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Abstract

Named Entity Recognition (NER) is an
important task in Natural Language Processing
with applications in many domains. While
the dominant paradigm of NER is sequence
labelling, span-based approaches have become
very popular in recent times but are less well
understood. In this work, we study different
aspects of span-based NER, namely the span
representation, learning strategy, and decoding
algorithms to avoid span overlap. We also
propose an exact algorithm that efficiently
finds the set of non-overlapping spans that
maximizes a global score, given a list of
candidate spans. We performed our study on
three benchmark NER datasets from different
domains. We make our code publicly available
at https://github.com/urchade/
span-structured-prediction.

1 Introduction

Named Entity Recognition (NER) is an important
task in natural language processing whose goal is to
identify and extract salient entities such as persons,
organizations and locations from texts. NER sys-
tems are typically designed as sequence labelling:
token-level prediction utilizing the BIO scheme.
While traditional approaches use hand-crafted fea-
tures along with classical Machine Learning algo-
rithms such as SVMs or decision trees (Carreras
et al., 2002; Li et al., 2004), deep learning models
learn features directly from the data using for ex-
ample bi-directional LSTMs (Huang et al., 2015;
Lample et al., 2016; Akbik et al., 2018) or more re-
cently pre-trained language models such as BERT
(Devlin et al., 2019; Yu et al., 2020).

Recently, span-based NER has gained in popu-
larity. Unlike sequence tagging which operates at
the token level, span-based NER operates directly
at the span level. The main idea is to enumerate all
possible contiguous sequence of tokens of an input
text and predict their identity (Lee et al., 2017).

One of the major advantages of the span-based
NER is that it can learn a rich representation of the
span instead of only learning the representation of
each token. In addition, a recent study by Fu et al.
(2021) reveals that span-based NERs are better in a
context with more OOV words and Li et al. (2021)
showed that span-based NERs are much better than
sequence labelling in settings with unlabelled enti-
ties (missing entities due to annotation errors).

However, unlike sequence labelling, uncon-
strained span-based approaches tend to produce
overlapping entities, which is undesirable for flat,
non-overlapping NER tasks. To avoid overlap in
span-based NER, two main approaches have been
adopted in the literature. The first is the Semi-
Markov conditional random field (Sarawagi and
Cohen, 2005) that trains a globally normalized
model and then uses a Viterbi algorithm to produce
the optimal segmentation without span overlap, we
call this approach Semi-CRF. The second algorithm
is the one employed by Li et al. (2021) for locally
normalized span-based NER; it first eliminates all
non-entity spans and deals with the overlap conflict
by keeping the span with the highest prediction
probability while eliminating the others. In this
work, we call this approach greedy decoding.

In this paper, we analyze and compare two for-
mulations of span-based NER. The first is a seg-
mentation model of the Semi-CRF; the second is
the two-step pipeline of span filtering and decod-
ing. In addition to greedy decoding, we propose an
exact algorithm based on Maximum Weighted In-
dependent Set (MWIS) (Hsiao et al., 1992; Pal and
Bhattacharjee, 1996) on internal graphs. We build
such graphs to encode the overlapping structure be-
tween spans. This formulation of the NER task is
novel up to our knowledge. For completeness, we
include in the comparison a token-based sequence
labeling model with a linear-chain CRF.

In order to understand the effect of span repre-
sentation, we explore different alternatives includ-
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ing max-pooling, convolution and endpoints (repre-
senting span by its extreme tokens) and show that
endpoints are effective across models and datasets.

Our contributions can be summarized as follow:

• We propose an exact decoding algorithm to
eliminate span overlap on locally trained mod-
els that overcomes the myopic bias of the
greedy approach (Li et al., 2021). We present
a detailed comparison with global models.

• We investigate different span representations
for span-based NER when using pretrained
Transformer models. Our experiment provide
a confirmation that the endpoint representa-
tion, the currently dominant representation
strategy is the most robust.

• We conduct few-shot performance analysis
for different modelling. We found that classi-
cal sequence labeling models provide strong
result for datasets with few entity types, while
span-based approaches are better for larger
type sets.

Our code for models and experiments is publicly
available.1

2 Span Representation

Given an input sequence x = [x1, . . . , xn], a
span (i, j) is the contiguous segment of tokens
[xi, . . . , xj ]. The goal of representation is to com-
pute an embedding vector for each span of an input
text which can be used for downstream prediction
tasks. We denote hi ∈ Rdh the representation
of the word at the position i and sij ∈ Rds the
representation of the span (i, j) with the width
k = j−i+1; here dh, ds ∈ N+ are respectively the
embedding sizes for word and span representations.
The token representations are computed using a
BERT-based model (Devlin et al., 2019). However,
since BERT-based tokenization divides the input
words into subwords, we take the first subword
to represent the whole word, which has proven to
be very competitive for several token classification
tasks (Beltagy et al., 2019). In the following, we
present different approaches for representing the
spans.

Endpoints This representation consists in repre-
senting a span using the representation of the to-
kens of its right and left extremities, in addition to a

1Anonymized for review.

Span representation Num params.
Endpoints (2dh + dk)C

Maxpool dhC

Convolution 1
2d

2
hK(K + 1) + dhC

Convolution (shared) d2hK + dhC

FirstToken d2hK + dhC

Table 1: Number of parameters for different represen-
tation, without including the word representation layer
which is the same for any approach. dh, K and C are
respectively the word embedding size, the maximum
span width and the number of classes. Blue terms are
parameters for computing span representations and Red
terms denote number of parameters for the final layer.

span width feature. Specifically, the representation
of the span (i, j), sij is computed as:

sij := [hi;hj ;wk] (1)

where wk is a learned vector of width k and [; ]
denotes the concatenation operation. Endpoints
have been widely used in previous works for span
prediction tasks such as NER and coreference reso-
lution (Lee et al., 2017; Luan et al., 2019; Zhong
and Chen, 2021).

Max-pooling Since spans consist of a contiguous
segment of tokens, pooling operations are a fairly
natural way to compute their representations. In
this context, we use an element-wise max-pooling
operation to all tokens inside the span. Formally,

sij := MAX([hi;hi+1; . . . ;hj ]) (2)

where MAX is the element-wise max pooling oper-
ation. Max-pooling has been previously used by
Eberts and Ulges (2020) for joint entity and relation
extraction.

Convolution Instead of simply applying the pool-
ing operation, we explored aggregating tokens us-
ing learned filters via convolution. Specifically,
representations of all spans of size k are computed
simultaneously using a 1D convolution of kernel
size k. To keep the number of parameters linear
with respect to the maximum span width, we share
the convolution weights across the different span
widths.

sij := Conv1Dk([hi;hi+1; . . . ;hj ]) (3)

Lei et al. (2021) used this convolutional ap-
proach to represent spans for keyphrase extraction.
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FirstToken For this representation, we only use
the start token along with span width information:

sij := W (k)hi (4)

where W (k) ∈ Rdh×dh is the weight matrix as-
sociated with width k. Note that the computation of
the representation of all spans for this approach can
be done in parallel and in a single line of code using
einsum operation (Rogozhnikov, 2022). This rep-
resentation was inspired by the synthetic attention
from Tay et al. (2021), where the authors predict
attention scores without pairwise interaction.

Number of parameters The number of parame-
ters required for each span representation is shown
in Table 1.

3 Span scores

We model the task of NER as assigning to each
span (i, j) a label from a set of C different types
that correspond to named-entity types and special
null type, indicating that the span does not corre-
spond to an entity. Label assignment is constrained
so that no pair of overlapping spans have entity
types (both different from null).

We present two models to solve this structured
prediction problem: a locally normalized approach
with a zero-order scoring function which does not
take into consideration the interactions between
label assignment (§4); and a globally normalized
approach with first-order scoring function which
considers dependencies between pairs of consecu-
tive spans (§5).

Both formulations employ the following span
scoring function. Given a span representation sij ,
the logits ϕ(i, j) ∈ RC for the C different labels
are computed using a non-linear activation function
followed by an affine transformation:

ϕ(i, j) = WReLU(sij) + f (5)

where W ∈ Rds×C is the final weight matrix,
f ∈ RC is the bias vector, and ReLU is the acti-
vation function. We denote by ϕ(i, j, l) ∈ R the
(unnormalized) score of the label l for the span
(i, j).

4 Locally Normalized Models

Under this approach, we perform span labeling in
two steps, span classification followed by a decod-
ing step.

4.1 Span Classification
Each span (i, j) is assigned its highest scoring la-
bel l̂ij = argmax

l
ϕ(i, j, l), and we denote k̂ij the

corresponding highest score. The set of spans clas-
sified as entities may contains overlapping spans,
a decoding step is therefore required to select a
subset with no overlaps.

We learn the parameters2 of this classifier under
a locally normalized setup. The training’s objective
is to maximize the likelihood for every span label
(up to a maximum lenght K) from the training data.
The loss function is as follows:

L = −
∑

(i,j,l)∈T
log

exp{ϕ(i, j, l)}∑
l′ exp{ϕ(i, j, l′)} (6)

which is the well-known cross-entropy loss.

4.2 Greedy Decoding
Let S = {(i, j) : l̂ij ̸= null} be the set of spans
classified as entities. The goal of decoding is to
find the subset of S that maximizes a global score
function:

E∗ =argmax
E⊆S

∑

(i,j)∈E
k̂ij (7)

s.t. ∀e, e′ ∈ E : !overlap(e, e′)

∀u /∈ E,∃e ∈ E : overlap(e, u)

where overlap(e, e′) is True if the spans e and
e′ overlap but are not equal. The first constraint
in Eq. 7 ensures that the set E is independent, i.e.
it doesn’t contains overlapping spans; the second
constraint ensures that it is maximal, i.e. adding
any other span breaks the no-overlap constraint.

Greedy decoding constructs an approximation to
E∗ by iteratively adding the highest-scoring entity
not overlapping with any previously selected entity.
This algorithm is efficient and has a complexity of
O(n log n) with n = |S|.

4.3 Exact Decoding with MWIS
We define an overlapping graph as the graph G
whose nodes are the elements of S and contains an
edge between each pair of overlapping spans. Its
adjacency matrix is defined as:

A[e, e′] =

{
1, if overlap(e, e′)
0, otherwise

(8)

2The parameters include all weight matrices from span
representation and scoring functions. We omit the parameters
from the notation for simplicity.
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We associate a weight to each node as provided by
its label score ϕ(i, j, l̂ij).

An exact solution to Eq. 7 is given by the Maxi-
mum Weight Independent Set (MWIS) of the over-
lapping graph. For general graphs, computing the
MWIS is NP-Hard but since our graph can be
seen as an interval graph (spans can be consid-
ered as intervals over their start and end positions),
MWIS has a complexity of O(n log n) or O(n) if
the spans are sorted by their endpoint (Hsiao et al.,
1992).

4.4 Exhaustive Search Decoding

For efficient decoding, the scoring function in Eq. 7
decomposes as a sum over graph nodes. More
complex scoring functions do not necessarily ad-
mit efficient decoding. Finding an optimal set un-
der the mean scoring function for instance, that is
1
|E|

∑
(i,j)∈E k̂ij , requires enumerating all possible

candidates subsets of S, which is NP-Hard (John-
son et al., 1988; Raman et al., 2007) but feasible
for reasonably small interval graphs. In this paper,
we experiment with this scoring functions but leave
more complex ones for future work.

5 Globally normalized model

Under this approach, NER is modeled using a semi-
Markov segmentation CRF introduced by Sarawagi
and Cohen (2005). The input sentence x is seg-
mented into a labeled sequence of spans y. Each
segmentation is scored as:3

Ω(y) =
∑

yk=(i,j,l)

ϕ(i, j, l) + Tl′,l (9)

with yk = (i, j, l) being the labeled span at position
k. Unlike the scoring function in Eq. 7, the score
here contains the transition scores from label l′ at
position k − 1 to label l, in the learnable matrix T .

Training The parameters of the model are
learned to maximize the conditional probability
of the gold segmentation in the training data.
The probability of a segmentation is computed
by globally normalizing the score: P (y|x) =
exp{Ω(y)− Z}, where Z is the log partition func-
tion log

∑
y∈Y(x) exp{Ω(y)}, which sums over all

possible segmentation Y(x). This normalization
term can be computed in polynomial time using
dynamic programming.

3We drop the dependence on the input x for simplicity.

Decoding algorithm Time complexity
CRF O(L|Y |2)
Semi-CRF O(LK|Y |2)
Greedy decoding O(n log n)

MWIS O(n log n)

Exhaustive Search (EXT) O(3n/3)

Table 2: This table reports the complexity of the dif-
ferent decoding algorithms. L is the input length, K
the maximum segment width, |Y | the number of classes
and n the number of spans after filtering non-entities,
which is approximately equal to 0.15× L empirically.

Following (Sarawagi and Cohen, 2005), we as-
sume that segments have strictly positive lengths,
adjacent segments touch and we assume that non-
entity spans have unit length. For instance, a seg-
mentation of the sentence "Michael Jordan eats an
apple ." would be Y =[(0, 1, PER), (2, 2, O), (3, 3,
O), (4, 4, O), (5, 5, O)].

Decoding Selecting the most probable segmen-
tation ŷ = argmaxy∈Y(x)Ω(y) is efficiently per-
formed using the segmental variant of the Viterbi
algorithm (Sarawagi and Cohen, 2005).

6 Experimental Setup

6.1 Datasets

We evaluated our model on three benchmark
datasets for Named Entity Recognition: Conll-
2003 (Tjong Kim Sang and De Meulder, 2003),
OntoNotes 5.0 (Weischedel et al., 2013) and TDM
(Hou et al., 2021). Conll-2003 is a dataset from
the news domain that was designed for extracting
entities such as Person, Location and Organisation.
OntoNotes 5.0 is a large corpus comprising various
genres of text including newswire, broadcast news
and telephone conversation. It contains in total 18
different entity types such as Person, Organization,
Location, Product or Date. TDM is a NER dataset
that was recently published and it was designed
for extracting Tasks, Datasets, and Metrics entities
from Natural Language Processing papers.

Dataset Entity
types Train / Dev / Test

Conll-2003 4 14987 / 3466 / 3684
OntoNotes 5.0 18 48788 / 7477 / 5013
TDM 3 1000 / 500 / 500

Table 3: Dataset statistics

4



Model
Span Representation

Convolution Endpoints Maxpool FirstToken
P R F P R F P R F P R F

Conll-2003
Local 91.40 89.86 90.62 91.07 90.48 90.77 90.52 90.52 90.52 90.34 89.25 89.79
+ Greedy 91.97 89.74 90.84 91.5 90.1 90.79 91.26 90.1 90.67 90.64 89.08 89.85
+ MWIS 91.97 89.76 90.85 91.5 90.11 90.8 91.22 90.09 90.65 90.64 89.08 89.85
+ EXT 91.97 89.75 90.85 91.54 90.11 90.82 91.33 90.11 90.71 90.66 89.09 89.86
Semi-CRF 89.45 88.99 89.22 89.64 89.23 89.43 89.48 88.82 89.15 89.5 89.17 89.33

OntoNotes 5.0
Local 88.59 88.99 88.79 88.06 89.55 88.8 88.42 89.34 88.88 88.18 88.73 88.45
+ Greedy 89.3 88.62 88.96 88.93 89.0 88.96 89.38 88.83 89.11 88.8 88.22 88.51
+ MWIS 89.26 88.61 88.93 88.9 88.98 88.94 89.38 88.87 89.13 88.81 88.26 88.53
+ EXT 89.31 88.61 88.95 88.95 89.01 88.98 89.37 88.79 89.08 88.80 88.20 88.50
Semi-CRF 87.35 87.76 87.55 87.36 88.26 87.81 87.04 87.99 87.51 87.11 87.86 87.48

TDM
Local 73.05 69.38 71.15 67.75 69.88 68.78 70.86 70.69 70.73 68.54 65.06 66.74
+ Greedy 75.86 68.28 71.84 75.12 67.82 71.26 73.24 69.43 71.26 69.82 64.40 66.99
+ MWIS 75.46 68.07 71.55 75.25 68.12 71.48 73.31 69.53 71.34 69.89 64.50 67.07
+ EXT 75.72 68.07 71.67 74.63 66.97 70.57 73.24 69.43 71.26 69.82 64.40 66.99
Semi-CRF 68.34 72.55 70.35 69.38 72.85 71.05 70.32 69.89 70.09 69.98 70.64 70.31

Table 4: This table reports the main results of our study. It shows the performance along different settings including
the datasets, the training, decoding and span representations. We report the average across three seeds. Bold
numbers indicate the best model/decoding for a fixed representation and underlined numbers indicate the best
representation for a fixed model/decoding.

Dataset P R F
Conll-2003 91.24 90.68 90.96
OntoNotes 5.0 87.80 88.92 88.36
TDM 69.77 73.65 71.66

Table 5: Performance for the baseline sequence la-
belling approach, a BERT-CRF tagger averaged over
three seeds.

6.2 Evaluation metrics
Our evaluation is based on the exact match between
predicted and gold entities. We report the micro-
averaged precision (P), recall (R) and the F1-score
(F) on the test set for models selected on the dev
set.

6.3 Implementation Details
Backbones For span encoding, we used
RoBERTa-base (Liu et al., 2019) for models
trained on Conll-2003 and OntoNotes 5.0 because
they come from general domains and we employed
SciBERT (Beltagy et al., 2019) for models trained
on TDM, which is a scientific NER data set.

Baseline model We compare the span-based ap-
proaches to a sequence labelling BERT-CRF (Belt-
agy et al., 2019), which we trained on our datasets.

Hyperparameters All models were trained us-
ing a single V100 GPU. We trained for up to 25
epochs using Adam (Kingma and Ba, 2017) as the
optimizer with a learning rate of 1e-5. We opted
for a batch size of 10 and used early stopping with
a patience of 5 (on the F1-score) and keep the best
model on the validation set for testing.

Libraries We implement our model with py-
torch (Paszke et al., 2019). The pre-trained trans-
former models were loaded from the Hugging-
Face’s Transformers (Wolf et al., 2020). We em-
ployed AllenNLP (Gardner et al., 2018) for data
preprocessing and the seqeval library (Nakayama,
2018) for evaluating the baseline sequence la-
belling model. Our Semi-CRF implementation is
based on pytorch-struct (Rush, 2020).

7 Results

7.1 Span Representation
In the following, we analyze the performance of
the span representations on both the local model
and the Semi-CRF model, as shown in the table 4.

Local models On local models, we find that Con-
volution, Endpoints and Maxpool all got competi-
tive results while FirstToken representation obtains
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Dataset Model
#Examples

100 250 500 1000 2500 5000 All

Conll-2003

CRF 68.92 77.49 82.05 85.38 88.50 89.40 90.96
Local 63.09 70.95 77.21 82.46 85.51 87.62 90.77
+ Greedy 66.44 73.02 78.70 83.39 86.2 88.05 90.79
+ MWIS 66.54 73.1 78.70 83.47 86.23 88.01 90.80
+ EXT 65.54 72.53 78.49 83.35 86.10 88.00 90.82
Semi-CRF 69.21 73.91 79.26 82.6 86.03 87.26 89.43

OntoNotes 5.0

CRF 61.0 69.59 74.17 77.18 78.86 81.08 88.36
Local 60.23 68.13 73.33 76.69 81.32 82.49 88.80
+ Greedy 62.60 70.20 74.95 77.46 82.13 83.09 88.96
+ MWIS 63.03 70.28 74.97 77.52 82.08 83.10 88.94
+ EXT 61.95 69.88 74.69 77.37 82.06 83.07 88.98
Semi-CRF 63.02 69.46 72.79 77.03 80.33 81.97 87.81

TDM

CRF 63.39 68.39 69.76 71.66
Local 54.87 63.1 67.08 68.78
+ Greedy 55.94 65.28 67.64 71.26
+ MWIS 57.04 65.22 67.60 71.48
+ EXT 55.06 64.38 67.43 70.57
Semi-CRF 60.49 65.06 66.52 71.05

Table 6: Few-shot performance. We report the average F1-score across three different seeds in all datasets and
different training set sizes.

a result one notch below the others. On both the
conll and TDM datasets, Convolution performed
the best, yet the endpoints performed only slightly
worse. However, on OntoNotes, the Maxpool repre-
sentation outperforms all other approaches, while
the Endpoints and Convolution got very similar per-
formance. Out of all the datasets, FirstToken had
the lowest score.

Global models On Semi-CRF models, the End-
points representation consistently achieves the best
results across datasets. We also notice that the First-
Token representation has better result than Maxpool
and Convolution on two datasets, Conll-2003 and
TDM in this setting.

The Endpoints representation is the most reli-
able overall, since it achieves robust performance
regardless of the context in which it is used. How-
ever, for optimal performance and given a sufficient
amount of compute resources, the span representa-
tion should be best tuned on a held-out set.

7.2 Comparison of Decoding for Local Models

Table 4 shows the performance results of the dif-
ferent decoding algorithms under different settings.
For the local models, we can see that the applica-
tion of decoding always improves the performance
of the F1 score, by increasing the precision and by

decreasing the recall score. However, there is no
significant difference between the greedy decod-
ing and the global decoding since the models are
already well trained and thus, the overlap filtering
does not make much difference in terms of quan-
titative results. We will provide more insight on
decoding in the subsections 7.3 and 7.5.

7.3 Few-Shot Performance

We conducted a study to compare the performance
of each model in a few-shot scenario. The evalua-
tion was performed on the test set of each dataset
using from 100 to the full training dataset. For this
study, we used the Endpoints representation for
spans because it is widely used and has shown good
performance across different training and decoding
schemes. The results of our few-shot evaluation
are presented in Table 6.

Semi-CRF is better than the local spans-based
approach when overlap filtering is not performed
but the local approach performs better than Semi-
CRF when the number of data become larger. Fur-
thermore, while the difference between Greedy
decoding and MWIS decoding is narrow in the
high data regime, we can see that MWIS outper-
forms Greedy decoding in the low and very low
data regime. Furthermore, we notice that the in-
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Conll OntoNotes TDM
P R F P R F P R F

Local 91.07 90.48 90.77 88.06 89.55 88.80 67.75 69.88 68.78
+ decoding 0.47 -0.37 +0.05 +0.89 -0.54 +0.18 +7.5 -1.76 +2.7
Neg. Sample 90.69 90.54 90.61 86.81 90.23 88.49 66.83 73.66 70.01
+ decoding +0.84 -0.43 +0.21 +1.58 -0.98 +0.33 +7.7 -2.12 +2.97
Down-weighting 90.88 90.10 90.49 87.70 90.24 88.95 57.79 78.63 66.52
+ decoding +0.48 -0.27 +0.1 +1.24 -0.72 +0.28 +13.77 -3.92 +6.57
Thresholding 90.80 90.96 90.88 87.49 88.81 88.14 63.99 74.56 68.85
+ decoding +0.90 -0.41 +0.25 +1.00 -0.61 +0.21 +6.78 -2.70 +2.32

Table 7: Result for the local model when changing the training/loss. The best results before decoding are in bold
and the best results after decoding are underlined. For this experiment, we use MWIS as decoding. We report the
average over three seeds.

crease in performance by decoding is higher when
a local model is training on a few datasets while
the difference becomes less significant when the
number of training data is large.

We find that the baseline sequence labelling,
BERT-CRF approach is indeed competitive. It most
of the time obtains a better performance on Conll-
2003 and TDM datasets across any dataset sizes.
However, the span-based approach is better on the
OntoNotes 5.0 dataset. This can be explained by
the fact that OntoNotes 5.0 contains 18 entity types
and, therefore, the labelling approach would re-
quire 37 labels since it uses a BIO scheme, which
makes the task much more difficult.

7.4 Analysis of Local Modeling

We previously found that decoding had little ef-
fect on our local model performance, especially for
high resource datasets. We believe this is due to
the fact that we were training with all negative sam-
ples (non-entity spans). As a result, the model was
overconfident regarding non-entity spans (and not
confident enough to predict entity spans) due to this
unbalanced training. To resolve this issue, we pro-
pose three alternative training procedures to make
the classifier leave more room for the decoder.

Negative sampling This approach randomly
drops a percentage of the non-entity spans dur-
ing training, but keeps all positive samples (entity
spans). By training with fewer non-entity spans,
we expect the model to be less confident and thus
predict more entities. This negative sampling has
been previously used by Li et al. (2021) to avoid
training NER models with unlabeled (or missing)
entities.

Down-weighing This method is similar to nega-
tive sampling, but instead of randomly eliminating
negative samples, this approach retains all negative
samples and down-weights their loss contribution
while keeping loss for entity spans intact.

Thresholding This approach separates the span
classifier into two models: a filtering model to
classify whether a span is an entity or not, and
a second an entity classification model to clas-
sify the entity type. During training, both models
are trained end-to-end by multi-task learning with
equally weighted losses. For prediction, span filter-
ing is first performed and then the result is passed
to the entity classification layer. By default, a span
is passed into the entity classification layer if its
probability of being an entity is greater than 0.5;
however, we here adjust this threshold on the dev
set and select the one with best F1 score.

The result from this analysis is show in the table
7. The results of this analysis show that, over-
all, the use of regularization techniques leads to
a significant improvement in decoding accuracy
for most datasets. As the most striking example,
we can see that on the TDM dataset, the down-
weighting approach which initially had a precision
score of 57.79 was able to increase this score by
13.77 thanks to decoding improvements. Further-
more, it appears that the best approach according
to these empirical results is the downw-eighting ap-
proach. Under this method, the decoder was most
“successful” on both OntoNotes and TDM datasets,
meaning it brought the largest improvements rel-
atively to the performance of the local classifier
before decoding.
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Figure 1: Shows how overlapping conflicts are handled by the different decoding algorithm on local span-based
NER models. We only include overlaps involving at least three entities, because otherwise all decoding produce the
same result.

7.5 Qualitative Comparison of Decoding

We performed a qualitative analysis to compare the
three decoding approaches for local models. This
study is presented in Figure 1, which shows the in-
put text (truncated), the raw prediction with overlap,
and the results after applying greedy decoding and
the global decoding (MWIS and EXT). We only
include overlaps involving more than two spans,
because when two spans overlap, all algorithms
take the span with the highest score.

We can see that the greedy approach always re-
trieves the most probable entity since it iteratively
selects the best spans that do not overlap with previ-
ously selected spans. However, this algorithm tends
to suffer from a myopic bias. Second, the MWIS
approach, which maximizes the sum of span scores,
tends to select as many spans as possible, which
means that it favours shorter spans over longer ones.
Also, MWIS decoding has a slightly higher recall
score most of the time than other decoding algo-
rithms. Finally, EXT decoding, which selects the
set of spans that maximizes the average score, tends
to select the smallest number of spans, but the se-
lected spans generally have a high score. In general,
this decoding tends to favour precision over recall
score.

8 Related Works

Different approaches for NER NER is an im-
portant task in Natural Language Processing and
is used in many downstream information extrac-
tion applications. Usually, NER tasks are designed
as sequence labelling (Chiu and Nichols, 2016;
Huang et al., 2015; Ma and Hovy, 2016; Lample
et al., 2016; Strubell et al., 2017; Rei, 2017; Ak-
bik et al., 2018) where the goal is to predict BIO
tags. Recently, different approaches have been pro-
posed to perform NER tasks that go beyond tradi-

tional sequence labelling. One approach that has
been widely adopted is the span-based approach
(Liu et al., 2016; Luan et al., 2018, 2019; Fu et al.,
2021; Li et al., 2021; Zaratiana et al., 2022; Corro,
2022) where the prediction is done in the span
level instead of entity level. Li et al. (2020) has
also approached NER as a question answering task
in which named entities are extracted by retriev-
ing answer spans. In addition, recent work such
as (Cui et al., 2021) considers NER as template
filling by fine-tuning a BART (Lewis et al., 2019)
encoder-decoder model.

Decoding For the spans-based approach, Semi-
Markov has been used previously (Sarawagi and
Cohen, 2005; Liu et al., 2016; Kong et al., 2016;
Sato et al., 2017), however, their use with a BERT-
type model has been little explored, something we
did in this paper. The work of Fu et al. (2021) and
Li et al. (2021) employed a heuristic decoding to
avoid overlap for span-based NER. Their algorithm
iteratively chooses the maximum probability entity
span that does not overlap with a previously chosen
entity span. In this paper, we have proposed an
exact version of this algorithm.

9 Conclusion

We investigated different span representations for
NER and found that the endpoint representation is
the most robust. Moreover, we have proposed a
new formulation of NER using overlapping graphs
for which an exact and efficient decoding algorithm
exists. We used the formulation to eliminate span
overlap on locally trained models. Finally, we con-
ducted few-shot performance analysis for different
modelling approaches and found that classical se-
quence labeling models provide strong results for
datasets with few entity types, while span-based
approaches are better for larger type sets.
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