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Abstract

In this paper, we describe the approaches we
developed for the Nuanced Arabic Dialect Iden-
tification (NADI) 2022 shared task, which con-
sists of two subtasks: the identification of
country-level Arabic dialects and sentiment
analysis. Our team, UniManc, developed ap-
proaches to the two subtasks which are under-
pinned by the same model: a pre-trained MAR-
BERT language model. For Subtask 1, we ap-
plied undersampling to create versions of the
training data with a balanced distribution across
classes. For Subtask 2, we further trained
the original MARBERT model for the masked
language modelling objective using a NADI-
provided dataset of unlabelled Arabic tweets.
For each of the subtasks, a MARBERT model
was fine-tuned for sequence classification, us-
ing different values for hyperparameters such
as seed and learning rate. This resulted in mul-
tiple model variants, which formed the basis
of an ensemble model for each subtask. Based
on the official NADI evaluation, our ensemble
model obtained a macro-F1-score of 26.863,
ranking second overall in the first subtask. In
the second subtask, our ensemble model also
ranked second, obtaining a macro-F1-PN score
(macro-averaged F1-score over the Positive
and Negative classes) of 73.544.

1 Introduction

There are approximately 400 million Arabic speak-
ers worldwide, spread geographically in 22 coun-
tries around the world (Boudjellal et al., 2021).
With early manifestations of Arabic dating back to
the 8th century BCE, the Arabic language has been
redefined and refined over many decades across
different continents. Many scholars struggled to de-
fine Arabic as a single language, with many consid-
ering Classical Arabic (CA)—the language of the
Quran—as the ideal archetype. In modern times,
Modern Standard Arabic (MSA) has been used
in most official publications, broadcasts, political
speeches, and written texts. However, most people

use spoken varieties of Arabic in their daily lives.
Some of these spoken varieties differ from each
other significantly and are almost mutually unintel-
ligible, whilst others bear strong similarities. These
spoken variations of Arabic are commonly referred
to as Dialectical Arabic (DA).

Thus far, the majority of the research in Ara-
bic Natural Language Processing (NLP) has over-
looked the variations across the different Arabic
dialects (Oueslati et al., 2020), largely due to the
lack of datasets that take the different DA types
into consideration. The goal of the Nuanced Ara-
bic Dialect Identification (NADI) shared task se-
ries is to diminish this research gap, by providing
datasets where examples are organised according to
dialects (Abdul-Mageed et al., 2020, 2021b, 2022).
As part of the NADI 2022 shared task, organisers
made available datasets that support two sub-tasks,
namely, dialect identification (Subtask 1) and sen-
timent analysis of country-level dialectical Arabic
(Subtask 2).

Recent advancements in NLP research have led
to the development of transformer-based language
models which learn contextual embedding rep-
resentations of sequences, and which have been
shown to obtain state-of-the-art performance on
many NLP tasks (Vaswani et al., 2017; Liu et al.,
2020; Nagoudi et al., 2022). MARBERT (Abdul-
Mageed et al., 2021a) is a language model that
was pre-trained specifically on DA, and formed the
basis of our approach to the NADI 2022 shared
tasks.

2 Datasets

NADI 2022 is the third in the NADI shared tasks
series and consists of two subtasks. Similar to past
editions of the shared task, the first subtask is a
multi-class classification problem aimed at recog-
nising the Arabic dialects used in tweets. Unlike in
previous years, however, a new task focussing on
sentiment analysis of dialectical Arabic tweets was
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Figure 1: Label distribution of the training and the development sets for Dialect Arabic Identification (Subtask 1)
and Sentiment Analysis (Subtask 2).

organised and put forward as the second subtask.
The organisers prepared a dataset of labelled

tweets covering 18 Arab countries for the dialect
identification subtask. It was split into training,
development, and two test sets. Whilst the first test
set (Test-A) covers 18 country-level dialects (as the
training and development sets do), the second one
(Test-B) includes an unknown number of dialects.

The distribution of examples across the different
classes of interest for each of the subtasks is shown
in Figure 1. As one can observe in Figure 1-A, the
distribution across the 18 dialects is unbalanced,
with Eqypt being the most frequently occurring
label in the dataset for Subtask 1.

For the sentiment analysis subtask, the organis-
ers provided a dataset of tweets labelled as any
one of three classes: Positive, Negative and
Neutral. It was divided into training, develop-
ment and test sets. As shown in Figure 1-B, the
Positive and Negative classes have an almost
equal distribution between them, but the Neutral
class has a slightly lower number of training sam-
ples.

The datasets for both subtasks were pre-
processed whereby URLs were replaced with the
token ‘URL’, and Twitter usernames were replaced
with the token ‘USER’, in order to normalise them.

3 Methodology

Our approaches to the two subtasks are both un-
derpinned by the first version of MARBERT, a lan-
guage model that had been trained on a 128GB
dataset containing both MSA and DA tweets
(Abdul-Mageed et al., 2021a).

It is worth noting that we built our own version
of the MARBERT model by continuing to train it
for the masked language modelling (MLM) objec-
tive (Devlin et al., 2019); we describe this model

in detail in Section 3.2 below. However, our ex-
periments showed that using our own MARBERT
model led to performance improvement only for
sentiment analysis and not for dialect identifica-
tion. Therefore this model formed the basis of our
solution for Subtask 2 but not for Subtask 1.

3.1 Subtask 1: Dialect Identification

The original pre-trained MARBERT model was
fine-tuned for dialect identification using the full
training set for Subtask 1 that was provided by the
NADI organisers. Considering the imbalance in the
distribution of training samples across the different
classes (as shown in Figure 1), it was unsurprising
that when evaluated on the development set, the
resulting sequence classification model is unable to
predict the least represented classes (e.g., Bahrain
and Qatar), but obtains satisfactory performance
for the classes with sufficient examples.

Therefore, we investigated the use of undersam-
pling, whereby the training samples belonging to
the over-represented classes such as Egypt and KSA
(Kingdom of Saudi Arabia), were reduced. Our
undersampling technique is based on the removal
of randomly selected samples (Chawla, 2010) from
the over-represented classes; this led to the creation
of a version of the dataset where the number of
samples for each class was capped at 215 (i.e., the
number of samples in the least represented dialects,
namely, Bahrain, Qatar and Sudan). However,
we also created other dataset versions where the
number of samples per class was capped at 250 and
300. In this case, it was necessary to apply over-
sampling on the least represented classes (Chawla,
2010); to this end, randomly selected samples in
those classes were duplicated. Our initial experi-
ments showed that fine-tuning the original MAR-
BERT model on these balanced versions of the
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dataset led to classification models that are able to
predict the least represented dialects, although their
performance on the sufficiently represented dialects
was degraded compared with a model fine-tuned
on the full training set.

Considering that fine-tuning on the full training
set and fine-tuning on the balanced data, each has
its own advantages, our solution for this subtask
was based on combinations of models resulting
from both.

3.2 Subtask 2: Sentiment Analysis

Taking the checkpoint for the original pre-trained
MARBERT model1, we continued to train it for
masked language modelling using the dataset of
10 million unlabelled Arabic tweets, that was pro-
vided by the NADI organisers as part of the shared
task. Out of these tweets, 90% were used for train-
ing, whilst the remaining 10% were used for vali-
dation. Both the number of epochs and batch size
were arbitrarily set to 8 and the maximum sequence
length was fixed at 512. The resulting model was
then fine-tuned for sentiment analysis using the la-
belled tweets in the training set for Subtask 2. We
also considered creating a version of the dataset
where the dominant classes, i.e., Positive and
Negative, are undesampled. However, models
fine-tuned on this version obtained inferior classifi-
cation performance. Thus, only models fine-tuned
on the full training set comprise our solution for
this subtask.

3.3 Hyperparameter Optimisation

For each of the subtasks, we trained a number of
model variants using the full training sets for both
Subtasks 1 and 2, and additionally, on the balanced
versions of the training set for Subtask 1. These
model variants are based on the exploration of a
range of values for seed and learning rate. Specif-
ically, seed values ranging between 20 and 300
(inclusive) were investigated; we found that set-
ting the seed to 200 led to optimal performance in
both subtasks, based on results on the respective de-
velopment sets. Meanwhile, optimal performance
was obtained by setting the learning rate to values
ranging between 1.5e-5 and 2.5e-5 (inclusive).

The batch size was fixed at 32, while the number
of epochs was arbitrarily set to 8. For every training
run (on Nvidia A100 GPUs), the model trained

1https://github.com/UBC-NLP/marbert#
6-download-arbert-and-marbert-checkpoints

in the epoch where the best macro-averaged F1-
score was obtained, was considered as the best-
performing model for that run.

3.4 Ensemble Models

After hyperparameter optimisation, the eight best-
performing Subtask 1 models (according to F1-
score), were selected: four based on training on the
full training set, and the other four based on training
on the balanced data. Meanwhile, for Subtask 2,
we selected the five best-performing models (based
on F1-score) trained on the full training set.

For each subtask, we aimed to identify an ensem-
ble model (Rokach, 2019) that is based on the com-
bination of the predictions of these best-performing
models. In Subtask 1, for example, there are 255
possible combinations of the eight models (i.e.,
28 − 1 combinations). For each combination (en-
semble), the average of the prediction probabilities
output by the models for each class was taken as
the basis for the overall prediction of the ensemble.
A similar process was applied to the 31 possible
combinations of the five models for Subtask 2 (i.e.,
25 − 1 combinations).

For each of the two subtasks, the three best-
performing ensemble models were identified based
on experiments on the corresponding development
set and formed the basis of our official submission
to NADI 2022.

4 Evaluation and Results

The performance of our ensemble models for the
dialect identification subtask is summarised in Ta-
ble 1. Our best-performing model (Ens 1.1) ob-
tained a macro-averaged F1-score of 35.625 on the
development set. Meanwhile, the macro-averaged
F1-scores on the two test sets are: 34.778 on Test-
A (the test set that covers 18 dialects) and 18.948
on Test-B (the test set with an unknown number
of dialects). Nevertheless, it is worth noting that
our best ensemble model ranks third when evalu-
ated using Test-A, and ranks first when evaluated
using Test-B, amongst the submissions from the
19 teams who participated in Subtask 1. If one
takes the mean of the macro-averaged F1-scores on
Test-A and Test-B as the overall performance for
Subtask 1, our best ensemble model ranks second,
with a mean score of 26.863.

With regard to the second subtask, we present
the performance of our ensemble models for sen-
timent analysis in Table 3. Instead of the macro-
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Model Eval. data Macro-F1 Acc.

Ens 1.1
Dev 35.625 53.890
Test-A 34.778 52.333
Test-B 18.948 36.839

Ens 1.2
Dev 35.031 53.069
Test-A 34.152 51.303
Test-B 17.984 36364

Ens 1.3
Dev 34.937 52.782
Test-A 34.248 51.366
Test-B 18.435 36.974

Table 1: Results for Subtask 1 based on three different
ensemble (Ens) models.

Model Eval. data Macro-F1-PN Acc.

Ens 2.1
Dev 77.262 72.400
Test 73.544 67.700

Ens 2.2
Dev 76.904 72.400
Test 73.200 67.333

Ens 2.3
Dev 76.709 72.400
Test 73.432 67.667

Table 2: Results for Subtask 2 based on three different
ensemble (Ens) models.

averaged F1-score over all classes, a different met-
ric (macro-F1-PN) based on the macro-averaged
F1-score over the Positive and Negative classes
only, was used in the evaluation of this subtask.
Our best-performing ensemble model (Ens 2.1)
obtained a macro-F1-PN score of 77.262 on the
development set and 73.544 on the test set. This
model ranks second amongst the submissions from
10 teams who participated in Subtask 2.

5 Discussion

To allow us to draw some insights on the class-level
performance of our best-performing dialect iden-
tification model, we provide the confusion matrix
based on the development set, in Figure 2.

As one can observe in the confusion matrix, the
majority of the true samples from dialects such
as Egypt, KSA, and Iraq, have been correctly pre-
dicted by our model. This can be explained by the
fact that such classes are over-represented in the
training data. However, the over-representation of
such classes is likely to have also led to a detri-
mental effect, i.e., the model being biased towards
such dominant dialects, as can be observed in the
columns of the confusion matrix, where many sam-
ples tend to be wrongly predicted as Egypt or KSA,
for instance. Meanwhile, as expected, the model

Figure 2: Confusion matrix for our best-performing
dialect identification ensemble model, based on the de-
velopment set.

Figure 3: Confusion matrix for our best-performing
sentiment analysis ensemble model, based on the devel-
opment set.

obtained poor performance with respect to the least
represented dialects such as Bahrain and Qatar.
Also, our model tends to be confused by dialects
which correspond to regions which are geograph-
ically close to each other and hence share certain
dialects, e.g., Oman vs KSA, Lebanon vs Egypt.

As for our best-performing sentiment analysis
model, the confusion matrix in Figure 3 shows
that the model performs almost equally well on
the Positive and Negative classes. Unsurpris-
ingly, it does not perform as well for the Neutral
class, which has a slightly lower number of training
samples.

Hypothesising that limited context in any given
tweet leads to wrong predictions, we investigated
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Tweet Text English Translation Gold Pred.
1 A 	J 	¢ 	®m�'
ð @ñ 	¢ 	®m�'
 é<Ë @ May God protect him and protect us Iraq Oman

2 ½Ë ÑîD
Ê	m�'
 ú
G. P May god keep them for you Libya Oman

3 �éK
Qå�Ó ø
 X B No, she is Egyptian KSA Egypt

4 É�Ê�ÖÏ @ ñÊg ��. But the series is nice Jordan Iraq

5 ñK

	¬ñË ø
 @ I love you KSA Iraq

6 :( Q¢�̄ 	áÓ ¼AK. Back from Qatar :( KSA UAE

7 èQÒªK. Èñ¢�
ð é 	¢ 	®m�'
 é<Ë @ May Allah protect him and prolong his age KSA Oman

8 	á�
Ó@ , ½ÒÊ��
 é<Ë @ God bless you, amen KSA Oman

Table 3: Some of the incorrectly predicted samples, their English translation, their labels in the development set
(Gold) and our model’s predicted label (Pred).

whether the length of a tweet in terms of number of
tokens, has a detrimental impact on model perfor-
mance. There are 864 samples in the development
set with at most four tokens; the macro-averaged
F1-score obtained by our model on these samples
is 25.180. In contrast, the same model obtained a
substantially higher macro-averaged F1-score of
37.385 on the remaining 4007 samples which have
four or more tokens. Moreover, as we increased the
number of tokens being considered, the model’s
performance also improved: the macro-averaged
F1-score on samples with no more than five tokens
(1336 samples) and six tokens (1823 samples) is
26.126 and 28.323, respectively.

Based on the above observations and some sam-
ples (that we manually analysed), we argue that
defining Arabic dialect identification task as a clas-
sification task with a large number of classes (e.g.,
18), inevitably leads to overlap. In this scenario,
a given tweet could easily qualify as belonging to
more than one dialect, where even humans would
disagree on the dialect used. This is because many
countries may use the same phrase or wording;
especially in cases where a tweet contains only a
few tokens, it can be extremely hard to pinpoint its
country or region of origin.

Table 3 shows some samples from the develop-
ment set that were wrongly predicted by our model.
These samples contain only a few tokens thus mak-
ing it very challenging to identify their dialect. In
fact, some of these samples cannot be identified
as one dialect since they can be used in multiple
countries. For example, the first four tweets (Sam-
ples 1, 2, 3 and 4) in Table 3 were labelled as being
from a different dialect to what our model predicted
them as; however, they can also be considered as

the Egypt or KSA dialects since these phrases are
commonly used in Egypt and Saudi Arabia. More-
over, we found samples that include English words,
such as Sample 5 which was given KSA and Iraq as
its label in the development set and by our model,
respectively, when in reality it was not even writ-
ten in Arabic. It is instead a transliteration of the
English phrase “I love you”. Similarly, Sample 6
contains the word “back” transliterated into Arabic
leaving only two Arabic words which translate to

“from Qatar” from which it is impossible to detect a
dialect even by a native Arabic speaker.

We also investigated some samples from neigh-
bouring countries such as KSA, Oman and UAE
(United Arab Emirates), which are all Gulf coun-
tries. As shown in Table 3, some samples (such as
Samples 6, 7 and 8) are not easy to identify since
there are some similarities between neighbouring
countries’ dialects. We thus believe that the task of
identifying Arabic dialects could be more suitable
as a multi-label classification task whereby each
sample can be assigned more than one dialect.

6 Conclusion and Future Work

In this paper, we presented our ensemble-based
approaches to the NADI 2022 subtasks: dialect
identification and sentiment analysis. Our results
demonstrate that an ensemble model consisting of
a combination of MARBERT models fine-tuned in
different ways, for each of the subtasks, obtains top-
ranking performance. A potential future direction
is the exploration of multi-task learning for jointly
training a model on the two subtasks.
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