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Abstract

Image captioning models tend to describe im-
ages in an object-centric way, emphasising visi-
ble objects. But image descriptions can also ab-
stract away from objects and describe the type
of scene depicted. In this paper, we explore
the potential of a state of the art Vision and
Language model, VinVL, to caption images at
the scene level using (1) a novel dataset which
pairs images with both object-centric and scene
descriptions. Through (2) an in-depth analysis
of the effect of the fine-tuning, we show (3)
that a small amount of curated data suffices to
generate scene descriptions without losing the
capability to identify object-level concepts in
the scene; the model acquires a more holistic
view of the image compared to when object-
centric descriptions are generated. We discuss
the parallels between these results and insights
from computational and cognitive science re-
search on scene perception.

1 Introduction

When humans view images, they can quickly cap-
ture their ‘gist’. For example, it is immediately
evident that Figure 1 is a kitchen. Such judgments
are fast and are informed by expectations about
which objects occur in typical scenes (‘scene se-
mantics’) and their configuration (‘syntax’) (Mal-
colm et al., 2016; Võ, 2021; Self et al., 2019). This
knowledge affects the deployment of attentional
resources (Torralba et al., 2006; Oliva and Torralba,
2007; Wu et al., 2014; Henderson and Hayes, 2017).
Scene understanding and object recognition con-
strain the selection of attended locations in human
visual attention (Itti and Koch, 2001).

In this paper, we explore the implications of
these findings for image captioning models. There
are at least two levels at which an image can be
appraised. An object-centric perspective focuses
primarily on individual objects and actions (e.g.
the example caption in Fig 1). This has dominated
captioning models (see Hodosh et al., 2013, for an

Figure 1: Image from the MS-COCO 2014 validation set.
One reference caption is: a man in a chefs hat chopping food.

early, influential statement of this view) and has
informed the design of widely-used datasets, which
pair images with captions that explicitly mention
at least some of the objects in a picture (e.g. Young
et al., 2014; Chen et al., 2015; Pont-Tuset et al.,
2020; Gurari et al., 2019; Sharma et al., 2018;
Agrawal et al., 2019). In contrast, a scene-level
caption (e.g. ‘a kitchen’ for Figure 1) contains less
object-specific detail. Such captions are less redun-
dant with respect to the image they describe, but
convey enough information to generate inferences
about content and structure (e.g. kitchens typically
contain cupboards, but not birds; etc).

Most image captioning datasets contain object-
centric captions and no currently available resource
pairs both scene-level and object-centric captions
with images. In this paper, we address this gap and
ask (i) whether captioning models can be adapted
both for object-centric and scene-level captioning
and (ii) whether the two strategies rely on differ-
ent types of interplay between the visual and lin-
guistic modalities. Addressing these questions can
shed light on the ability of V&L models to rea-
son about the relationship between scenes and their
components. In addition, it is desirable for mod-
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els to generate scene-level descriptions as well as
object-centric ones. In many communicative con-
texts, scene-level captions are informative and non-
redundant, recalling the quality and the quantity
discourse maxims defined by Grice (1975).

We present a study of object-centric versus
scene-level captioning. We focus on VinVL (Zhang
et al., 2021), a BERT-based model in the OSCAR
family (Li et al., 2020b) of models, which have
recently dominated the state of the art in image
captioning.1 Our main contributions are:

i) We introduce a novel dataset, HL-Scenes
(Sec 3) extending part of the COCO dataset
(Chen et al., 2015) with scene-level descrip-
tions.

ii) We perform an in-depth investigation of the
impact of fine-tuning on the pre-trained model.
The analysis is designed to thoroughly inspect
object-scene relations by exploiting cross-
modal attention (Sec 5), coupled with probing
(Sec 7) and ablation studies (Sec 6).

iii) We show that (i) VinVL’s pre-trained represen-
tations are rich enough to support scene-level
captioning, but that (ii) fine-tuning results in a
different deployment of attentional resources.
This bears parallels to the findings in research
on human scene perception.

2 Related work

Datasets Existing image-caption datasets empha-
sise object-centric captions (an early exception, us-
ing abstract scenes, is Ortiz et al., 2015). This
is also true of web-sourced datasets such as Con-
ceptual Captions (CC; Sharma et al., 2018). For
example, the CC filtering pipeline explicitly checks
for overlaps between caption tokens and objects
identified in the image. The nocaps benchmark
(Agrawal et al., 2019) tests models’ ability to
generalise to out-of-domain objects. There are
several V&L datasets and tasks which introduce
knowledge-rich annotations and address models’
ability to reason with linguistic and visual cues
(Zellers et al., 2019, 2018; Suhr et al., 2017, 2019;
Park et al., 2020; Pezzelle et al., 2020). In this
paper, we take this line of work further by intro-
ducing the novel HL-Scenes dataset, which pairs
object-centric and scene-level captions to images.

1At the time of this work, three OSCAR-based models (OS-
CAR, VinVL, LEMON) are among the top 5 in the leaderboard
of the COCO image captioning task.

Models Transformer-based V&L models are usu-
ally divided into single-stream (Li et al., 2020a;
Chen et al., 2020; Li et al., 2020b; Su et al., 2020)
and dual-stream (Tan and Bansal, 2019; Lu et al.,
2019; Radford et al., 2021) architectures. It has
been shown that single- and dual- stream models
perform roughly at par under the same training
settings (Bugliarello et al., 2021). On the other
hand Hendricks et al. (2021) showed that model
performance is highly impacted by dataset curation,
attention, and loss function definition.

Most V&L single-stream models are inspired by
BERT (Devlin et al., 2019). They incorporate the
visual modality in the form of features extracted
using a visual backbone, typically a Faster-RCNN
(Ren et al., 2015) pre-trained on an object labelling
task such as ImageNet (Deng et al., 2009; Rus-
sakovsky et al., 2015). From the perspective of
caption generation, the Oscar (Li et al., 2020b)
single-stream architecture has emerged as an influ-
ential model. Oscar enforces grounding between
image-caption pairs by using object labels as an-
chor points (a strategy also adopted by Hu et al.,
2021). This makes it particularly suited to the goals
of this paper, namely, in-depth analysis of the cross-
modal interactions in the treatment of objects dur-
ing generation. Oscar and its successors, VinVL
(Zhang et al., 2021) and LEMON (Hu et al., 2022)
achieved SOTA performance on captioning tasks
such as COCO and nocaps.

Methods In this paper, we focus on three tech-
niques for model analysis: attention analysis, multi-
modal ablation and probing. Analyses of attention
in pre-trained V&L models include both quantita-
tive methods (e.g. Abnar and Zuidema, 2020) and
qualitative analysis (e.g. Li et al., 2020a; Wei et al.,
2021). We use both methods to study how VinVL
deploys attention during the generation, of object-
centric, versus scene-level captions (Section 5).

Several methods have been proposed to study
the extent to which V&L models exploit both vi-
sual and textual information (Shekhar et al., 2017;
Parcalabescu et al., 2022; Gat et al., 2021; Hessel
and Lee, 2020). Ablation methods analyse model
behaviour when portions of the input are masked
or deleted (Bugliarello et al., 2021; Cafagna et al.,
2021). We use the ablation of diagnostic objects in
scenes (Section 6), to study the reliance of VinVL
on such objects during scene-level caption genera-
tion.

Probes are well-suited to test for the presence
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of task-relevant information in model representa-
tions (Belinkov and Glass, 2019; Belinkov, 2022).
Cao et al. (2020) develop a probe-based benchmark
centred around different V&L tasks. Salin et al.
(2022) analyse models’ reliance on text versus vi-
sion to capture colour information. Hendricks and
Nematzadeh (2021) rely on probes to study lexical
and syntactic understanding in V&L models. In
our approach, similar in spirit, we develop probes
to identify and measure the extend to which scene
information is present in the model’s representa-
tions before and after fine-tuning on scene-level
caption generation.

3 Data

We developed the new High Level Scenes (HL-
scenes) dataset, which is explicitly designed to pair
images with both object-centric and scene-level
captions. To this end, we sampled 15k images
from the 2014 COCO train split (Chen et al., 2015),
with the constraint that each image depicts at least
one person. Captions in COCO are highly object-
centric (Lin et al., 2014). We crowd-sourced three
scene-level annotations per image on Amazon Me-
chanical Turk2, from workers with at least an 85%
approval rating. Crowd workers saw an image and
wrote a description in response to the question:
Where is the picture taken? Annotators were en-
couraged to use their knowledge of typical scenes
in writing their descriptions. Finally, we paired
our scene-level HL captions with the previously
available COCO (Lin et al., 2014) captions.

Figure 2 shows an example of an image with the
two types of captions. See Appendix E for more
examples. We collected a total of 14,997 image-
caption pairs, and we reserve 11,999 for training
and 1,499 each for validation and testing.

4 Model

VinVL (Zhang et al., 2021) is a single-stream
BERT-based model with a Faster-RCNN (Ren et al.,
2015) visual backbone. It is an extension of Oscar
(Li et al., 2020b). VinVL implements a training
strategy where object tags are used as anchor points
between the visual and textual modality to facili-
tate cross-modal alignment. As pointed out by Li
et al. (2020b), this strategy is motivated by the fact
that in the datasets used to pre-train multimodal

2Workers were paid at the rate of C0.03 per item, an
amount we consider equitable for the work involved, and
in line with rates for similar tasks.

COCO
Reference: a close-up of a kitten looking at a dog laying in
the background.
Generated: a cat and a dog sitting next to each other.

HL-scenes
Reference: in the home.
Generated: the picture is taken in a house.

Figure 2: Scene-level captions in HL-Scenes, with corre-
sponding object-centric COCO caption. The generated
captions are outputs from VinVL before and after fine-
tuning (see Section 4).

models, between 1 and 3 of the objects detected
by the visual backbone are mentioned in the cap-
tion. However, the object labels are provided by
an off-the-self object detector separately trained on
Visual Genome (Krishna et al., 2017). VinVL was
pre-trained on a combination of COCO (Chen et al.,
2015), Conceptual Captions (Sharma et al., 2018),
SBU captions (Ordonez et al., 2011) and Flickr30k
(Young et al., 2014), as well as additional VQA
data.

VinVL has been shown to perform well on un-
derstanding tasks, including VQA, NLVR2, image-
text and text-image retrieval (Goyal et al., 2017;
Suhr et al., 2019; Lin et al., 2014), and on genera-
tive tasks, including COCO (Chen et al., 2015) and
nocaps (Agrawal et al., 2019).

In the Oscar family of models, the use of labels
as anchors makes the models ideal for our experi-
ments, in that it explicitly enables us to study the
interaction between object-level information (cap-
tured by labels and visual features) and scene-level
description generation.

4.1 Fine-tuning
We first establish that VinVL can generate scene
descriptions after fine-tunning, before turning to
an in-depth analysis of the model’s attention and
internal representations.

We note that since the HL-scenes dataset extends
the COCO dataset, the model has been exposed to
the images of the HL-scenes dataset during pre-
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Epoch. B4 M RL CIDEr SPICE
2 49.3 29.3 67.1 161.8 32.6
4 49.7 30.1 68.1 168.5 34.0
6 48.5 29.8 67.3 164.9 33.5
8 48.9 30.2 67.6 165.8 33.9
10 49.1 30.4 67.7 168.0 34.4

Table 1: Automatic metrics computed over different
epochs on the HL-Scenes validation set. B4: Bleu-4; M:
METEOR; RL: ROUGE-L.

training on COCO. On the other hand, the scene
descriptions are completely novel.

We fine-tune on scene-descriptions for 10
epochs. We use the standard configuration used
by Zhang et al. (2021) for image captioning. At
inference time, we fix the maximum generation
length to 20 tokens and use a beam size of 5.

VinVL shows a quick adaptation to the scene-
level descriptions from the first epoch. This
adaptability recalls observations made for other
transformer-based generative models (e.g. Brown
et al., 2020). We show an example in Figure 2.
For completeness, Table 1 reports the automatic
evaluation metrics computed on the validation set
over 10 epochs. For more details see Appendix A.

5 How does attention to objects change
from object-centric to scene-level
generation?

We first investigate the model’s self-attention be-
fore and after fine-tuning on the scene-level caption
generation task.

Method We focus on the self-attention patterns
in the first layer, as they are directly connected to
the inputs and do not depend on higher-level in-
teractions which might obscure the fundamental
changes in attention across the two modalities (vi-
sual features and labels) in VinVL. A discussion
of attention patterns at higher layers can be found
in Appendix (B). We select 100 random samples
from the HL-Scenes test-set and extract the atten-
tion matrices before and after fine-tuning on scene
descriptions. We aggregate the attention values by
taking the maximum across all the heads, as it al-
lows us to observe where the model tends to assign
a significant amount of attention, giving us a bet-
ter view of the potential impact of fine-tuning on
scene-level captions. VinVL prevents textual inputs
from directly interacting with the other modalities
during generation; therefore there is no interaction
between caption tokens and visual features. On

the other hand, the model includes object tags as
anchors and this allows us to study the multimodal
interactions between the visual features and these
object labels.

VinVL acquires a holistic view of the scene after
pre-training Figure 3 is a representative example
of self-attention matrices extracted from the pre-
trained (3a) and fine-tuned (3b) model with the im-
age in Figure 2. The pre-trained model, which gen-
erates an object-centric caption, focuses attention
on individual input tokens in the vision-to-vision,
vision-to-label and label-to-vision sub-blocks.

After fine-tuning, as the model generates a scene-
level caption, the self-attention appears to be more
evenly distributed over the inputs (3b). This sug-
gests that when generating scene-level captions, the
model leverages a wider range of visual features
with less exclusive focus on individual objects or
labels.

We perform a quantitative analysis of the self-
attention in the sub-blocks of the matrix involving
visual regions and object labels, computing a kernel
density estimate of the distributions of the standard
deviations and attention masses for each of the 100
samples. The result is shown in Figure 4. It is
clear that the fine-tuned model has overall a lower
standard deviation than the pre-trained model. This
confirms that a similar attention mass is distributed
more evenly after fine-tuning. We take this as ev-
idence that in the process of generating scene de-
scriptions, the fine-tuned model acquires a more
holistic view of the input image, in contrast to the
highly object-centred deployment of attentional re-
sources evident in the pre-trained model.

VinVL relies on diagnostic objects when gener-
ating scene-level captions VinVL redistributes
self-attention over a wider range of visual features
after fine-tuning. Nevertheless, previous work on
scene perception (Self et al., 2019; Võ, 2021) leads
us to expect that in describing a scene, the model
needs to rely on highly diagnostic objects. We
compute diagnosticity empirically, based on the oc-
currence of objects in scenes in our dataset. Let S
be the set of the k most frequent scene types men-
tioned in scene-level captions in the HL-Scenes
dataset.3 We proceed as follows:

1. ∀ s ∈ S we build Os
M = [os1, o

s
2, ..., o

s
n], the

ranked list of the n most attended objects by
3Since our dataset consists of captions, we extract scene

labels from these captions. See Appendix (B).
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[SEP]
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[SEP]
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(a) Attention matrix of the pre-trained model
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[SEP]
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[SEP]
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Figure 3: Attention matrices comparison for the image in Figure 2. We highlight the sub-blocks corresponding to
vision-to-vision, vision-to-label and label-to-vision. In the pre-trained model, attention mass is sharply focused on
individual portions of the input; after fine-tuning, a more even distribution is observed.
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Figure 4: Kernel density estimate of distributions
of standard deviations against attention mass for pre-
trained and fine-tuned VinVL.

the model M when generating a description
of a scene of type s.

2. Similarly, ∀ s ∈ S we collect Os
D =

[os1, o
s
2, ..., o

s
n], the ranked list of the most fre-

quent objects in images depicting scenes of
type s in the dataset D.

We measure the overlap between Os
M and Os

D by
computing their Intersection over Union (IoU),
which is only sensitive to overlap in content, as
well as their Rank Biased Overlap (RBO; Webber
et al., 2010)4, which computes the similarity of
two ranked lists. More details about this metric
are given in Appendix B. Table 2 shows RBO

4https://github.com/changyaochen/rbo

Scene RBO @ IoU @
3 5 7 3 5 7

station 0.88 0.84 0.87 0.5 0.66 1.0
road 1.0 0.9 0.91 1.0 0.66 1.0
room 0.27 0.25 0.24 0.2 0.11 0.18
sea 0.88 0.84 0.8 0.5 0.66 0.55
resort 0.72 0.7 0.7 0.5 0.42 0.55
house 0.38 0.5 0.53 0.5 0.42 0.55
restaurant 0.55 0.55 0.54 0.5 0.42 0.53

Table 2: Rank Biased Overlap (RBO) and Intersection
over Union (IoU) of the most attended objects and the
most frequent objects for the top seven common scenes.
Both metrics range from 0 (no overlap) to 1 (perfect
correspondence).

and IoU for the top 3, 5 and 7 objects in the lists.
We observe that the two metrics correlate strongly
(r(19) = .81, p < .001). From this we conclude
that during generation of scene-level captions, the
model attends more to diagnostic objects, i.e. those
which are common in a scene of a given type. More-
over, we observe high scores for scene types such
as station, road, resort, sea. In our dataset, these
are characterised by frequently occurring objects,
which are therefore highly diagnostic of scene type.
In contrast, for scenes like room, house, restaurant
we observe lower scores. We hypothesise that this
is due to the fact that such scenes can contain a
wider variety of objects, which individually have
lower diagnosticity with respect to the scene type.

6 How reliant is the model on diagnostic
objects?

The results from the previous sections established
that, following fine-tuning on scene-level descrip-
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tions, VinVL distributes attention more evenly over
objects in a scene. Nevertheless, the objects which
are most likely to be present in a scene attract
the highest proportion of the attention mass. This
raises the question whether, by removing highly
diagnostic objects from an image, the model rep-
resentations are still informative enough to detect
what type of scene is represented in an image.

We first address this issue from the perspective
of generation: does a model fine-tuned on scene
descriptions still manage to correctly describe a
picture at the scene level, when highly diagnostic
objects are unavailable? Given the more even dis-
tribution of attention observed across scene com-
ponents in the fine-tuned model, our hypothesis
would be that even in the absence of such highly
diagnostic objects, the model can rely on other
information to detect the scene type. Hence, we
expect the fine-tuned model to be more robust to
object ablation in the visual modality, compared to
the model pre-trained on object-level captions.

6.1 Method

As explained in Section 4, in VinVL, two sepa-
rate models are used to (i) extract visual features
corresponding to regions via the model’s visual
backbone; and (ii) to determine the object labels
that function as anchors between the visual and
textual modalities. This means we do not have an
exact correspondence between object labels and
visual features.

Visual feature tagging For simplicity we will
refer to vf as the bounding box a visual feature
corresponds to, and ot as the bounding box an ob-
ject label corresponds to. To perform an ablation,
we first establish an approximate correspondence
betweeen ot and vf, using ot as reference to assign
an object label to the visual features.

We compute the IoU5 between vf and ot and
empirically assign a label to a visual feature if
IoU(vf, ot) >= 0.6. Moreover, if vf is contained
by or overlaps with ot by at least 80% of its area,
we assign to vf the label of ot. With this heuristic
we cover 74% of the visual features of every image
of our sample.

Computing object diagnosticity We use the
scene labels extracted from captions in Section 5,

5Note that in this section we refer to the Intersection Over
Union to compute the overlap between two bounding boxes,
not the metric used to compute the overlap between two sets
of items as done in Section 5.

Scene Top informative objects
restaurant french fries, fork, submarine sandwich
road vehicle number plate, traffic sign, traffic light
sea surfboard, watercraft, boat
room computer mouse, nightstand, tablet computer
station train, suitcase, luggage and bags

Table 3: Most informative objects for some scenes
ranked using PMI.

the picture is shot in a ski resort → the picture is taken in a
snowfield (jacket, tree, footwear)
the picture is shot in a baseball field → the picture is taken
in a ground (sports uniform, man, boy)
in a kitchen → in the kitchen (kitchen appliance, countertop,
cabinetry)

Figure 5: Changes to scene-level captions generated by
the fine-tuned model after ablation of three diagnostic
objects. Ablated objects are shown in parentheses.

and compute the Pointwise Mutual Information
(PMI) between scene types and object labels. Ex-
amples of the most informative objects for some
scenes are shown in Table 3.

Ablation Ablation of an object is performed sim-
ilarly to (Frank et al., 2021), by removing its cor-
responding label from the list of object tags, along
with every visual feature assigned to that object.
We replace them with a [PAD] token. We com-
pare captions generated by both the pre-trained and
fine-tuned model with and without ablation of the
top 1, 2 and 3 most informative objects for a given
scene in the test-set. For more details on the sample
sizes see Appendix C.

6.2 Results

We expect to observe some differences in the gen-
erations when ablation is applied, especially in the
pre-trained model, as the ablation removes informa-
tion which is explicitly verbalised in object-centric
captions. For the pre-trained model, object-centric
captions change 41% of the time after ablation,
compared to 13% of the time for the scene-level
captions by the fine-tuned model.

A manual inspection on a sample of items sug-
gested that the changes in the captions involve min-
imal semantic shifts, often due to minor function
word changes or a more generic term being gener-
ated for the noun denoting the scene type. Some
examples are shown in Figure 5.

In summary, the model is resilient to ablation in
the visual modality, suggesting that its representa-
tions are robust for both types of generation task,
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Figure 6: Confidence scores of the unchanged caption
after ablation. On the left, the model generating scene-
level descriptions (fine-tuned); on the right, the model
generating objective descriptions (pre-trained).

but more so for scene-level captioning. We study
robustness of representations in more detail using
probes, in Section 7.

Confidence scores We also analyse the confi-
dence score produced at generation time by the
model for those captions which do not change af-
ter ablation. As shown in Figure 6, after ablation
pre-trained VinVL generates object-centric descrip-
tions with higher confidence than fine-tuned VinVL
does with scene-level descriptions. However, the
variance in the confidence score after ablation is
lower for the fine-tuned model generating scene-
level captions (Figure 7), suggesting greater robust-
ness to ablation during scene-level caption genera-
tion.

7 Can we disentangle the role of attention
and model representation?

The results so far suggest that there are significant
changes in the model’s self-attention, though it re-
lies on diagnostic objects to generate scene-level
captions. It is also somewhat more robust to ob-
ject ablation, especially in the fine-tuned case. At
this point, we probe the model’s representations to
address to what extent the knowledge required for
scene-level caption generation is already present
after pre-training. This would imply that the pri-
mary change to the model after fine-tuning is in the

finetuned pretrained
model
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Figure 7: Confidence shift of the unchanged captions
when ablating the top 1, 2 and 3 most informative ob-
jects from the scene. A negative shift means that the cap-
tion was generated with higher confidence after ablation.
On the left, the model generating scene-descriptions
(fine-tuned); on the right, the model generating object-
centric descriptions (pre-trained).

self-attention mechanism.

Method Given a pair (V,L) consisting of visual
features V and object labels L, we train a probe
to classify scene type based on VinVL encodings,
before and after fine-tuning. We also repeat the
procedure on inputs ablated as described in Sec-
tion 6. For this experiment, we identify 1426 im-
ages from HL-scenes, representing 8 types of scene,
downsampling the more frequent classes (see Ap-
pendix D for details). The class distribution is
shown in Figure 8. For every image in the probing
dataset we extract the model’s feature representa-
tions from the last layer and we average across the
inputs, obtaining a single vector.

We train both a neural and a random forest probe.
We report results from the latter which is the best
performing; full details of the neural probe are in
Appendix D.

Results Probes are tested on different train/test
proportions, up to a 50/50 split. In Figure 9 we
report results for the 50/50 train/test split, which
is also the most challenging (for results on other
splits see Appendix D). The baseline performs a

62



res
ort

ba
seb

all
ten

nis roa
d

kit
che

n sea

res
tau

ran
t

roo
m

0

50

100

150

200

250

300

Scene classes distribution in the Probing dataset
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Figure 9: F1-scores of the scene classification task for
the pre-trained in (blue) and the fine-tuned model (or-
ange).

random assignment of the labels to the features.
For both pre-trained and fine-tuned models, probes
perform at ceiling for scenes with a high support
(cf. Figure 8). For scene types with a very low fre-
quency, like restaurant and room, the probe trained
on features from the pre-trained model fails. In con-
trast, probing features from the fine-tuned model
still performs at ceiling. These results suggest that
the information to detect the scene type is already
present to some extent in the pre-trained model.
Nevertheless, fine-tuning proves effective in clos-
ing the gap for low-support scenes.

When trained on features extracted from ablated
inputs in Table 4, the probe is not particularly af-
fected by the ablation, confirming the robustness
of the model’s representations as observed in the
ablation study (Section 6).

Model micro-F1 macro-F1 weighted-F1
Random 0.16 0.12 0.16
Pretrained 0.94 0.67 0.92
Finetuned 0.99 0.96 0.99
Pretrained (A) 0.92 0.66 0.90
Finetuned (A) 0.98 0.88 0.97

Table 4: F1-scores for the scene classification task in
the 50/50 split using a random forest. The first row
(Random) corresponds to the performance of random
baseline while (A) is the performance on the features
obtained by the ablating the input.

8 Conclusion

In this paper, we addressed scene-level caption gen-
eration. Taking a cue from prior work on scene
semantics and syntax, our goal was to assess V&L
models’ ability to reason about the link between
scenes and their components and exploit this to gen-
erate informative captions with less redundancy.

Findings and Contributions We contributed a
new dataset pairing object-centric and scene-level
captions, and showed that VinVL is able to generate
scene-level descriptions with minimal fine-tuning.

Our analysis showed that the fine-tuning results
in a more even distribution of attention mass over
the image, suggesting a more ‘holistic’ view of the
scene which nevertheless makes use of diagnostic
object information. Using a combination of abla-
tion and probing methods, we also show that much
of the relevant information for scene-level caption-
ing is present after pre-training. Hence, the model’s
ability to generate scene-level captions is primarily
acquired through a change in its self-attention.

Limitations In this work we draw conclusions
from an analysis of a single model, this can be
considered a limitation. Nevertheless, VinVL is
representative of a larger family of SOTA models in
the field, based on Oscar, which are dominating the
scene in V&L tasks. Moreover, Oscar pretraining
using object tags makes the model well-suited to
an in-depth analysis of cross-modal interactions in
a generative context.

We acknowledge also that the results of the abla-
tion analysis (Section 6) could in part be affected
by the approximate nature of our tagging method.
Furthermore, as noted by Frank et al. (2021), visual
feature deletion may still leave relevant contextual
information in the remaining feature vectors, due
to the Faster-RCNN’s wide field of view.
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Appendix

A Fine-tuning Details

We fine-tune the VinVL pre-trained base version6

using the original configuration for 10 epochs on
scene descriptions. We refer to it as the fine-tuned
model. Since the HL-scenes dataset images are
included in COCO, we use the pre-computed visual
features and labels provided in the original VinVL
implementation.

We refer to the pre-trained model, as the base
model trained on the image captioning task on
COCO captions optimized using cross-entropy. All
the experiments involving the pre-trained model
are performed using the original configuration used
in Li et al. (2020b). The fine-tuning is carried out
with batch size 32 on a NVIDIA GTX 2080 TI 11
GB.

B Self-attention Details

Attention beyond Layer 1 At higher layers the
attention converges on the special token [SEP],
used to separate the text + object tags from the
visual input, as shown in Figure 10. A similar
behaviour has been observed analysing BERT’s
attention (Clark et al., 2019).

Figure 11 shows how this pattern becomes more
pronounced as we move further across the layers,
preventing from observing any kind of input in-
terplay. Although the text, object tags and visual
sequences can be of different lengths, the [SEP]
token sits always in the same position among the
inputs, as the padding is always applied to keep the
text + object tags sequence of the same length. We
believe that this regularity is used by the model as
a sort of pivot among the inputs. This can cause
the a high accumulation of attentional resources by
the model.

Scene label extraction As described in Section 3,
during the data collection, the annotators where
asked to answer the direct question: Where is
the picture taken? As a consequence, the scene-
captions often have a regular structure, captured by
the following three representative examples:

• the picture has been taken in a restaurant

• on a beach
6https://github.com/microsoft/

Oscar/blob/master/VinVL_MODEL_ZOO.md#
Oscarplus-pretraining
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Figure 10: Inbound attention of the [SEP] per input
type token across the layers. Special tokens correspond
to [CLS], [PAD] and [SEP].

• this is in an airport

To extract the scene labels, we tokenize the
scene-captions and we remove punctuation and
stop-words (we add picture to the list of the stan-
dard stop-words). Among the remaining tokens, we
extract all the nouns and we reduce them to lemmas,
then we compute the frequencies of the remaining
tokens. This allow us to extract the scene-types
(restaurant, beach and airport) from the captions,
such as those shown in the examples above. The
whole procedure is performed using spaCy. 7

Rank Biased Overlap RBO (Webber et al.,
2010) computes the similarity of two ranked lists,
as follows:

RBO(S, T, p) = (1− p)
∑

pd−1Ad (1)

where d is the depth of the ranking being examined,
Ad is the agreement between S and T given by the
proportion of the size of the overlap up to d, and
p determines the contribution of the top d ranks to
the final RBO measure. We use the standard value
of p = 1.

C Ablation Details

As described in Section 6 the ablation is performed
by removing the most informative objects from

7https://pypi.org/project/spacy/
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(a) Layer 1

(b) Layer 6

(c) Layer 12

Figure 11: Attention matrices for layers 1, 6 and 12. The
attention weights progressively gather on the [SEP]
token.

# Ablation Train-Val Test
no ablation 13498 1499
1 4269 469
2 2565 274
3 1554 170

Table 5: Sample size of the Train-Val and Test split after
ablation of the top 1,2 and 3 most informative objects
in the most frequent scenes. The top row corresponds
to the original dataset split sizes.

images depicting the most frequent scene types.
As a result, an image is included in the ablation
study if (i) it belongs to the set of most frequent
scenes; and (ii) it contains the objects we want to
ablate. This means that the higher the number of
objects ablated, the smaller the sample of images
matching these constraints. As shown in Table 5,
with 3 objects ablated in the test-set we obtain 170
valid images.

We repeat the ablation experiment on both the
test and the train-val split. The results obtained
on the latter mirror those reported in Section 6
with the test-split only. In Figure 12 we show the
comparison of the distributions of the unchanged
confidence scores after ablation for the test and
train-val split. Moreover, there is no statistically
significant difference between the distributions of
confidence score shifts of the test set (shown in
Figure 7) and the train-val set (z = 0.13 with p =
0.89 and α = 0.05).

D Probing details

Model selection We test two probing models: a
multi-layer perceptron and a random forest. We
perform hyperparameter tuning of the neural probe
by carrying out a random search followed by a
probabilistic search. The tuned neural probe is a
three-layer feed-forward network with hidden size
16, optimized using LBFGS with adaptive learning
rate and α = 1. Note that no parameter tuning
is required for the random forest. As reported in
Table 6, the random forest performs better or on
a par with the neural probe. Therefore we report
the performance of the random forest in the main
results in Section 7.

Challenging the probe The probing model per-
forms at ceiling with the more typical 90/10 split,
especially when trained on the fine-tuned features
(Figure 13). Therefore, we perform multiple exper-
iments for different train/test splits namely, 90/10,
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Figure 12: Kernel density estimate of the confidence scores distributions of unchanged captions after ablation for
the test (blue) and train-val (orange) split.

Probe Model micro-
F1

macro-
F1

weighted-
F1

RB 0.16 0.12 0.16

RF

PRE 0.94 0.67 0.92
FT 0.99 0.96 0.99
PRE (A) 0.92 0.66 0.90
FT (A) 0.98 0.88 0.97

MLP

PRE 0.94 0.67 0.91
FT 0.98 0.91 0.98
PRE (A) 0.92 0.66 0.90
FT (A) 0.98 0.85 0.97

Table 6: F1-scores of scene classification task in the
50/50 split, for Random Baseline (RB), Random Forest
(RF) and Multilayer perception (MLP) trained on encod-
ings extracted from the pre-trained (PRE) and fine-tuned
(FT) model without and with ablation (A). In bold the
best result for each setting.

70/30 and 50/50. The 50/50 is the most challeng-
ing for the probe and it allows us to highlight the
performance gap across different settings. Results
from all the splits are shown in Table 7.

Figure 13: F1-scores of the scene classification task for
the pre-trained (blue) and the fine-tuned model (orange)
for the 90/10 split.

E HL-Scences examples
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Split Model micro-F1 macro-F1 weighted-F1

90/10

PRE 0.96 0.71 0.94
FT 1.0 1.0 1.0
PRE (A) 0.95 0.69 0.94
FT (A) 0.99 0.99 0.99

70/30

PRE 0.94 0.67 0.92
FT 0.99 0.97 0.99
PRE (A) 0.93 0.66 0.91
FT (A) 0.98 0.94 0.98

50/50

PRE 0.94 0.67 0.92
FT 0.99 0.96 0.99
PRE (A) 0.92 0.66 0.90
FT (A) 0.98 0.88 0.97

Table 7: F1-scores for scene classification task the random forest in different train/tes splits. The random forest is
trained on encodings extracted from the pre-trained (PRE) and fine-tuned (FT) model without and with ablation (A).

71



Image
Object description
(COCO)

Scene description (HL-
Scenes)

a woman and a boy sitting
in the snow outside of a
cabin.

the picture is shot in a ski
resort

a airplane with a group of
people standing next to it.

the picture is shot in an
airport

a man holds his hands up
as he stands over a trash
can.

the picture is taken in
front of a roadside toilet

a coupe of people that are
skateboarding on a ramp it is at the park.

Table 8: Randomly selected images from the HL-scenes dataset. For both COCO and HL-Scenes we show a
randomly picked caption among the the available ones for the image.
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