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Abstract

In many real-world machine learning applica-
tions, samples belong to a set of domains e.g.,
for product reviews each review belongs to
a product category. In this paper, we study
multi-domain imbalanced learning (MIL), the
scenario that there is imbalance not only in
classes but also in domains. In the MIL set-
ting, different domains exhibit different pat-
terns and there is a varying degree of simi-
larity and divergence among domains posing
opportunities and challenges for transfer learn-
ing especially when faced with limited or in-
sufficient training data. We propose a novel
domain-aware contrastive knowledge transfer
method called DCMI to (1) identify the shared
domain knowledge to encourage positive trans-
fer among similar domains (in particular from
head domains to tail domains); (2) isolate the
domain-specific knowledge to minimize the
negative transfer from dissimilar domains. We
evaluated the performance of DCMI on three
different datasets showing significant improve-
ments in different MIL scenarios.

1 Introduction

The majority of existing works in imbalanced learn-
ing focus on the class imbalance setting where
classes are presented in a long-tailed distribution:
a subset of classes (head classes) have sufficient
samples, while other uncommon or rare classes
(tail classes) are underrepresented by limited sam-
ples. This setting is challenging because the model
naturally focuses largely on the majority classes
and there may be no sufficient data for tail classes
to recover their underlying distribution (Liu et al.,
2019).

Even though extensive work has been done on
the class imbalance problem, the consideration of

∗Work done as an intern at Amazon Alexa AI.

domains1 is often missed. In many real-world sce-
narios, data naturally belongs to a set of domains
e.g., for an online store, a potential domain as-
signment for each customer review can be defined
based on the corresponding store departments.

A simplistic solution is to ignore domain assign-
ments and train a classifier for all domains, which
we refer to as domain agnostic learning (D-AL). D-
AL entirely ignores domains and assumes that the
model can “automatically” discover the data dis-
tribution for domains and learn them equally well.
The drawbacks of such an approach are obvious: if
the training data is sourced from many domains, up-
dating all parameters may lead the model to focus
on the subsets of the data in proportion to their ease
of access or frequency. Moreover, if the data from
different domains are dissimilar, agnostic learning
may cause undesirable convergence dynamics i.e.,
negative transfer. We, therefore, argue that in the
multi-domain imbalanced learning (MIL) scenar-
ios, a learning algorithm should consider domain
information and leverage them to achieve effective
knowledge transfer.

The MIL is a challenging problem. First, dif-
ferent domains may have very different number of
samples and show a long-tailed distribution. For ex-
ample, an intelligent assistant (e.g. Amazon Alexa)
may provide a wide variety of skills and different
skills may vary largely in number of examples. It
is possible that some internal developed skills (e.g.
music or whether) have hundreds of thousands of
samples while many third-party developed skills
may have only less than 10 samples in the same
dataset (Kachuee et al., 2021). Second, domains
may exhibit different semantic similarities and dis-
parities with each other. For instance, a feature
may show positive correlation with a label for cer-

1In this paper, the term domain is used to refer to a segmen-
tation of samples, and it should not be confused with the same
term also used in the domain adaptation literature studying the
distribution shift problem.
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tain domains while it is negatively correlated for
others. Third, the data-provided domain annotation
may not be completely accurate or sufficiently fine-
grained. For example, a sentence “Due to software
or hardware issues, my computer cannot open my
favorite text book, One hundred Years of Solitude”
may belong to both computer and books domains
while it may have only one domain assignment in
the dataset.

Perhaps the most intuitive approach for MIL is
multi-task learning (MTL), where separate heads
are used for different domains. While MTL consid-
ers domains, we will show it performs poorly in our
experiments due to the lack of knowledge transfer
between the classifiers. We believe that the key to
successful MIL is to not only enable but encourage
positive transfer learning across domains.

In this paper, we propose Domain-aware
Contrastive Knowledge Transfer for Muti-domain
Imbalance learning (DCMI). DCMI introduces a
novel domain-aware representation layer based on
domain embeddings which enables fine-grained
and scalable representation sharing or separation.
Complementary to the data provided domain as-
signments, we use an auxiliary domain classifica-
tion task to help determine the relevance of a sam-
ple to each domain i.e., soft domain assignments.
DCMI uses a novel contrastive knowledge transfer
objective to move the representation from similar
domains closer and representation from dissimilar
domains further apart. We conduct extensive exper-
iments on three different multi-domain imbalanced
datasets to demonstrate the effectiveness of DCMI.

2 Related Work

The recent imbalance learning literature can be
organized into the following categories:

Data Resampling. This is one of the most
widely used practices to artificially balance the dis-
tribution. Two popular options are under-sampling
(Buda et al., 2018; More, 2016) and over-sampling
(Buda et al., 2018; Sarafianos et al., 2018; Shen
et al., 2016). Under-sampling removes data from
the head (dominant classes) while over-sampling
repeats the data from the tail (minority classes).
These approaches can be problematic as discarding
tends to remove important samples and duplicating
tends to introduce bias or overfitting.

Data Augmentation. Data augmentation has
been used to enrich the tail classes. A popular ap-
proach is to leverage the Mixup (Zhang et al., 2018)

technique to augment the minority classes. Remix
(Chou et al., 2020) assigns the label in favor of
minority classes to the mixup samples, Liu et al.
(2020) prepares a “feature cloud” for mixing up
that has a larger distribution range for tail classes.
Kim et al. (2020) adds noise to head classes to gen-
erate tail classes. Chu et al. (2020) decomposes the
feature spaces and generate tail classes samples by
combining class-shared feature from head classes
and class-specific features from tail classes. How-
ever, this is usually a non-trivial work to generate
meaningful samples that can help tail classes.

Loss Reweighting. The basic idea of reweight-
ing is to allocate larger weight for loss terms corre-
sponding to tail classes while less weight for head
classes. In class-sensitive cross-entropy loss (Jap-
kowicz and Stephen, 2002), the weight for each
class is inversely proportional to the number of
samples. Ren et al. (2018) leverages a hold-out
evaluation set to minimize the balanced loss.

Regularization. This approach adds an addi-
tional regularization term to improve the training
for the tail samples. Lin et al. (2017) adds a factor
to the standard cross-entropy loss to put more focus
on hard, misclassified samples (usually attributed
to the minority classes). Cao et al. (2019) proposed
to regularize the minority classes strongly so that
the generalization error of minority classes can be
improved. While regularization is simple and effec-
tive, the soft penalty can be insufficient to make the
model focus on the tail classes and a large penalty
may negatively affect the learning itself.

Parameter isolation. It has been shown that
decoupling the learning into representation learn-
ing and classifier learning can be quite effective.
BBN Zhou et al. (2020) proposed a two-branch
approach where the representation learning branch
is trained as there is no class imbalance (input ran-
dom sampling data) while the classifier learning
branch applies the reverse sampling technique. The
two branches are then combined by a curriculum
learning strategy. Wang et al. (2021) further im-
proves BBN by replacing the cross-entropy loss in
representation learning branch into a prototypical
supervised contrastive loss. This approach offers
the opportunity to optimize each part separately but
also make it hard to transfer knowledge from head
to tail classes

Domain Imbalanced Learning. The above ap-
proaches mostly consider the class imbalance but
ignore the imbalance across domains. Cheng et al.
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(2020) proposed a doubly balancing technique for
both class imbalance and cross-domain imbalance,
which only limited to two domains, without any ex-
plicit mechanism to encourage the positive transfer
and avoid the negative transfer.

3 Problem Definition

In this paper, we assume access to a set of samples
(xi, yi, j) for i = {1 . . . N}, yi ∈ {1 . . . C}, and
j ∈ {1 . . .M}. Here, N is the number of samples,
C is the number of classes, and M is number of do-
mains, i.e., shared feature space and label set across
domains. We assume the scenario where exists (a)
class imbalance: classes are not evenly distributed
in each domain; (b) domain imbalance: domains
are not evenly distributed, i.e., some domains may
have much more or less number of examples than
other domains; and (c) domain divergence: while
some domains are naturally similar to others and
thus positively correlated, some domains are natu-
rally dissimilar to others and negatively correlated.
Given these assumptions, in multi-domain imbal-
anced learning (MIL) we seek a model to minimize
the expected loss for all domains (i.e., macro aver-
age).

4 Proposed Method

Fig. 1 presents an overview of the proposed method.
In the MIL problem, it is crucial to identify the
shared knowledge that can be transferred across
similar domains to improve the tail domain per-
formance and the domain-specific knowledge that
needs to be handled carefully to avoid a negative
transfer. To obtain domain-aware representations,
we leverage domain embeddings to adaptively se-
lect the useful representation for each specific do-
main (Sec. 4.1). Additionally, regardless of the
dataset provided domain assignment, in reality, a
sample can belong to multiple domains to differ-
ent degrees. To address this, we propose a domain
classification task to obtain the relevance of a sam-
ple to each domain and transfer the related domain
knowledge using a contrastive method (Sec. 4.2).

4.1 Domain-Aware Representation

We suggest a domain-aware representation layer
to adaptively select the appropriate representation
(neurons) for each domain. For a domain j, the cor-
responding embedding vj consists of differentiable
parameters that can be learned in an end-to-end
fashion. Based on this, the sigmoid function is

Figure 1: An overview of the DCMI training process.
(i) DCMI takes as input a sample x(i) from domain
j. (ii) The encoded feature vector hi is computed
using a shared body network (e.g., BERT). (iii) The
domain index is used to get the corresponding domain
embedding used to compute the domain mask mj and
domain-aware representation ĥj

i . (iv) The supervised
classification (Lsup), contrastive (Lcon), and domain
classification (Ldom) loss terms are computed (see Sec-
tion 4.2). (v) The flow of gradients from each loss
term is controlled such that each term is only used to
optimize a subset of trainable parameters as indicated
by green, blue, and orange colors in the drawing.

used to find the corresponding domain mask mj :

mj = σ(vj/τ) . (1)

Where τ is a temperature variable, linearly an-
nealed from 1 to τmin (a small positive value).

To obtain the domain-aware representation, we
use element-wise multiplication of the output of
the body network (i.e., BERT in this paper) h and
the mask mj :

ĥj
i = hi �mj . (2)

Note that the neurons in mj may overlap with
those in other domain masks to enable knowledge
sharing.

To make sure the vj to have a wide range and
its gradient to have a large magnitude, a gradient
compensation technique is employed to the original
gradient g (Serrà et al., 2018). Specifically,

g′ =
τ [cosh(vj/τ) + 1]

τmin[cosh(vj) + 1]
� g . (3)

The embedding matrix is trained jointly with the
supervised classification objective using a typical
cross-entropy loss, denoted by Lsup.
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4.2 Contrastive Knowledge Transfer

Even though we obtain the domain-aware repre-
sentation using the suggested domain embedding,
there are two limitations: (a) apart from support-
ing shared features, there is no explicit mechanism
to actively encourage knowledge transfer; (b) the
dataset provided domains are not necessarily ac-
curate and fine-grained in the real world. Certain
examples can be attributed to multiple domains
with different degrees of relevance. For example,
a review written on a product is usually consid-
ered in the general domain of that product (e.g.,
computers); however, semantically, it may involve
discussion of other domains (e.g., the music play-
back quality of a laptop).

To address the above issues, we employ a do-
main classification task to estimate the relevance
of each sample to different domains. We leverage
these relevance/confidence scores as soft labels to
conduct contrastive learning, allowing knowledge
transfer from similar domains at the instance level.

Domain Classification. To estimate the rel-
evance of different domains for a given sample,
we leverage a sigmoid classification head with M
output neurons. For training, we employ binary
cross-entropy (BCE) loss Ldom using the dataset
provided domain assignments as labels. Using the
trained domain classifier, assuming it can general-
ize and capture domain similarities, we estimate
the relevance of sample i to each domain using its
sigmoid output score for domain j, denoted by aj

i .
Note that the domain classification task is only

an auxiliary task to be used in the contrastive learn-
ing objective explained next. Therefore, we block
gradients from this objective to flow outside the
domain classifier head.

Contrastive Learning. Fig. 2 shows an illustra-
tion of the proposed contrastive objective. Here, for
a certain sample, regardless of the dataset provided
domain, we compute its domain-aware representa-
tions for all domains: ĥ1

i . . . ĥ
M
i . Then, we com-

pute an augmented view of the sample by simply
computing a weighted average of domain-aware
representations and their normalized relevance:

hi =

M∑

j=1

aj
i∑M

j=1 a
j
i

ĥj . (4)

Based on this, we define the contrastive objective

Figure 2: An illustration of the contrastive learning
objective: (i) Domain-aware representations ĥj

i are
computed for sample i and all domains indexed by j.
(ii) Sigmoid outputs of the domain classifier head aj

i

are used to compute a weighted average of domain-
aware representations resulting in an augmented view
hi. (iii) A soft cross-entropy loss based on the aug-
mented view and domain certainties is used as the con-
trastive objective function.

as:

Lcon = − 1

N

N∑

i=1

M∑

j=1

aj
i log(σ(hi · ĥj

i ))+

(1− aj
i ) log(1− σ(hi · ĥj

i ))) , (5)

which is essentially a soft cross-entropy loss. Intu-
itively, the contrastive objective of (5) encourages
learning representations that capture the attribution
of the augmented view to each domain. Through
this objective, similar domains are represented with
closer representations and dissimilar domains are
moved further apart such that they are easily distin-
guishable from the augmented view. Note that Lcon
is different from the typical contrastive objectives
usually used in the literature as it relies on soft do-
main assignments for the augmented view rather
than distinguishing augmented and real data.

As an example, assume that the domain-aware
representation ĥj

i is not a good representation for
sample i and lacks knowledge that is potentially
transferable from other domains (indicating by a
single color in their representation boxes), we can
see how Lcon helps (see Fig. 3):

• Sample i semantically relevant to multiple do-
mains (domain 1 and domain 3). In this case,
a1
i and a3

i have a large value while a2
i has a

smaller value. Consequently, hi is mostly the
average of ĥ1

i and ĥ3
i (half orange and half
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Figure 3: A simple example to show the effectiveness
of the contrastive knowledge transfer. Orange, red, and
green bars show the degrees of relevance to domains
1,2, and 3, respectively. Here, the contrastive objective
encourages similar domains (domain 1 and 3) to have
similar representations, while the sample belonging to
a dissimilar domain (domain 2) is pushed apart in the
representation space.

green). Here, updating based on Lcon moves
ĥ1
i and ĥ3

i closer to h . In other words, the
knowledge transfer is encouraged between the
first and third representations for that sample.

• Sample i is not semantically relevant to a do-
main (domain 2). Updating based on Lcon, ĥ2

i

moves further from hi to reflect the difference
between them. Consequently, ĥ2

i is discour-
aged from a negative knowledge transfer. This
is expected as ĥ2

i is not relevant to sample i.

4.3 Implementation Details

Final Objective. The final joint training objective
is a combination of the supervised classification,
domain classification and sample level contrastive
loss terms:

L = Lsup + λ1Ldom + λ2Lcon, (6)

where, λ1 and λ2 are hyperparameters to adjust the
impact of each term. Note that gradients computed
from each objective update different parts of the
network as shown in Fig. 1 via different colors. For
example, Ldom only updates the domain classifier
head, and Lcon updates all parameters except those
in the supervised classification head.

Architecture. A fully connected layer with soft-
max output is used as the classification head in
the last layer of BERT. We use the embedding of
[CLS] as the output of BERT. The training of
BERT, follows that of (Xu et al., 2019). We adopt
BERTBASE (uncased).

Hyperparameters. Unless otherwise stated, the
domain id embeddings have 768 dimensions. We
use 0.0025 for τmin in Eq. 3. A dropout layer with
the rate of 0.5 is placed between fully connected
layers. To find the λ1 and λ2 hyperparameters in
Eq. 6, we conducted a grid search in the [0, 5000]
range using about 200 logarithmic increments. We
provide the selected λ1 and λ2 for each dataset
in Section 5.1.3. For the contrastive objective, an
l2 normalization is applied before computing the
contrastive loss. The max length of the number of
input tokens is set to 128. We use Adam optimizer
and set the learning rate to 3× 10−5. For all exper-
iments, we train for 5 epochs using a mini-batch
size of 64.

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets
We conduct experiments using three datasets: Doc-
ument Sentiment Classification (DSC) (Ni et al.,
2019), Aspect Sentiment Classification (ASC) (Ke
et al., 2021) and Rumour and Fake News Detec-
tion (RFD) (Zubiaga et al., 2016; Wang, 2017).
These datasets have natural class and domain im-
balance. For all datasets, we use a random data
split of 10% for test, 10% for validation, and the
rest for training. To better evaluate the performance
of each method in efficient knowledge transfer, we
down-sample the training and validation sets of the
DSC, ASC, and RFD with a factor of 1000, 10,
and 10, respectively. We provide the exact domain
and class statistics in the appendix. In addition to
these datasets, we conduct additional experiments
using an altered version of the ASC dataset with
artificially dissimilar domains (Sec. 5.2.2).

DSC. For this dataset, the task is to classify each
full product review into one of the two opinion
classes (positive and negative). The training data
provides the particular type of product being re-
viewed as domain information. We adopt the text
classification formulation in (Devlin et al., 2019),
where the [CLS] token is used to predict the opin-
ion polarity.

To build the DSC dataset, we use 29 domains
from the Amazon Review Datasets (Ni et al., 2019)
2, then binarize the ratings by converting 1-2 stars
to negative and 4-5 stars to positive.

2https://nijianmo.github.io/amazon/
index.html
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ASC. This dataset provides a classification of re-
view sentences on their aspect-level sentiment (one
of positive and negative). For example, the sen-
tence “The picture is great but the sound is lousy”
about a TV expresses a positive opinion about the
aspect “picture” and a negative opinion about the
aspect “sound.” We adopt the ASC implementation
by Xu et al. (2019), where the aspect term and sen-
tence are concatenated via [SEP] in BERT. The
opinion is predicted using the [CLS] token.

The ASC dataset (Ke et al., 2021) consists of 19
domains from 4 sources: (a) HL5Domains (Hu
and Liu, 2004) with reviews of 5 products; (b)
Liu3Domains (Liu et al., 2015) with reviews of
3 products; (c) Ding9Domains (Ding et al., 2008)
with reviews of 9 products; and (d) SemEval14
with reviews of 2 products - SemEval 2014 Task 4
for laptop and restaurant.

RFD. This dataset is compose of PHEME rumor
detection (Zubiaga et al., 2016) and LIAR fake
news detection (Wang, 2017) datasets. For rumor
detection, the task is to identify whether a piece
of given news is a rumor or not, while for the fake
news detection, it is to identify fake or real news
pieces. We follow Devlin et al. (2019) where the
[CLS] token is used for the classification.

The RFD dataset consists of 6 domains from
the PHEME dataset (5 domains) of rumor tweets
(Zubiaga et al., 2016)3 and the fake news detection
LIAR (Wang, 2017) (1 domain). Note that domains
in PHEME defined by different news events (e.g.
a specific shooting incident), while the domain in
LIAR is defined by news genres (e.g. politics). We
intentionally selected this dataset to evaluate the
performance of different methods when domains
are merely a segmentation of samples rather than
following a consistent definition.

5.1.2 Metrics
For each experiment, we report Area Under the
ROC Curve (AUC) as the performance measure.
Two types of results are reported: macro and mi-
cro. Macro is computed by macro averaging results
computed for individual domains. Micro is com-
puted from averaging the performance of all test
samples regardless of their domain assignments.
Note that there is an imbalance in the frequency of
class labels (positive and negative in ASC, DSC;
fake and real in RFD) in addition to the imbalance

3https://figshare.com/articles/
dataset/PHEME_dataset_of_rumours_and_
non-rumours/4010619

in the domains for each dataset. To ensure the sta-
tistical significance of the results, each experiment
is repeated 5 times using random seed and random
initialization, reporting the mean and standard de-
viation of each result.

5.1.3 Comparison Baselines
As the main focus of this study is the domain im-
balance, to address class imbalance existing in our
benchmarks, we adopt the existing DRS method
(Cao et al., 2019) for all experiments. In our com-
parisons, we use multi-task learning (MTL) and
domain-agnostic learning (D-AL) as intuitive and
straightforward baselines. Additionally, since little
work has been done in MIL, we adapt the recent
class imbalance systems to MIL by re-sampling or
re-weighting based on the domain statistics. For
each case, we follow similar architectures as DCMI
to ensure fair comparisons. The compared meth-
ods cover various approaches including: loss re-
weighting (D-DRW (Cao et al., 2019)), regular-
ization (D-Focal (Lin et al., 2017)), re-sampling
(D-DRS (Cao et al., 2019)), parameter isolation (D-
BBN (Zhou et al., 2020) and D-HybridSC (Wang
et al., 2021)), and mixture-of-experts (D-MDFEND
(Nan et al., 2021)). Note that the prefix “D-” in the
model name is to indicate that we adapt them to the
domain imbalance model.

Among these approaches, D-DRW and D-DRS
are re-sampling and re-weighting methods with
a deferred training scheduler. As suggested by
Cao et al. (2019) the re-sampling or re-weighting
are only effective after 80% of epochs have
been trained. D-focal is a regularization-based
method that uses an carefully designed loss func-
tion tailored for imbalanced data. D-BBN and
D-HybridSC are two recent parameter isolation
approaches that have shown state-of-the-art perfor-
mance. D-MDFEND is used for multi-domain fake
news detection which applies mixture-of-experts to
deal with multi-domain transfer and isolation.

Regarding the DCMI hyperparameters i.e. (λ1,
λ2), we used (50, 6), (30, 15), and (4, 3) for the
ASC, DSC, and RFD datasets, respectively. Refer
to Section 4.3 for the hyperparameter search space
and other implementation details.

5.2 Quantitative Results
5.2.1 Comparison with Other Work
Table 1 presents a comparison of DCMI with other
baselines. From this table, DCMI consistently
outperforms other competitors for both metrics.
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Model
DSC ASC RFD Altered ASC

Macro Micro Macro Micro Macro Micro Macro Micro
MTL (multitask learning) 74.1±3.1 77.3±3.8 80.0±1.8 84.1±0.7 57.4* 59.1* 76.3±2.9 84.9±2.4

D-AL (domain agnostic) 80.6±3.0 81.3±3.0 82.5±2.3 84.8±1.7 68.8±2.9 70.2±2.6 51.9±1.0 61.1*
D-DRS (Cao et al., 2019) 76.3* 76.6* 84.3±2.7 86.0±2.3 71.4±1.2 72.6±0.9 51.4±0.9 58.3*
D-DRW (Cao et al., 2019) 80.6±3.4 80.9±3.2 76.7* 78.0* 72.6±0.8 74.0±0.6 51.6±1.2 59.1*
D-Focal (Lin et al., 2017) 74.84* 74.97* 75.2* 77.1* 71.4±3.2 72.0±3.4 50.8±0.5 56.7*

D-BBN (Zhou et al., 2020) 79.2±3.7 79.8±3.8 75.6* 77.6* 64.3* 66.1* 49.9±1.4 54.5±3.9

D-HybridSC (Wang et al., 2021) 82.4* 82.4±3.9 83.5±2.2 84.9±2.2 71.2±1.4 72.3±1.2 50.7±1.0 56.7*
D-MDFEND (Nan et al., 2021) 80.5±3.5 80.8* 81.0±3.6 82.8±3.4 69.5±2.0 72.0±2.5 73.8* 83.4*

DCMI (this work) 83.7±1.3 83.8±1.3 85.0±0.7 87.2±0.4 74.2±1.2 74.1±1.0 77.8±1.9 85.2±1.4

* indicates that we only report the average results and there is a convergence issue due to the small training set or extreme imbalance

Table 1: Comparison of macro and micro averaged AUC results for DCMI (this work) and other baselines.

Specifically, DCMI is much more data-efficient
compared to other baselines, as it effectively en-
courages positive knowledge transfer across do-
mains. Among the three datasets, DCMI has the
largest improvement margin for RFD. This can
be attributed to the fact that domains in RFD are
more diverse than those in ASC and DSC. The
sentiment classification domains as in ASC and
DSC have similarities as in these tasks positive
or negative sentiments are usually expressed with
similar words/phrases. For example, wonderful
and terrible have similar interpretation for differ-
ent tasks/domains to express positive or negative
sentiment. However, expressions in fake news or
rumors are far more diversified, follow more com-
plex semantics, and even contradicting at times.
For example, “guns” and “shooting” appear many
times in “Charlie Hebdo” domain while they almost
never appear in other domains like “Germanwings
Flight”. Even more interestingly, “Trump” appears
frequently in both the fake news of “COVID-19”
domains and the real news of “government”, there-
fore it is a significant keyword with different do-
main interpretation. Under such domain disparities,
selectively transferring common knowledge while
preventing negative transfer becomes crucial which
we believe is addressed by this work.

For the most recent state-of-the-art methods pre-
sented in Table 1, we can observe mixed MIL per-
formance results for different datasets indicating
less adaptability compared to DCMI. This is per-
haps because they do not employ any viable mech-
anism to explicitly encourage positive transfer.

5.2.2 Extremely Dissimilar Data

We claim that DCMI is capable of adaptively se-
lecting the useful knowledge (neurons) for a given
domain and thus robust to extremely dissimilar do-

Model
DSC ASC RFD

Macro Micro Macro Micro Macro Micro
DCMI 83.7±1.3 83.8±1.3 85.0±0.7 87.2±0.4 74.2±1.2 74.1±1.0

-Ldom 81.9±3.0 82.3±2.7 84.5±1.3 86.7±0.9 73.1±1.7 74.3±0.8

-Ldom,Lcon 80.2±3.4 81.0±3.2 82.8±1.6 85.3±1.4 69.5±1.3 69.2±0.9

Table 2: Ablation study of DCMI. "-Ldom" and "−Lcon"
indicate omitting the domain classification and con-
trastive loss terms, respectively.

mains. To demonstrate this, we create an artificial
case where domains are extremely dissimilar in the
dataset by design. Specifically, we divide the ASC
dataset into two parts. The first part contains first
10 domains and the second part contains the other
9 domains. We keep the first part as is, while in-
verting the labels for the second part (i.e., flipping
positive to negative and vice versa). Note that in a
sentiment classification task such as ASC, domains
are highly correlated so inverting labels for half of
domains creates a drastic domain disparity.

Table 1 shows the results of using the altered
ASC data. We can see all baselines except MTL
and D-MDFEND reach on only around 50% AUC.
This is because the extremely high domain diver-
gence is causing a severe negative transfer and
making it difficult for the majority of baselines
to learn a good predictor. However, MTL and
D-MDFEND perform better than other baselines,
perhaps since negative transfer is reduced due to
the use of separate heads for different domains
in MTL and mixture-of-experts in D-MDFEND.
Nevertheless, DCMI still outperforms MTL and
D-MDFEND, confirming that DCMI is not only
capable of isolating domain-specific knowledge but
also is able to encourage positive transfer among
similar domains, which is here for domains within
each data part of the altered dataset.
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Domains Review Label D-AL
DCMI

-Ldom,Lcon
DCMI

Laptop The nicest part is the low heat output and ultra quiet operation. P. N. P. P.
MicroMP3 The flaw is inside the Zen. N. P. N. N.

Laptop It feels cheap, the keyboard is not very sensitive. N. P. P. N.
Restaurant The downstairs bar scene is very cool and chill... P. N. N. P.
Restaurant The sushi is cut in blocks bigger than my cell phone. N. P. P. N.

Table 3: Qualitative comparison of predictions for different methods on a set of selected test samples from the ASC
dataset (Ke et al., 2021). Italic text indicates the aspect in the review. “P.” indicates positive and “N.” indicates
negative assignments.

5.2.3 Ablation Study
We conduct an ablation study to analyze the im-
pact of each objective term. The results of this
experiment are presented in Table 2. Here, “-Ldom”
indicates DCMI without the domain classification.
“-Ldom,Lcon” indicates DCMI without the domain
classification and contrastive loss. Note that if we
remove the domain-aware representation layer in
addition to Ldom and Lcon, DCMI becomes D-AL.
Based on the results provided in Table 2 the full
DCMI system gives the best results, showing that
every suggested component is crucial to the final
model performance.

5.3 Qualitative Results
Table 3 shows several examples from ASC test set.
For each example, we show the ground truth label
(the third column), predictions of D-AL, DCMI
and DCMI-[Ldom,Lcon]. By comparing D-AL and
DCMI-[Ldom,Lcon], we can see the effectiveness
of the domain-aware representation layer. By com-
paring DCMI and DCMI-[Ldom,Lcon], we can see
whether the contrastive knowledge transfer is suc-
cessful.

In the first row, “quiet” is a positive sentiment
word in the “laptop” domain. However, “quite” can
indicate negative in other domains (e.g., a “quite”
earbud in “MP3” domain indicates negative senti-
ment). We can see DCMI and DCMI -[Ldom,Lcon]
are able to separate the different polarity of the
same sentiment word from different domains, while
D-AL fails, suggesting that the knowledge selec-
tion in DCMI is capable of learning discriminative
domain-aware representation.

In the second row, we can see D-AL mistakenly
takes the review as positive due to the small amount
of training data in the “MP3” domain. DCMI and
DCMI -[Ldom,Lcon] can make the correct predic-
tion because of their ability to transfer knowledge
from similar domains.

The last three rows of Table 3 showcase where

only DCMI is correct. In the “laptop” domain (the
third row), “cheap” conveys a negative sentiment
in the example. However, “cheap” can indicate
positive sentiment in the “laptop” domain if it is
talking about the software domain. Therefore, an
MIL model that only considers the annotated do-
main (e.g., DCMI-[Ldom,Lcon]) fails.Similarly, the
polarities of “cool” and “chill” depend not only
on the dataset provided domain but also on the de-
grees of domain relevance for a given sample. The
last case is an ironic expression, indicating DCMI
provides a deeper understanding of the review.

In addition to the presented results, we provide a
visual analysis of the domain-aware representation
layer using t-SNE in the appendix.

6 Conclusion

In this work, we studied the problem of learning
from multi-domain imbalanced data, where not
only there is class imbalance but also there is an
imbalance among domains with varying degrees of
similarity. We proposed a novel technique called
DCMI that is capable of identifying the shared
knowledge that can be transferred to improve the
tail domain performance and the domain-specific
knowledge that needs to be handled carefully to
avoid negative transfer. DCMI employs a domain-
aware representation layer to adaptively select the
relevant knowledge for each domain and lever-
ages a novel contrastive learning objective to en-
courage knowledge transfer for relevant domains.
Based on the experiments using three challenging
multi-domain imbalanced datasets, DCMI shows
improvements over the current state-of-the-art and
demonstrates applicability to different scenarios.
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A Detailed Datasets Statistics

In Table 4, 6, and 5, we provide the frequency of
samples corresponding to each domain for the ASC,
DSC, and RFD datasets.

Domains
Train Validation Test

N. P. N. P. N. P.
Luxury Beauty 1 2 1 1 260 2780

Electronics 61 436 7 54 773 5459
CDs Vinyl 7 99 1 12 89 1243
Appliances 1 1 1 1 3 184

Digital Music 1 12 1 1 401 15883
AMAZON FASHION 1 1 1 1 21 262

Office Products 4 55 1 6 55 693
Books 146 1835 18 229 1834 22946

Gift Cards 1 1 1 1 4 290
Grocery Gourmet Food 7 77 1 9 91 970
Cell Phones Accessories 11 71 1 8 138 890

Prime Pantry 1 9 1 1 692 12160
Home Kitchen 53 457 6 57 663 5719

Magazine Subscriptions 1 1 1 1 22 192
Pet Supplies 19 133 2 16 244 1673

Software 1 1 1 1 222 899
Sports Outdoors 17 193 2 24 212 2415

All Beauty 1 1 1 1 18 498
Automotive 10 118 1 14 132 1475

Musical Instruments 1 16 1 2 1475 20058
Movies TV 29 215 3 26 365 2693

Video Games 4 31 1 3 5502 39327
Tools Home Improvement 13 140 1 17 170 1760

Toys Games 9 126 1 15 121 1575
Patio Lawn Garden 6 52 1 6 83 656
Arts Crafts Sewing 2 35 1 4 2714 43844

Clothing Shoes Jewelry 89 726 11 90 1120 9075
Kindle Store 9 152 1 19 115 1909

Industrial Scientific 1 5 1 1 442 6821

Table 4: The number of samples in each domain and
data split for the DSC dataset. “N.” indicates negative
labels and “P.” indicates positive labels.

Dataset Domains
Train Validation Test

Fake/
Rumour

Real
Fake

/Rumour
Real

Fake/
Rumour

Real

PHEME

Ferguson 51 17 8 2 258 86
Charlie Hebdo 97 27 16 4 487 138
Germanwings

Crash
13 14 2 2 70 72

Sydney Siege 41 31 7 5 210 157
Ottawa Shooting 25 28 4 4 126 141

LIAR Politic 199 168 26 16 250 211

Table 5: The number of samples in each domain and
data split for the RFD dataset. RFD is composed of
PHEME and LIAR data. “N.” indicates negative labels
and “P.” indicates positive labels.

Dataset Domains
Train Validation Test

N. P. N. P. N. P.

SemEval14
laptop 80 93 66 57 128 341

restaurant 77 209 26 70 196 728

Ding9Domains

HitachiRouter 3 9 9 18 32 74
CanonS100 4 6 2 20 11 77

ipod 3 6 6 13 20 57
Nokia6600 8 14 15 30 48 134

DiaperChamp 2 9 5 19 26 70
CanonD500 1 5 1 13 8 52

Norton 2 9 8 16 38 60
MicroMP3 21 9 45 15 170 73

LinksysRouter 7 3 20 2 59 30

HL5Domains

Creative40G 14 28 35 50 155 184
ApexAD2600 12 9 26 17 87 85

Nokia6610 11 5 28 6 114 22
Nikon4300 8 1 16 4 74 8
CanonG3 11 2 21 7 89 26

Liu3Domains
Computer 13 4 34 1 101 41

Router 9 6 19 12 73 50
Speaker 19 2 31 13 140 36

Table 6: The number of samples in each domain and
data split for the ASC dataset. ASC is composed of
four datasets. “N.” indicates negative labels and “P.”
indicates positive labels.
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B Visual Analysis of the Domain-aware
Representation Layer

We visualize sample representations before and af-
ter the domain-aware representation layer using
for ASC dataset. See Figure 4 for t-SNE visual-
izations. Here, we color the samples according to
their domain assignments.

Before the domain-aware representation layer,
we can see the points related to different domains
are mixed and hard to differentiate. However, af-
ter the domain-aware representation layer, sam-
ples with similar colors form clusters, indicat-
ing a higher embedding distance for different do-
mains. From this visualization, we can infer that
the suggested method is able to learn discriminative
domain-aware representations.

(a) Before domain-aware representation layer

Laptop
Restaurant
HitachiRouter
CanonS100

ipod
ApexAD2600
Nokia6600
DiaperChamp

CanonD500
CreativeLabs
Norton
MicroMP3

Speaker
LinksysRouter
Nokia6610
Nikon4300

CanonG3
Computer
Router

(b) After domain-aware representation layer

Figure 4: t-SNE visualization of sample representa-
tion for different domains, (a) before and (b) after the
domain-aware representation layer for the ASC dataset
(Ke et al., 2021). Figure best viewed in color.
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