
Proceedings of the 1st Workshop on Information Extraction from Scientific Publications, pages 121–130
Nov 20, 2022. ©2022 Association for Computational Linguistics

121

Parsing Electronic Theses and Dissertations Using Object Detection

Aman Ahuja Alan Devera Edward A. Fox
Department of Computer Science

Virginia Tech, Blacksburg, VA
{aahuja, alandevera1, fox}@vt.edu

Abstract
Electronic theses and dissertations (ETDs) con-
tain valuable knowledge that can be useful
for a wide range of purposes. To effectively
utilize the knowledge contained in ETDs for
downstream tasks such as search and retrieval,
question-answering, and summarization, the
data first needs to be parsed and stored in a
format such as XML. However, since most of
the ETDs available on the web are PDF docu-
ments, parsing them to make their data useful
for downstream tasks is a challenge. In this
work, we propose a dataset and a framework
to help with parsing long scholarly documents
such as ETDs. We take the Object Detection
approach for document parsing. We first in-
troduce a set of objects that are important el-
ements of an ETD, along with a new dataset
ETD-OD that consists of over 25K page im-
ages originating from 200 ETDs with bound-
ing boxes around each of the objects. We
also propose a framework that utilizes this
dataset for converting ETDs to XML, which
can further be used for ETD-related down-
stream tasks. Our code and pre-trained models
are available at: https://github.com/
Opening-ETDs/ETD-OD.

1 Introduction

Long scholarly documents like Electronic Theses
and Dissertations (ETDs) contain a vast amount
of information which can be of immense value to
the scholarly community. Millions of ETDs are
now publicly available on the web, and can serve
as a rich source of scholarly information. However,
relative to the large amount of information in such
documents, a significant portion remains untapped.

Part of the problem is that these documents are
often long and filled with highly specialized details.
This makes it difficult for many users to understand
the information contained in ETDs. In recent years,
advances have been been made in NLP-based tech-
niques such as question-answering and text sum-
marization, which might be incorporated to make

Figure 1: Illustration of the proposed framework. We
take a source document in PDF as the input, and gener-
ate a parsed version in a structured format like XML.

ETDs more accessible. However, a majority of
these documents exist as PDF files. While some
tools can work with these files, the results we have
observed have been poor; other tools require data in
a structured format such as XML. This leads to the
research question: Is there a way to identify, parse,
and extract the information from a PDF version
of an ETD so that it is more accessible to a wider
audience?

Many research challenges arise when transform-
ing ETDs from PDF to other formats. These schol-
arly documents do not have a standard layout. Dif-
ferent institutions have their own layouts and for-
mats, making rule-based parsing methods difficult
to apply. Moreover, the structure and organiza-
tion of elements present in documents varies by
domain and organization. For instance, documents
from domains such as mathematics often contain
equations, while documents from computer science
frequently contain algorithms. Hence, there is a
need to develop machine-learning based document-
parsing methods that can generalize to documents
with different layouts and across domains.

In recent years, with the advances in the field
of computer vision, several methods have been
proposed for extracting important elements from
documents. Some of these approaches perform doc-
ument layout analysis using object detection mod-
els (Girshick, 2015; Ren et al., 2015). However,

https://github.com/Opening-ETDs/ETD-OD
https://github.com/Opening-ETDs/ETD-OD


122

many of these works and the associated datasets
are focused on a very narrow set of scholarly docu-
ment elements. For instance, TableBank (Li et al.,
2020a) only contains bounding boxes for tables,
while ScanBank (Kahu et al., 2021) focuses on fig-
ures (and some tables). More recently, there has
been research that primarily focuses on layout anal-
ysis of scholarly documents (Zhong et al., 2019;
Li et al., 2020b). However, most existing work in
the domain of scholarly document understanding
focuses on research papers, which differ in many
ways from longer documents like theses and disser-
tations. First, research papers tend to be shorter in
length and have a narrower scope. As such, many
elements such as chapters, committee, and univer-
sity that are important in an ETD cannot be found
in datasets derived from research papers. Moreover,
research papers significantly differ from ETDs in
their structure and format. For instance, many re-
search papers are in double-column format, while
ETDs typically have a single column, and have big-
ger font size and spacing. Consequently, existing
methods for document understanding for research
papers are not easily adapted to ETDs.

In this work, we propose ETD-OD, an object
detection based framework to parse long PDF doc-
uments such as ETDs. Our approach works on the
PDF version of an ETD by first identifying impor-
tant elements such as figures, tables, captions, para-
graphs, delimiters like chapter and section headers,
and metadata such as title, author name, etc. This is
done using object detection models such as Faster-
RCNN (Ren et al., 2015) or YOLOv7 (Wang et al.,
2022) on individual page images. For textual ele-
ments such as paragraphs and captions, the textual
content is further extracted using PDF-based tools
such as pymupdf, or optical character recognition
(OCR). Finally, we put together all these elements
in a structured XML format. We also introduce a
new object detection dataset that contains over 25K
page images originating from 200K ETDs, consist-
ing of elements that commonly occur in ETDs, that
can be important sources of information. An XML
schema to support parsing with such objects is also
introduced.

2 Related Work

2.1 Methods

Early works in the domain of document layout un-
derstanding used rule-based approaches (Lebour-
geois et al., 1992; Ha et al., 1995). Other ap-

proaches, e.g., GROBID (Lopez and et al., 2008–
2022) and CERMINE (Tkaczyk et al., 2015) de-
signed for parsing scientific documents primar-
ily focused on short documents such as research
papers, and use an ensemble of sequence label-
ing methods for document parsing. With the ad-
vent of deep-learning based object detection meth-
ods such as Fast-RCNN (Girshick, 2015), Faster-
RCNN (Ren et al., 2015), and YOLO (Redmon
and Farhadi, 2018; Wang et al., 2022), document
layout analysis based on object detection has been
proposed. LayoutParser (Shen et al., 2021) uses
object detection models that have been pre-trained
on different object detection datasets to support
layout understanding. However, since it primar-
ily uses research-paper based datasets, it doesn’t
perform well on ETDs. Moreover, the number of
object types it supports is very limited. More re-
cently, layout-based language models (Xu et al.,
2020, 2021; Huang et al., 2022) have been pro-
posed. This line of work uses a multimodal archi-
tecture, i.e., a combination of visual and textual
features, to pre-train the model on a large corpus of
unlabeled data consisting of document images and
their corresponding text. Although these models
can then be fine-tuned on other downstream tasks
such as object detection, they still require domain-
specific annotated data for fine-tuning. Recently, to
make the documents more accessible, services such
as SciA11y (Wang et al., 2021) have been devel-
oped. However, their scope is limited to research
papers, rather than long documents such as books
and ETDs.

2.2 Datasets

With the growing interest in using object detec-
tion based methods for document layout analysis,
several datasets have been introduced. Many of
these datasets focus on specific object types. For
instance, TableBank (Li et al., 2020a), ScanBank
(Kahu et al., 2021), and MFD (Anitei et al., 2021)
consist of tables, figures, and equations, respec-
tively. Several datasets that consist of a diverse set
of objects have also been introduced. HJDataset
(Shen et al., 2020) consists of historical Japanese
documents. PRImA (Antonacopoulos et al., 2009)
consists of document images from magazines and
research papers. PubLayNet (Zhong et al., 2019) is
based on PDF articles from PubMed Central. The
number of different objects, however, is limited in
these datasets. DocBank (Li et al., 2020b) is a large



123

dataset that consists of a diverse set of objects from
research papers. But given the differences between
research papers and long documents such as ETDs,
models trained on DocBank do not generalize well
on ETDs.

3 ETD Elements

Historically, ETDs do not conform to a univer-
sally accepted format, since different colleges and
universities have their specific standards and re-
quirements for ETDs. In this section we discuss
the elements that are typically found in ETDs and
would be important to extract for further analysis
and downstream tasks. This list was curated after
extensive discussions with digital librarians and
researchers. We broadly categorize the different
elements of ETDs into the following categories.

3.1 Metadata

The metadata consists of elements that contain
unique identifiable information about an ETD, in-
cluding information found on the front page. Key
metadata elements are:
• Title: The main title of the document.
• Author: Name of the document author.
• Date: Date (or month/year) when the document

was published, or of the final research defense.
• University: University/institution of the author.
• Committee: Committee that approved the docu-

ment, e.g., the student’s graduate committee.
• Degree: Degree (e.g., Master of Science, Doctor

of Philosophy) being earned.

3.2 Abstract

The abstract is an important element of an ETD, as
it contains a summary of the work, typically about
a page long. Its elements include:
• Abstract Heading: Since some ETDs contain

multiple abstracts, such as a technical abstract
and general audience abstract, or an abstract in
English as well as the original language, extract-
ing the abstract heading makes it easier to seg-
ment, and could be helpful in categorizing the
abstract by audience type.

• Abstract Text: The actual text of the abstract.

3.3 List of Contents

The list of contents (also referred to as table of con-
tents) of an ETD determines where different com-
ponents are located based on their page numbers.
This helps with accurately mapping the chapters

and sections, as well as figures and tables, since
they are generally included in the list of contents.
This subcategory includes the following elements:
• List of Contents Heading: This helps identify

the specific type of list (e.g., list of chapters/sec-
tions, list of figures, list of tables).

• List of Contents Text: This is the actual list of
entries for this type of content.

3.4 Main Content
Chapters are one of the most important components
of an ETD, as they contain detailed information
about the research described in the document. This
subcategory consists of elements that can typically
be found in the chapters of an ETD.
• Chapter Title: The title of the chapter.
• Section: Quite often, chapters themselves can

be long. It may be desirable to have further de-
limiters such as sectional headers. Hence, we
include the section names which can be used for
further splitting of the document.

• Paragraph: The main textual content of the
ETD.

• Figure: This includes figures, charts, and other
visual illustrations included in the document.

• Figure Caption: The text caption that describes
the figure.

• Table: The table element category.
• Table Caption: The text caption that describes

the table.
• Equation: Mathematical equation/formula.
• Equation Number: Quite often, equations are

numbered, which can be helpful in linking them
to the list of equations that may be included in
the document.

• Algorithm: Algorithm description, e.g., as
pseudo-code.

• Footnote: We separate footnotes from regular
paragraphs, as they typically provide auxiliary
information which might be undesirable in many
downstream tasks, such as summary generation.

• Page Number: Page numbers, which could be
helpful in cross-referencing pages and the objects
contained therein, to the list of contents.

3.5 Bibliography
We also include bibliographic elements in the list
of objects. They are described below:
• Reference Heading: The header that indicates

start of the references list.
• Reference Text: The actual list of references

cited in the document.



124

In our dataset, we regard appendices as chapters,
since they contain many elements that are found
in the main chapters. They can however, be easily
differentiated from main chapters based on the title.

4 Dataset

4.1 Dataset Source

The ETD-OD dataset consists of 25K page images
from 200 theses and dissertations. These docu-
ments were downloaded from publicly accessible
institutional repositories, and were randomly sam-
pled with regards to degree, domain, and institution.
Since object detection requires images as the input
data, the documents were split into page images
using the pdf2image1 Python library. These im-
ages were then used for annotation.

4.2 Annotation

We use Roboflow2 for annotating the page images
in our dataset. The annotation was done by a group
of 6 undergraduate students (Zhu et al., 2022), each
of whom was a computer science student from
junior year or above. Each data sample was further
validated for correctness by two graduate students.

4.3 Dataset Statistics

Table 1 shows the detailed statistics for different ob-
ject categories in our dataset. The dataset consists
of ∼25K page images and ∼100K bounding boxes
spanning across different object categories. Owing
to the variation in the frequency of occurrence of
various object categories in documents, some cat-
egories have many more samples as compared to
others. Elements such as paragraphs can be found
on most pages, and hence, it is the dominant cate-
gory in our dataset. 80% of the images and their
corresponding objects were used for training, while
the remaining 20% were used as the validation set.

5 Proposed Framework

We now introduce the proposed framework for
transforming long PDF documents into structured
XML format. The architecture of our framework
is illustrated in Figure 2. The different modules
shown can broadly be divided into the following
three categories.

1https://pypi.org/project/pdf2image/
2https://roboflow.com/

Category # Instances

Title 439
Author 404
Date 338
University 309
Committee 282
Degree 279
Abstract Heading 169
Abstract Text 183
List of Contents Heading 512
List of Contents Text 1059
Chapter Title 2211
Section 9337
Paragraph 30359
Figure 6359
Figure Caption 5722
Table 2654
Table Caption 2213
Equation 5092
Equation Number 3051
Algorithm 96
Footnote 5722
Page Number 24543
Reference Heading 313
Reference Text 2088

Total Objects 99859
Total Images 25073

Table 1: Distribution of different object categories in
our dataset. Note: Some of the documents were ac-
companied with front matter (metadata) pages that are
sometimes generated by the digital libraries. We include
annotations for such documents as well, and hence, the
number of metadata elements does not exactly match
the number of documents.

5.1 Data and Preprocessing
Since our framework is primarily built for parsing
long scholarly documents, it takes the PDF version
of the document as input. The input file is con-
verted to individual page images (.jpg format) using
Python-based PDF libraries such as pdf2image.
Next, the page images are individually fed to the
Element Extraction module for further processing.

5.2 Element Extraction using Object
Detection

This module forms the backbone of our system. It
takes the individual page images as input, and uses
an object detection model such as Faster-RCNN or
YOLO for object detection. These models are first

https://pypi.org/project/pdf2image/
https://roboflow.com/


125

Figure 2: Architecture of the proposed PDF to XML parsing framework.

pre-trained on the dataset described in Section 4.
The specific details about training object detection
models are included in later sections of this paper.
While using the object detection models as a part
of this module, only inference is performed, and
no updates are made to the model parameters. The
output of object detection will be a list of elements,
where each element contains information about the
bounding boxes such as the coordinates, along with
the category labels. This process is repeated for all
of the pages in the document, and finally, a list of
pages accompanied by their respective elements is
populated.

In some instances, the object detected by the
model is classified as one belonging to a different,
yet similar category. In such cases, we use certain
post-processing rules to correct the predictions. For
example, abstract heading being mis-classified as
chapter heading is one of the common errors, since
both of these elements are often found in bigger
font size at the beginning of a page. This can,
however, be corrected by enforcing a constraint
such as: a chapter heading in the first 10 pages with
matching keyword “abstract" will be the abstract
heading. We use a set of such rules for different
object types to correct mis-classifications before

the objects are sent to the XML module.

5.3 Structuring Objects into XML

After extracting all of the elements for all of the
pages in the document, we generate the XML rep-
resentation of the document. We regard the objects
as broadly belonging to two types. The first type in-
cludes image-based objects such as figures, tables,
algorithms, and equations, that need to be stored
on the file system as an image. We regard tables as
image-based objects even though they might con-
tain text, since further extraction of information in
structured format from tables is beyond the scope
of this work. The second type of object includes
text-based elements such as paragraphs, titles, etc.,
which need further processing to be converted to
plain text. We regard all object categories exclud-
ing the image-based ones as textual elements.

For converting text-based objects to plain text,
we use off-the-shelf tools and libraries. Some PDF
documents are born-digital, where the text can
be easily extracted using Python libraries such as
pymupdf3 based on page ID and bounding box
coordinates. For scanned documents we use op-

3https://pymupdf.readthedocs.io/en/
latest/

https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/


126

tical character recognition (OCR) tools such as
pytesseract4.

<etd>
<front>
<title>Document Title</title>
<author>Author Name</author>
<university>University</university>
<degree>Degree Type</degree>
<committee>Committee</committee>
<date>Date or Month/Year</date>
<abs_heading>Abstract</abs_heading>
<abs_text>In this..</abs_text>
<loc_heading>Table of..</loc_heading>
<loc_text>1. Intro ...</loc_text>

</front>
<body>
<chapter>
<title>Chapter-1..</title>
<page_no>1</page_no>
<sections>
<section>
<name>1.1..</name>
<paragraphs>
<para>In this...</para>
<para>Next, we...</para>

</paragraphs>
<figures>
<figure>
<path>fig_001.png</path>
<caption>Fig.1...</caption>

</figure>
</figures>
<tables>
<table>
<path>tab_001.png</path>
<caption>Table.1.. </caption>

</table>
</tables>
<equations>
<equation>
<path>eqn_001.png</path>
<eq_no>1</eq_no>

</equation>
</equations>
<algorithms>
<algorithm>
<path>alg_001.png</path>

</algorithm>
</algorithms>
<footnotes>
<footnote>...</footnote>

</footnotes>
</section>

</sections>
</chapter>

</body>
<back>
<ref_heading>Ref..</ref_heading>
<ref_text>..</ref_text>

</back>
</etd>

Schema 1: XML Schema for Representing ETDs in
Structured Format.

For image-based elements, we include the rel-
ative path of the image that is cropped based on
the coordinates. Figures and tables are mapped to
their respective captions based on proximity. For
any figure/table element, the caption object closest
to them based on Euclidean distance w.r.t. bound-
ing box coordinates is assumed to be the caption.
A similar method is followed to map equations
with their equation numbers, with an added con-
straint that the y-coordinate of the center of the

4https://pypi.org/project/pytesseract/

equation number should fall between min and max
y-coordinates of the equation object. Finally, all
the element values are put into the XML file un-
der their corresponding tags. The detailed XML
schema is shown in Schema 1.

6 Object Detection Training

We use the ETD-OD dataset introduced in this pa-
per for training object detection models for our
framework. The models currently supported are:
• Faster-RCNN (Ren et al., 2015): Faster-RCNN

is an object detection model that has two stages.
A region proposal network generates regions of
interest, which are fed to another network for
final detection. We use the version of Faster-
RCNN that uses ResNeXt-101 (Xie et al., 2017)
as the backbone model.

• Faster-RCNN pre-trained on DocBank (Li
et al., 2020b): Faster-RCNN (with ResNeXt-
101 backbone) pre-trained on DocBank (from
the DocBank model zoo) is fine-tuned on ETD-
OD. Although DocBank does not include all of
the elements found in ETDs, we hypothesize that
the scholarly nature of documents used in pre-
training should help improve the performance
over the vanilla version of the model.

• YOLOv5 (Jocher et al., 2022): YOLO is a family
of single stage object detection models that per-
form the processes of localization and detection
using a single end-to-end network. This improves
the speed without any significant drop in perfor-
mance. These models have shown impressive
performance on various datasets.

• YOLOv7 (Wang et al., 2022): This is the most
recent version of YOLO, which has been shown
to outperform many object detection models.
Both of the Faster-RCNN models were trained

on our dataset for 60K iterations with an inference
score threshold of 0.7. The models were based on
the implementation included in the open-source
detectron2 (Wu et al., 2019) framework. For the
DocBank-pretrained version of the model, we used
the original set of weights and configurations open-
sourced by the authors. Both of the versions of
YOLO were based on the open-source implementa-
tions, and were trained for 150 epochs.

7 Experiments

In this section, we discuss the results obtained in
the experimental analysis of our work.

https://pypi.org/project/pytesseract/


127

7.1 Evaluation Metrics

For the quantitative evaluation of object detection
models, the commonly used metrics are average
precision (AP) and mean average precision (mAP).
AP is defined as the area under the precision-recall
curve for a specific class. mAP is the average of AP
values for all object classes. Both of these metrics
have different versions based on the overlap thresh-
old (also referred to as Intersection over Union
or IoU) used for comparing the predicted object
against ground truth. For example, in mAP@0.5,
all of the objects with an intersection of 50% or
more with the ground truth will be regarded as cor-
rect predictions. Another commonly used version
of mAP is mAP@0.5-0.95, which is the average
mAP over different thresholds, from 0.5 to 0.95
with step 0.05.

7.2 Analysis of Various Object Detection
Models trained on ETD-OD

Model mAP@0.5 mAP@0.5-0.95

Faster-RCNN 39.1 19.6
Faster-RCNN* 76.2 44.0
YOLOv5 83.4 52.1
YOLOv7 85.3 52.7

Table 2: mAP comparison for object detection mod-
els on ETD-OD. Faster-RCNN* represents the model
pre-trained on DocBank and fine-tuned on ETD-OD.
Underlined values indicate best performing models.

Table 2 shows performance of different object de-
tection models on the validation set of our dataset.
The following observations can be made from the
mAP values shown:
• Pre-training on scholarly documents improves

model performance: The basic version of
Faster-RCNN without any pre-training on schol-
arly documents has the lowest performance
among all the models. The same model, after
pre-training on DocBank, and then fine-tuned on
the ETD dataset, gives much better performance.
Since DocBank also consists of scholarly docu-
ments, albeit of different type, the pre-training
process exposes the model to a diverse dataset,
which eventually results in better generalization
and predictive performance.

• YOLO outperforms Faster-RCNN on ETD
dataset: YOLO models belong to the class of
single stage detectors, which are designed with

an emphasis on speed. YOLO typically performs
worse than Faster-RCNN in scenarios where the
objects are smaller or multiple objects are close
to each other. However, in case of documents,
most objects are typically of large size and have
minimal overlap with each other due to white
spaces and line breaks around objects (such as
between a header and paragraph). Hence, it out-
performs Faster-RCNN on the ETD dataset.

7.3 Analysis of Detection Performance on
Different Object Categories

Category AP@0.5 Category AP@0.5

Title 92.5 Paragraph 97.4
Author 89.5 Figure 98.4
Date 68.3 Fig. Caption 95.4
University 91.1 Table 94.7
Committee 96.5 Tab. Caption 89.8
Degree 68.3 Equation 72.6
Abs. Heading 94.2 Eqn. Number 55.0
Abs. Text 86.7 Algorithm 66.6
LOC Heading 75.5 Footnote 98.9
LOC Text 99.3 Page Number 51.3
Chapter Title 88.8 Ref. Heading 80.7
Section 90.9 Ref. Text 99.3

Table 3: AP@0.5 values for different object categories
for YOLOv7 (Abs. = Abstract, LOC = List of Contents).

In Table 3, we show the performance of the best
performing model (YOLOv7) on various object
categories in our dataset. The lower performance
of certain categories can generally be attributed to
two reasons:
• Limited Number of Training Samples: Ele-

ments such as degree, date, and algorithm have
very few instances in our dataset. As such, the
performance on these classes is lower.

• Smaller Object Sizes: Elements such as page
number and equation number tend to be of
smaller size as compared to other elements.
Since object detection models tend to struggle
with localization of smaller objects, performance
of such classes is impacted.

7.4 Comparison against Other Layout
Detection Datasets

To evaluate how the performance of similar mod-
els varies across different datasets from the docu-
ment layout analysis domain on layout analysis of
ETDs, we compare the per class AP values for ob-
ject categories supported by the DocBank dataset.



128

Categories DocBank
only

ETD-OD
only

DocBank
ETD-OD

Abstract 2.29 0.0 67.42
Author 5.8 19.27 73.27
Caption 42.72 55.04 / 18.27 97.46 / 89.03
Date 0.0 0.0 76.28
Equation 8.13 62.28 76.19
Figure 72.44 78.21 95.01
Footer 69.38 85.03 97.64
List NA NA NA
Paragraph 5.01 80.64 94.34
Reference 2.94 75.43 97.92
Section 19.88 66.99 77.63
Table 33.25 49.04 89.7
Title 1.1 11.3 73.85

Table 4: AP@0.5 values for categories supported
by DocBank using Faster-RCNN trained on different
datasets and evaluated on validation set of ETD-OD.
For Caption, we list the Figure Caption / Table Caption
values for models trained on ETD-OD.

These results are shown in Table 4. The DocBank
only is the version of Faster-RCNN pre-trained on
DocBank, that was evaluated on the ETD dataset
without any fine-tuning. The ETD only model
has been trained only on the ETD dataset without
pre-training on any other scholarly dataset. The
DocBank ETD-OD was pre-trained on DocBank
and then fine-tuned on ETD-OD.

We can see that both of the models that were
trained on the ETD dataset perform better than the
model that was just trained on the DocBank dataset.
This may be due to the fact that DocBank consists
of images of research papers, which have different

layouts as compared to long documents such as
ETDs. On the other hand, since research papers
do tend to have some similarities with ETDs, pre-
training on DocBank followed by fine-tuning on
ETD-OD gives the best results among all three.

7.5 Qualitative Analysis

In Fig. 3, we show example outputs generated
by the best performing versions of Faster-RCNN
(pre-trained on DocBank, fine-tuned on ETD-OD)
and YOLO (v7) models. Faster-RCNN fails to
detect many of the metadata elements, which is
also reflected by its low mAP values. YOLOv7 is
able to detect most of the elements on the page,
with the exception of page number. We conclude
that YOLOv7 is the best performing model on the
ETD dataset.

8 Conclusion and Future Work

In this work, we presented a new dataset and a
framework for parsing long scholarly documents
such as ETDs from PDF to structured formats such
as XML. We also presented a schema to represent
ETDs in XML format, along with extensive ex-
perimental evaluation of multiple state-of-the-art
models on the newly introduced ETD-OD dataset.
In the future, we plan to extend this work to other
types of documents, such as old archival documents
which typically contain a great amount of noise,
and make further improvements to the performance
of minority categories.

(a) Original Image (b) Faster-RCNN (DocBank, ETD-OD) (c) YOLOv7

Figure 3: Examples of outputs generated by the Faster-RCNN and YOLOv7 models.



129

Acknowledgements

This project was made possible in part by the Insti-
tute of Museum and Library Services [LG-37-19-
0078-19], PI William A. Ingram. The authors are
grateful to the University Libraries at Virginia Tech
for their generous support of this research. We also
thank Kecheng Zhu, Jiangyue Li, You Peng, Zach
Gager, and Shelby Neal for their help in dataset
curation.

References
Dan Anitei, Joan Andreu Sánchez, José Manuel Fuentes,

Roberto Paredes, and José Miguel Benedí. 2021. IC-
DAR 2021 Competition on Mathematical Formula
Detection. In International Conference on Document
Analysis and Recognition, pages 783–795. Springer.

Apostolos Antonacopoulos, David Bridson, Christos
Papadopoulos, and Stefan Pletschacher. 2009. A real-
istic dataset for performance evaluation of document
layout analysis. In 2009 10th International Confer-
ence on Document Analysis and Recognition, pages
296–300. IEEE.

Ross Girshick. 2015. Fast R-CNN. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 1440–1448.

Jaekyu Ha, R.M. Haralick, and I.T. Phillips. 1995. Re-
cursive X-Y cut using bounding boxes of connected
components. In Proceedings of 3rd International
Conference on Document Analysis and Recognition,
volume 2, pages 952–955 vol.2.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022. LayoutLMv3: Pre-Training for Doc-
ument AI with Unified Text and Image Masking. In
Proceedings of the 30th ACM International Confer-
ence on Multimedia, MM ’22, page 4083–4091, New
York, NY, USA.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka
Borovec, NanoCode012, Yonghye Kwon, TaoXie,
Kalen Michael, Jiacong Fang, Imyhxy, Lorna,
Colin Wong, Zeng Yifu, Abhiram V, Diego Montes,
Zhiqiang Wang, Cristi Fati, Jebastin Nadar, Laugh-
ing, UnglvKitDe, Tkianai, YxNONG, Piotr Skalski,
Adam Hogan, Max Strobel, Mrinal Jain, Lorenzo
Mammana, and Xylieong. 2022. ultralytics/yolov5:
v6.2 - YOLOv5 Classification Models, Apple M1,
Reproducibility, ClearML and Deci.ai integrations.
https://zenodo.org/record/7002879.Y1nceezMIiw.

Sampanna Yashwant Kahu, William A. Ingram, Ed-
ward A. Fox, and Jian Wu. 2021. ScanBank:
A Benchmark Dataset for Figure Extraction from
Scanned Electronic Theses and Dissertations. In
2021 ACM/IEEE Joint Conference on Digital Li-
braries (JCDL), pages 180–191. IEEE Computer So-
ciety.

Frank Lebourgeois, Zbigniew Bublinski, and Hubert
Emptoz. 1992. A fast and efficient method for ex-
tracting text paragraphs and graphics from uncon-
strained documents. In 11th IAPR International Con-
ference on Pattern Recognition. Vol. II. Conference
B: Pattern Recognition Methodology and Systems,
volume 1, pages 272–273. IEEE Computer Society.

Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming
Zhou, and Zhoujun Li. 2020a. TableBank: Table
Benchmark for Image-Based Table Detection and
Recognition. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 1918–
1925.

Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu
Wei, Zhoujun Li, and Ming Zhou. 2020b. DocBank:
A Benchmark Dataset for Document Layout Analysis.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 949–960.

Patrice Lopez and et al. 2008–2022. GROBID. https:
//github.com/kermitt2/grobid.

Joseph Redmon and Ali Farhadi. 2018. YOLOv3:
An incremental improvement. arXiv preprint
arXiv:1804.02767.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Zejiang Shen, Kaixuan Zhang, and Melissa Dell. 2020.
A large dataset of historical Japanese documents with
complex layouts. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition Workshops, pages 548–549.

Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin
Charles Germain Lee, Jacob Carlson, and Weining Li.
2021. LayoutParser: A unified toolkit for deep learn-
ing based document image analysis. In International
Conference on Document Analysis and Recognition,
pages 131–146. Springer.

Dominika Tkaczyk, Paweł Szostek, Mateusz Fedo-
ryszak, Piotr Jan Dendek, and Łukasz Bolikowski.
2015. CERMINE: automatic extraction of structured
metadata from scientific literature. International
Journal on Document Analysis and Recognition (IJ-
DAR), 18(4):317–335.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. 2022. YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object
detectors. arXiv preprint arXiv:2207.02696.

Lucy Lu Wang, Isabel Cachola, Jonathan Bragg, Evie
Yu-Yen Cheng, Chelsea Haupt, Matt Latzke, Bailey
Kuehl, Madeleine N van Zuylen, Linda Wagner, and
Daniel Weld. 2021. SciA11y: Converting Scientific
Papers to Accessible HTML. In The 23rd Interna-
tional ACM SIGACCESS Conference on Computers
and Accessibility, pages 1–4.

https://www.imls.gov/
https://www.imls.gov/
https://www.imls.gov/grants/awarded/lg-37-19-0078-19
https://www.imls.gov/grants/awarded/lg-37-19-0078-19
https://doi.org/10.1109/ICDAR.1995.602059
https://doi.org/10.1109/ICDAR.1995.602059
https://doi.org/10.1109/ICDAR.1995.602059
https://doi.org/10.1145/3503161.3548112
https://doi.org/10.1145/3503161.3548112
https://doi.org/10.5281/ZENODO.7002879
https://doi.org/10.5281/ZENODO.7002879
https://doi.org/10.5281/ZENODO.7002879
http://arxiv.org/abs/1:dir:dab86b296e3c3216e2241968f0d63b68e8209d3c
https://github.com/kermitt2/grobid
https://github.com/kermitt2/grobid
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf


130

Yuxin Wu, Alexander Kirillov, Francisco Massa,
Wan-Yen Lo, and Ross Girshick. 2019.
Detectron2. https://github.com/
facebookresearch/detectron2.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. 2017. Aggregated residual transfor-
mations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1492–1500.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio,
Cha Zhang, Wanxiang Che, et al. 2021. Lay-
outLMv2: Multi-modal Pre-training for Visually-rich
Document Understanding. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 2579–2591.
DOI:10.18653/v1/2021.acl-long.201.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang,
Furu Wei, and Ming Zhou. 2020. LayoutLM:
Pre-training of Text and Layout for Document
Image Understanding. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1192–
1200. https://www.kdd.org/kdd2020/accepted-
papers/view/layoutlm-pre-training-of-text-and-
layout-for-document-image-understanding.

Xu Zhong, Jianbin Tang, and Antonio Jimeno
Yepes. 2019. PubLayNet: Largest dataset ever
for document layout analysis. In 2019 Inter-
national Conference on Document Analysis and
Recognition (ICDAR), pages 1015–1022. IEEE.
DOI:10.1109/ICDAR.2019.00166.

Kecheng Zhu, Zachary Gager, Shelby Neal, Jiangyue
Li, and You Peng. 2022. Object Detec-
tion. Virginia Tech CS4624 team term project,
http://hdl.handle.net/10919/109979.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

