→S B
C →S D
B →S D

If a pattern is orthogonal to the deformation directionAOWN CLAIM (as
compared to the other),

::::::::::::
corresponding

:::::::::::
modulation

::::::
factor

:::::
will

:::
be

:::::
smallBOWN CLAIM. In other words, the direction of the deformation
favors one pattern over the otherCOWN CLAIM.

A→S B A→S B
B →S C

Table 6: Examples for potentially mislabeled relation instances. A→S B means that the pair of ADUs (A,B) is an
instance of the SUPPORTS relation. All proposed corrections are predicted by our model.

and Thompson, 1988), annotated on the sentence
level. Recently, Mayer et al. (2020) proposed an ar-
gumentation mining pipeline for ADUR and ARE
on a new dataset. They annotate 500 Medline ab-
stracts with CLAIM and EVIDENCE ADUs as well
as SUPPORT and ATTACK relations. The authors
trained and analysed the performance of different
models consisting of encoders, like word embed-
dings, contextualized word embeddings and BERT
variants, in combination with a Gated Recurrent
Unit (GRU) or LSTM and a CRF. They present a
strong micro-F1 of up to 0.92 for ADUR and a per-
formance of up to 0.69 for the full pipeline and con-
clude that Transformers, especially domain specific
ones like SciBERT, work best for SAM at Medline
abstracts. Note that, similar to our weak measures,
they count predictions as true positive when 75% of
the tokens8 overlap. Another work (Fergadis et al.,
2021) that analyses the performance of Transform-
ers for SAM proposes a new corpus of 1000 ab-
stracts with sentence level annotations for CLAIM

and EVIDENCE. The authors use a SciBERT ap-
plied sentence wise with a BiLSTM over the CLS
token embeddings as contextualizer and present a
0.624 macro-F1.

8This differs from our weak measures in two ways: Fol-
lowing Lauscher et al. (2018b), we require 50% overlap in
means of characters, not tokens.

7 Conclusion and Future Work

In this paper, we presented a pipeline based ap-
proach to handle full-text argumentation mining on
scientific publications and showed its effectiveness
by establishing new state-of-the-art performance
on the Sci-Arg corpus. However, there is still a
significant gap to human performance. We used
PLM based models for both subtasks, argumen-
tative discourse unit recognition (ADUR) and ar-
gumentative relation extraction (ARE), and found
similar improvements gains (+7%) as reported else-
where when using Transformers over traditional
approaches without Attention mechanism, even
without fine-tuning the PLMs.

Our detailed error analysis revealed several find-
ings. First, recognizing instances is much harder
than assigning the correct label, which is true for
both tasks, but especially for ARE. The perfor-
mance suffers from shallow processing, i.e. the
models are tricked by linguistic surface features
like author referencing pronouns in background
claims or non-argumentative discourse connectors.
Furthermore, ADUR detection struggles a lot in the
context of non-contiguous elements which is rea-
sonable because it is trained with incomplete infor-
mation. This calls for conceptional better modeling
of the task, for instance with a joined model for
ADUR and ARE. Finally, we could confirm that
SAM is a complex problem that is even hard for hu-
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mans. However, the low inter-annotator-agreement
reported by the Sci-Arg authors and our finding
that a significant amount (16%) of the manually
analysed ARE instances are questionable labeled
raises the need for even more annotation rounds,
maybe with multiple domain experts, or a simpli-
fied annotation scheme.
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vić, Alexander M. Petersen, Filippo Radicchi,
Roberta Sinatra, Brian Uzzi, Alessandro Vespig-
nani, Ludo Waltman, Dashun Wang, and Albert-
László Barabási. 2018. Science of science. Science,
359(6379):eaao0185.

Nancy Green. 2014. Towards creation of a corpus for
argumentation mining the biomedical genetics re-
search literature. In Proceedings of the First Work-
shop on Argumentation Mining, pages 11–18, Bal-
timore, Maryland. Association for Computational
Linguistics.

Yufan Guo, Anna Korhonen, Maria Liakata, Ilona Silins,
Lin Sun, and Ulla Stenius. 2010. Identifying the in-
formation structure of scientific abstracts: An inves-
tigation of three different schemes. In Proceedings
of the 2010 Workshop on Biomedical Natural Lan-
guage Processing, pages 99–107, Uppsala, Sweden.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs]. ArXiv: 1412.6980.

Christian Kirschner, Judith Eckle-Kohler, and Iryna
Gurevych. 2015. Linking the thoughts: Analysis
of argumentation structures in scientific publications.
In Proceedings of the 2nd Workshop on Argumenta-
tion Mining, pages 1–11, Denver, CO. Association
for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan Kauf-
mann.

Anne Lauscher, Goran Glavaš, and Kai Eckert. 2018a.
ArguminSci: A tool for analyzing argumentation and
rhetorical aspects in scientific writing. In Proceed-
ings of the 5th Workshop on Argument Mining, pages
22–28, Brussels, Belgium. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/W19-4505
https://doi.org/10.18653/v1/W19-4505
https://doi.org/10.18653/v1/W19-4505
http://arxiv.org/abs/1907.00962
http://arxiv.org/abs/1907.00962
http://arxiv.org/abs/1907.00962
https://doi.org/10.18653/v1/2021.sdp-1.7
https://doi.org/10.18653/v1/2021.sdp-1.7
https://doi.org/10.18653/v1/2021.sdp-1.7
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
http://arxiv.org/abs/1702.05398
http://arxiv.org/abs/1702.05398
http://arxiv.org/abs/1702.05398
https://doi.org/10.1016/j.jeap.2012.06.002
https://doi.org/10.1016/j.jeap.2012.06.002
https://doi.org/10.1016/j.jeap.2012.06.002
https://aclanthology.org/I17-2052
https://aclanthology.org/I17-2052
https://aclanthology.org/I17-2052
https://doi.org/10.18653/v1/2021.argmining-1.10
https://doi.org/10.18653/v1/2021.argmining-1.10
https://doi.org/10.18653/v1/2021.argmining-1.10
https://doi.org/10.1126/science.aao0185
https://doi.org/10.3115/v1/W14-2102
https://doi.org/10.3115/v1/W14-2102
https://doi.org/10.3115/v1/W14-2102
https://aclanthology.org/W10-1913
https://aclanthology.org/W10-1913
https://aclanthology.org/W10-1913
http://arxiv.org/abs/1412.6980
https://doi.org/10.3115/v1/W15-0501
https://doi.org/10.3115/v1/W15-0501
http://repository.upenn.edu/cis_papers/159/
http://repository.upenn.edu/cis_papers/159/
http://repository.upenn.edu/cis_papers/159/
https://doi.org/10.18653/v1/W18-5203
https://doi.org/10.18653/v1/W18-5203


63

Anne Lauscher, Goran Glavaš, and Simone Paolo
Ponzetto. 2018b. An argument-annotated corpus of
scientific publications. In Proceedings of the 5th
Workshop on Argument Mining, pages 40–46, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto,
and Kai Eckert. 2018c. Investigating the role of ar-
gumentation in the rhetorical analysis of scientific
publications with neural multi-task learning models.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3326–3338, Brussels, Belgium. Association for Com-
putational Linguistics.

Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto,
and Kai Eckert. 2018d. Investigating the Role of
Argumentation in the Rhetorical Analysis of Scien-
tific Publications with Neural Multi-Task Learning
Models. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3326–3338, Brussels, Belgium. Association
for Computational Linguistics.

John Lawrence and Chris Reed. 2019. Argument min-
ing: A survey. Computational Linguistics, 45(4):765–
818.

Xiangci Li, Gully Burns, and Nanyun Peng. 2021. Sci-
entific discourse tagging for evidence extraction. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2550–2562, Online.
Association for Computational Linguistics.

Maria Liakata. 2010. Zones of conceptualisation in
scientific papers: a window to negative and specu-
lative statements. In Proceedings of the Workshop
on Negation and Speculation in Natural Language
Processing, pages 1–4, Uppsala, Sweden. University
of Antwerp.

Maria Liakata, Shyamasree Saha, Simon Dobnik, Colin
Batchelor, and Dietrich Rebholz-Schuhmann. 2012.
Automatic recognition of conceptualization zones in
scientific articles and two life science applications.
Bioinformatics (Oxford, England), 28(7):991–1000.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text - Interdisciplinary
Journal for the Study of Discourse, 8(3).

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020.
Transformer-based argument mining for healthcare
applications. In ECAI 2020 - 24th European Confer-
ence on Artificial Intelligence, 29 August-8 Septem-
ber 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence
(PAIS 2020), volume 325 of Frontiers in Artificial In-
telligence and Applications, pages 2108–2115. IOS
Press.

Josh M. Nicholson, Milo Mordaunt, Patrice Lopez,
Ashish Uppala, Domenic Rosati, Neves P. Rodrigues,
Peter Grabitz, and Sean C. Rife. 2021. Scite: A
smart citation index that displays the context of cita-
tions and classifies their intent using deep learning.
Quantitative Science Studies, 2(3):882–898.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Reuven Rubinstein. 1999. The Cross-Entropy Method
for Combinatorial and Continuous Optimization.
Methodology And Computing In Applied Probability,
1(2):127–190.

M. Schuster and K.K. Paliwal. Nov./1997. Bidirectional
recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681.

Christian Stab, Christian Kirschner, Judith Eckle-
Kohler, and Iryna Gurevych. 2014. Argumentation
mining in persuasive essays and scientific articles
from the discourse structure perspective. In Proceed-
ings of the Workshop on Frontiers and Connections
between Argumentation Theory and Natural Lan-
guage Processing, Forlì-Cesena, Italy, July 21-25,
2014, volume 1341 of CEUR Workshop Proceedings.
CEUR-WS.org.

Manfred Stede and Jodi Schneider. 2018. Argumenta-
tion Mining. Synthesis Lectures on Human Language
Technologies, 11(2):1–191.

Simone Teufel and Marc Moens. 1999. Discourse-level
argumentation in scientific articles: human and auto-
matic annotation. In Towards Standards and Tools
for Discourse Tagging.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is
All You Need. arXiv:1706.03762 [cs]. ArXiv:
1706.03762.

A. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
13(2):260–269. Conference Name: IEEE Transac-
tions on Information Theory.

Douglas Walton. 2001. Informal Logic: A Pragmatic
Approach, 2 edition. Cambridge University Press.

An Yang and Sujian Li. 2018. SciDTB: Discourse de-
pendency TreeBank for scientific abstracts. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 444–449, Melbourne, Australia. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/W18-5206
https://doi.org/10.18653/v1/W18-5206
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.18653/v1/D18-1370
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.1162/coli_a_00364
https://doi.org/10.18653/v1/2021.eacl-main.218
https://doi.org/10.18653/v1/2021.eacl-main.218
https://aclanthology.org/W10-3101
https://aclanthology.org/W10-3101
https://aclanthology.org/W10-3101
https://doi.org/10.1093/bioinformatics/bts071
https://doi.org/10.1093/bioinformatics/bts071
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.1515/text.1.1988.8.3.243
https://doi.org/10.3233/FAIA200334
https://doi.org/10.3233/FAIA200334
https://doi.org/10.1162/qss_a_00146
https://doi.org/10.1162/qss_a_00146
https://doi.org/10.1162/qss_a_00146
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
http://ceur-ws.org/Vol-1341/paper5.pdf
http://ceur-ws.org/Vol-1341/paper5.pdf
http://ceur-ws.org/Vol-1341/paper5.pdf
https://doi.org/10.2200/S00883ED1V01Y201811HLT040
https://doi.org/10.2200/S00883ED1V01Y201811HLT040
https://aclanthology.org/W99-0311
https://aclanthology.org/W99-0311
https://aclanthology.org/W99-0311
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.1017/CBO9780511808630
https://doi.org/10.1017/CBO9780511808630
https://doi.org/10.18653/v1/P18-2071
https://doi.org/10.18653/v1/P18-2071


64

Figure 4: Distribution of input sequence lengths. This is after splitting the document text into sections and
tokenization. Note that this is primarily relevant for the ADU model since we use a much smaller token window
size k to restrict the input for the ARE model.

A Appendix

A.1 Preprocessing

We use the following regular expression pattern
to match content in the beginning of the files
that we remove: “<\?xml[^>]*>[^<]*<
Document xmlns:gate="http://www.
gate.ac.uk"[^>]*>[^<]*” (without the
outer quotes). Main sections are marked by
<h1>SECTION_HEADING</h1> in the Sci-Arg
corpus where SECTION_HEADING is any text, so
we use this regular expression pattern to split the
texts: “<H1>”(without the quotes). Note, that we
keep that content in the input. The input sequence
lengths for the ADU model reaches still values
> 4000. Figure 4 shows its distribution.

A.2 Experimental Setup and
Hyperparameters

We use the AllenNLP framework to implement the
models and execute the training. As PLM, we use
the uncased variant of SciBERT (Beltagy et al.,
2019) as provided by AllenAI9. ADAM (Kingma
and Ba, 2014) is used as optimizer. We use batch
sizes of 8 and 128 for ADU recognition and RE,

9see https://huggingface.co/allenai/
scibert_scivocab_uncased

respectively, that are derived from resource con-
straints. The ADU tags are encoded with the BI-
OUL tagging scheme. For the RE subtask, we
hand-picked embedding sizes of 13 and 3 for the
ADU-tags and argument-tags, respectively, that are
derived form the number of classes.10

As a result of the hyperparameter search, we use
the following parameters for the ADU recognition
task: a learning rate of 0.005, dropout probability
of 0.5 before and after the PLM and 0.4394 in the
LSTM, a gradient normalization threshold of 7.0,
a patience of 20 epochs for early stopping, two
layers for the LSTM with a hidden size of 300.
In the case of RE, we got the following values: a
learning rate of 0.0005, a dropout probability of
0.3061 before and after the PLM and 0.4394 in
the LSTM, a gradient normalization threshold of
4.12, 4 layers for the LSTM with a hidden size of
430, 193 filters for the CNN (with ngram sizes of
3, 5, 7, and 10), a hidden size of 860 for the final
projection layer, a token window size k of 479
tokens around the center of the candidate argument
pair, a max inner token distance d between the
arguments of 17711, and finally, we use a factor

10Note, the three ADU-tags are each BIOUL encoded and
the argument types, head and tail, are BIO encoded.

11This causes a loss of 0.23% of SUPPORT instances and
0.5% of PARTS OF SAME instances, which is neglectable.

https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/allenai/scibert_scivocab_uncased
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of three for the amount of negative examples, i.e.
we add three times as many existing argumentative
ADU pairs as NO RELATION instances which we
sample from all available pairs without a relation
label and within the distance constraint.

A.3 Training Resources
The hyperparameter search was performed on a
single Nvidia RTX A6000 (48GB). The training
of the final models, i.e. 5 for each subtask, and
inference was calculated on single Nvidia GeForce
GTX 1080 Ti (12GB). The total training time for
all final models was 5h51m for ADUR and 40h17m
for ARE.
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(a) Distribution of connecting phrases. Despite being no real discourse connectors, we also collected markers like BRACKETS
that seem to be important surface features. NONE indicates that no connective element was found.

(b) Distribution of relation arguments (sorted and men-
tioned only once if both arguments are the same).

(c) Distribution of the feature that both arguments are in the
same sentence.

Figure 5: Results of the manual error analysis for argumentative relation extraction. The figures show proportions
of different features (connectors, arguments, and same sentence feature) at different subsets by error type (false
negative, false positive, or true positive). The lowest entries per category are excluded. Values are calculated on a
manually collected subset of 255 relation instances in total.


