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Abstract

We present an empirical study investigating
the influence of automatic speech recognition
(ASR) errors on the spoken implicit discourse
relation recognition (IDRR) task. We construct
a spoken dataset for this task based on the Penn
Discourse Treebank 2.0 (Prasad et al., 2008).
On this dataset, we conduct “Cascaded” ex-
periments employing state-of-the-art ASR and
text-based IDRR models and find that the ASR
errors significantly decrease the IDRR perfor-
mance. In addition, the “Cascaded” approach
does remarkably better than an “End-to-End”
one that directly predicts a relation label for
each input argument speech pair.

1 Introduction

Discourse parsing is one of the key research ar-
eas in NLP (Marcu, 2000; Li et al., 2022). One
important problem in discourse parsing is the im-
plicit discourse relation recognition (IDRR) task
(Marcu and Echihabi, 2002), which aims to identify
the relation between two discourse arguments (e.g.
clauses, sentences or paragraphs in the document)
without explicit discourse connectives (e.g., but,
and, because and the like). This IDRR task has at-
tracted many research works (Lin et al., 2009; Zhou
et al., 2010; Ji and Eisenstein, 2015; Bai and Zhao,
2018; Nguyen et al., 2019; Kim et al., 2020; Dou
et al., 2021; Jiang et al., 2021), and it is very useful
for many downstream NLP tasks such as machine
translation (Joty et al., 2017; Guzmán et al., 2014),
text summarization (Li and Rafi, 2019; Gerani et al.,
2014) and question answering (Chai and Jin, 2004;
Jansen et al., 2014).

Implicit discourse relations also play essen-
tial roles in spoken language understanding tasks
(Aubin et al., 2019; Ma et al., 2019). Thus, it
is worth investigating the IDRR task in spoken
form. Research works have been performed for
IDRR from the manual speech transcripts (Petti-
bone and Pon-Barry, 2003; Tonelli et al., 2010;

or
ig

in
al Argument 1: computer-generated videos help

Argument 2: the average american watches seven
hours of tv a day

tr
an

sc
ri

pt Argument 1: computer generated vidio’s health
Argument 2: the average american watches seven
hours of tevia day

Table 1: An example of ASR errors (highlighted in
bold). A prediction model needs to identify the dis-
course relation “Contingency.Cause.Reason” between
Argument 1 and Argument 2, without the discourse
marker (here, “since”), which is already challenging. It
would be more challenging if the model is required to
work on transcript data with potential ASR errors which
might change the meanings of input arguments.

Rehbein et al., 2016). However, to the best of our
knowledge, no study has investigated the effect of
automatic speech recognition (ASR) errors on the
spoken IDRR task. Table 1 shows an example of
ASR errors that might affect the IDRR result.

In this paper, we present a study that investigates
the influence of ASR errors on the downstream
spoken IDRR task. As there is no public bench-
mark dataset for this spoken IDRR task, we con-
struct a dataset for this task based on the Penn Dis-
course Treebank (PDTB) 2.0 (Prasad et al., 2008).
Following previous works (Lee et al., 2018; You
et al., 2020; Song et al., 2022) that construct spo-
ken derivatives of text-based question answering
and text-to-SQL datasets, we use the Google text-
to-speech system to produce a spoken variant of
the PDTB 2.0 dataset. In our “Cascaded” exper-
iments combining state-of-the-art ASR and text-
based IDRR models, we find that the ASR errors
significantly decrease the performance of the down-
stream IDRR task. We also experiment with an
“End-to-End” approach that directly predicts a re-
lation label for each input argument speech pair,
and find that the “End-to-End” obtains remarkably
lower performances than the “Cascaded”.
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Statistic #Pair #Hour WER
Training 12632 58.37 28.42

Validation 1183 5.42 27.28

Test 1046 4.59 30.27

Table 2: Our dataset statistics. “#Pair”, “#Hour” and
“WER” denote the number of spoken pairs, the number
of speech audio hours and the word error rate, respec-
tively. Here the word error rate is computed for the
automatic transcripts predicted by Wav2Vec 2.0 w.r.t.
the original text arguments.

2 Dataset construction

This section presents the dataset construction pro-
cess for our spoken IDRR task. We construct our
dataset in the spoken form based on the PDTB 2.0
dataset (Prasad et al., 2008), which is one of the
largest benchmark datasets used for IDRR research.
We employ the Google text-to-speech system to
generate spoken variants of the original text argu-
ments from the PDTB 2.0 dataset. We thus obtain
speech pairs and the gold relation label for each
speech pair (i.e. the label of the original argument
pair). We also employ the standard PDTB 2.0 data
split (Ji and Eisenstein, 2015) that uses sections
2–20, 0–1 and 21–22 for training, validation and
test, respectively. Table 2 shows the statistics of
our dataset.

3 Empirical approach

On our spoken dataset, we compare two implicit
discourse relation recognition approaches: Cas-
caded vs. End-to-End.

3.1 Cascaded

The “Cascaded” approach combines two main com-
ponents of automatic speech recognition (ASR) and
text-based IDRR, as illustrated in Figure 1.

For the ASR component, we employ the base
version of Wav2Vec 2.0 (Baevski et al., 2020)—
which is pre-trained and fine-tuned on the 960-hour
Librispeech dataset (Panayotov et al., 2015). In par-
ticular, we feed the spoken argument audios into
Wav2Vec 2.0 to generate the corresponding auto-
matic speech recognition (ASR) transcripts. For
each argument speech pair, we thus obtain a corre-
sponding transcript pair generated by Wav2Vec 2.0.
Table 1 shows an example of ASR transcription
errors from our training set. Table 2 also presents
the word error rate of Wav2Vec 2.0 on our dataset.

Wav2Vec 2.0

that's not character

BMGF-RoBERTa

that's not plot

Expansion.List

Wav2Vec 2.0

that's not character that's not plot

Expansion.List

FFNN

Figure 1: Illustrations of our empirical approaches:
“Cascaded” in the left-hand side subfigure and “End-
to-End” in the right-hand side subfigure.

The text-based IDRR component takes each
speech transcript pair produced by the ASR com-
ponent as input and predicts the discourse relation
label for the transcript pair. For IDRR, we em-
ploy BMGF-RoBERTa (Liu et al., 2020) with its
officially public implementation, which still main-
tains its state-of-the-art performance level up to
date on the PDTB 2.0 dataset. BMGF-RoBERTa
employs RoBERTa (Liu et al., 2019) to obtain con-
textualized representations for word tokens in each
argument and also uses the following modules:

• Trainable segment embeddings (SE): the train-
able segment embeddings are originally used
in BERT (Devlin et al., 2019), but removed in
RoBERTa. BMGF-RoBERTa employs these em-
beddings because they are shown to be helpful
for the IDRR task (Shi and Demberg, 2019).

• Bilateral Matching (BM): comparing each word
token of one argument against all tokens of the
other one and vice versa.

• Gated Fusion (GF): assigning different impor-
tance to each word token in arguments, and
then aggregating importance results and encod-
ing each argument into a vector representation.

• Prediction: Two arguments’ vectors are concate-
nated into a single one that is fed into a two-layer
feed-forward neural network (FFNN) followed
by a softmax for relation classification.

3.2 End-to-End
For the “End-to-End” approach, we propose a
speech-based discourse identification model that
takes each argument speech pair as input and di-
rectly predicts the relation label for the input speech
pair. In particular, the model employs Wav2Vec
2.0 to extract a feature vector representation from
each speech. The model uses a similar prediction
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layer as in BMGF-RoBERTa, which concatenates
two audios’ vectors into a single vector and then
feeds this vector into a two-layer FFNN followed
by a softmax for relation classification. Figure 1
also illustrates the “End-to-End” architecture.

3.3 Implementation details and Setup

For the “Cascaded” approach, we train BMGF-
RoBERTa for 40 epochs on the speech transcript
pairs from the training set. We employ optimal
hyper-parameters from Liu et al. (2020), which are
0.001, 32 and 0.005 for the Adam learning rate,
the batch size and the weight decay, respectively.
In each training epoch, we compute the model’s
accuracy two times on the validation set of speech
transcript pairs to select the best checkpoint. The
selected checkpoint is then applied to the test set
of speech transcript pairs to report final results.

For the “End-to-End”, Wav2Vec 2.0 is employed
as a feature extractor, frozen during training, while
the remaining prediction layer is learned. We train
the proposed model for 10 epochs on the speech
pairs from the training set, using the Adam learning
rate grid-searched at 1e-5 with a batch size of 1 (as
the audios are long) and 8 gradient accumulation
steps. We evaluate the model two times on the
validation set of speech pairs in each training epoch,
to select the best checkpoint to apply to the test set.

Note that PDTB 2.0 has a hierarchical annota-
tion scheme of 3 implicit relation levels. Most
works using PDTB 2.0 report accuracy (Acc.) and
macro-averaged F1 scores for the classification of
all 4 labels from the top level (L1), including Com-
parison (Comp.), Contingency (Cont.), Expansion
(Exp.) and Temporal (Temp.). Recent works (Ji
and Eisenstein, 2015; Bai and Zhao, 2018; Dai and
Huang, 2019; Shi and Demberg, 2019; Liu et al.,
2020) additionally report accuracy (Acc.) scores
for the classification of the top 11 frequent labels
from the second level (L2). We follow the recent
works to report obtained results on both setups.

4 Experimental results

4.1 Main results

Table 3 reports multi-class classification results ob-
tained on the test set at the top (L1) and second
(L2) levels. When it comes to the effect of ASR er-
rors propagation, all performance scores are signif-
icantly decreased: 69.06% → 66.63% and 58.13%
→ 50.24%, which are classification accuracies for
the top- and second-level labels, respectively; and

Model 4-way L1 (Acc. | F1) 11-way L2 (Acc.)

Liu et al. 69.06 | 63.39 58.13

Cascaded 66.63 | 56.00 50.24

End-to-End 51.34 | 38.29 37.92

Table 3: Multi-class classification results (in %) on
the test set. “Liu et al.” denotes results of BMGF-
RoBERTa with the original text arguments as its input
(i.e. equivalent to a perfect ASR of 0% WER). Each
score difference between two models is significant with
p-value < 0.01.

Model Exp. Comp. Cont. Temp.

Liu et al. 77.66 59.44 60.98 50.26

Cascaded 74.15 56.78 57.28 43.64

End-to-End 58.15 38.39 37.64 28.32

Table 4: Binary classification F1 score (in %) for each
L1 label on the test set. Each score difference between
two models is significant with p-value < 0.01.

63.39% → 56.00%, which are F1 scores for the
top-level label prediction. Table 4 shows the one-
vs-rest binary classification F1 score for each label
from the top level. ASR errors also remarkably
reduce the performance. In particular, scores are
decreased about 3% on the Expansion (77.66%
→ 74.15%), Comparison (59.44% → 56.78%) and
Contingency (60.98% → 57.28%) labels, and about
7% on the Temporal label (50.26% → 43.64%).

Tables 3 and 4 also show that the performance
of the “End-to-End” approach is far behind the
“Cascaded” one’s. For example, the accuracy and
F1 scores obtained for “End-to-End” on the top-
level labels are about 15+% lower than those of
“Cascaded”. This is not surprising because: (1) our
speech dataset is small for this difficult language
understanding task of spoken IDRR, and (2) the
“Cascaded” approach gets to utilize the powerful
pre-trained RoBERTa model while the “End-to-
End” one is limited to a simple two-layer FFNN.

4.2 Ablation study
We conduct an ablation study to investigate the
contribution of each main module of the BMGF-
RoBERTa model to the final results of the “Cas-
caded” approach. Table 5 shows the results ob-
tained on the validation set. Each of the main mod-
ules, including the trainable segment embeddings,
the Bilateral Matching and Gated Fusion, plays an
essential role in BMGF-RoBERTa (See Section 3.1
for brief descriptions of these modules). Removing



37

Model 4-way L1 (Acc. | F1) 11-way L2 (Acc.) Exp. Comp. Cont. Temp.

Cascaded 68.13 | 58.16 54.59 77.63 58.33 57.23 40.26
(1) w/o SE 62.64 | 49.09 47.04 75.07 43.69 54.02 35.68

(2) w/o BM 66.27 | 57.66 51.59 76.46 52.80 54.96 38.98

(3) w/o GF 66.53 | 55.95 51.93 75.98 55.24 55.76 33.66

(1) & (2) & (3) 59.59 | 49.02 43.00 73.77 43.41 47.91 29.91

Table 5: Ablation results on the validation set. (1) w/o SE: Without employing the trainable segment embeddings;
(2) w/o BM: Without the Bilateral Matching module; (3) w/o GF: Without the Gated Fusion module. Each score
difference between the full cascaded model and its ablated one is significant with p-value < 0.01.
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Figure 2: The confusion matrix of the “Cascaded” ap-
proach on the validation set w.r.t. the top 11 frequent
labels from the second level.

each module significantly reduces the performance.
In addition, removing all three modules degrades
the obtained results by about 10+% in most cases.

4.3 Error analysis

Figure 2 presents the confusion matrix of the “Cas-
caded” approach on the validation set w.r.t. multi-
class classification of the top 11 frequent labels
from the second level. We find that correct predic-
tions mainly come from 6 major labels of Cause,
Conjunction, Restatement, Contrast, Instantiation
and Asynchronous. We also find that main errors
come from the confusion between the relations Re-
statement and Cause, the relations Conjunction and
Cause and the relations Contrast and Conjunction.
They are difficult to distinguish because the form
of the discourse unit in the two relation labels is
semantically similar. We observe similar findings
for the “End-to-End” as shown in Figure 3.

We provide a qualitative example to demonstrate
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Figure 3: The confusion matrix of the “End-to-End”
approach on the validation set w.r.t. the top 11 frequent
labels from the second level.

the challenges of this spoken IDRR task. Given an
input speech pair of the original text argument pair
(“After the race, Fortune 500 executives drooled
like schoolboys over the cars and drivers”, “No
dummies, the drivers pointed out they still had
space on their machines for another sponsor’s
name or two”), in the “Cascaded” approach, the
original token “drooled” from the first argument is
incorrectly predicted as druled by the ASR com-
ponent. Both the “Cascaded” and “End-to-End”
approaches produce an incorrect label prediction of
Contrast, while BMGF-RoBERTa takes this orig-
inal text argument pair as input and produces a
correct label of Cause.

5 Discussion

The method of employing the Google text-to-
speech to generate spoken forms of the original text
arguments in the PDTB 2.0 dataset produces an ar-
tificially generated dataset, thus not fully reflecting
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the error types of human speech. In addition, the
original raw PDTB 2.0 dataset comes from the Wall
Street Journal (WSJ) articles. So our dataset might
not cover relevant real-world spoken genres.

We unfortunately were unaware of the availabil-
ity of the Continuous Speech Recognition (CSR)
corpus that consists of human-read speech with
texts from the WSJ when conducting our study.1

There might be an overlap between original texts
from the PDTB 2.0 dataset and the CSR corpus,
thus the overlap might be used for further evalua-
tion in future work.

6 Conclusion

We have presented an empirical study investigat-
ing the influence of ASR errors on the spoken
IDRR task. We construct a spoken derivative of
the PDTB 2.0 dataset and conduct “Cascaded” ex-
periments employing state-of-the-art ASR and text-
based IDRR models on this spoken dataset. We
find that the ASR errors significantly reduce the
IDRR performance. We also find that an “End-
to-End” approach that directly predicts a relation
label for each input speech pair obtains remarkably
lower performances than the “Cascaded” one.
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