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Abstract
Automatic text simplification aims to reduce
the linguistic complexity of a text in order to
make it easier to understand and more acces-
sible. However, simplified texts are consumed
by a diverse array of target audiences and what
might be appropriately simplified for one group
of readers may differ considerably for another.
In this work we investigate a novel formula-
tion of sentence simplification as paraphras-
ing with controlled decoding. This approach
aims to alleviate the major burden of relying
on large amounts of in-domain parallel training
data, while at the same time allowing for mod-
ular and adaptive simplification. According
to automatic metrics, our approach performs
competitively against baselines that prove more
difficult to adapt to the needs of different tar-
get audiences or require significant amounts of
complex-simple parallel aligned data.

1 Introduction

Automatic text simplification (ATS) aims to reduce
the linguistic complexity of a text while preserv-
ing its meaning in order to make it easier to un-
derstand and more accessible to a wider array of
potential readers (Bingel and Søgaard, 2016; Sikka
and Mago, 2020). These readers might include
children or adults with low literacy levels, cogni-
tive impairments, or a lack of specialist knowledge
in certain topics, as well as non-native language
learners (Štajner, 2021; Saggion, 2017). However,
the notion of exactly what constitutes ‘simplified’
text is highly subjective and can differ consider-
ably between different types of readers. Thus it
is important to tailor solutions appropriately in or-
der to accommodate the needs of specific target
audiences.

Research on ATS, or more specifically sentence
simplification (SS), has been spurred on by per-
formance gains in neural sequence-to-sequence
(seq2seq) language generation methods (Zhang and
Lapata, 2017; Scarton and Specia, 2018), which

aim to do away with complex hand-crafted rules
(De Belder and Moens, 2010; Siddharthan and
Mandya, 2014) and improve on earlier statistical
approaches (Wubben et al., 2012; Xu et al., 2016).
However, fully supervised seq2seq SS approaches
require a large amount of sentence-aligned parallel
training data (Koehn and Knowles, 2017), which
remains relatively scarce and difficult to attain.

For this reason, much work has focused on cer-
tain aspects of ATS such as lexical (Glavaš and
Štajner, 2015; Kriz et al., 2018) or structural sim-
plification (Niklaus et al., 2019; Garain et al., 2019;
Narayan et al., 2017; Gao et al., 2021). Others
have aimed to make better use of limited paral-
lel complex-simple training sentences by using
more sample-efficient modelling techniques that
aim to predict and execute in-place edit opera-
tions (Omelianchuk et al., 2021; Dong et al., 2019).
Meanwhile, despite considerable similarities be-
tween SS and paraphrasing, the task of reformu-
lating a sentence while maintaining an equivalent
meaning (Bhagat and Hovy, 2013), relatively few
works have aimed to exploit paraphrases to boot-
strap seq2seq-based simplification (Martin et al.,
2020; Maddela et al., 2021).

We investigate this last line of work and consider
an alternative framing of SS as the task of con-
trolled paraphrasing. We train a large-scale para-
phrase model capable of producing high-quality
and diverse paraphrases and combine it with future
discriminators for generation (FUDGE) (Yang and
Klein, 2021) to control decoding and steer the gen-
erated paraphrase towards a specific target level for
text simplification. Our experiments show that this
proves to be an effective approach for generating
simplified sentences for different target audiences
without requiring any parallel data in the form of
complex-simple aligned sentence pairs. The code
and model outputs from this work are made avail-
able at https://github.com/ZurichNLP/
SimpleFUDGE.
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2 Background & Motivation

Perhaps the largest hurdle for seq2seq-based sim-
plification is the collection of appropriately aligned
complex-simple parallel data required for training
robust and reliable systems (Laban et al., 2021).
Furthermore, as discussed by Štajner (2021), ATS
systems should be developed to support a variety
of target readers and would thus benefit from mod-
ular approaches that allow for easy customisation
and adaption. Recently, however, large pre-trained
generation models have continued to demonstrate
impressive performance when finetuned on condi-
tional language generation tasks (Raffel et al., 2020;
Lewis et al., 2020). Along with this, there has been
considerable work done on exploring ways to bet-
ter control the outputs of large generative models
in order to achieve certain communicative goals
(Dathathri et al., 2020; Krause et al., 2021; Liu
et al., 2021; Yang and Klein, 2021; Pascual et al.,
2021). We see a clear link between these recent de-
velopments and the challenges associated with SS
and set out to investigate a modular approach suit-
able for simplifying text for different target audi-
ences and that relaxes the need for complex-simple
parallel training data.

3 Method

Given a complex source sentence, our goal is
to transform it into a simplified target sequence1

that preserves its meaning. Under the tradi-
tional seq2seq framework, a target sequence y =
{y1, ..., yT ′} can be generated autoregressively as
a series of conditional probabilities over the vocab-
ulary, whereby each target token yi is conditioned
on the source sentence x = {x1, ..., xT } and any
preceding target tokens y1:i−1,

P (y) =
n∏

i=1

P (yi|x, y1:i−1). (1)

To ensure that the generated target sequence
is appropriately simplified, we employ FUDGE
(Yang and Klein, 2021), which has been shown to
be effective for various controlled generation tasks.
FUDGE introduces a lightweight classifier B to
control for a desired target attribute a during au-
toregressive generation with a model G. In essence,
it modifies the conditional probability in Equation
1 with the following Bayesian factorisation:

1Since an appropriate simplified formulation may consist
of multiple shorter sentences we refer to it as a sequence.

P (yi|x, y1:i−1, a) ∝ P (a|y1:i)P (yi|x, y1:i−1).
(2)

Here, the second term is the unmodified predic-
tion from G which is combined with the conditional
probability of a given all possible continuations at
the current timestep i according to B. For further
details on FUDGE, we refer the reader to Yang and
Klein (2021).

3.1 FUDGE for Target-Level Simplification
To leverage FUDGE for target-level SS, we train
a classifier for each target level, i.e. BSimp−l, and
combine them with the same underlying generator
model G. Following Yang and Klein (2021), each
classifier is trained as a binary predictor on labelled
subsequences of complex (Simp-0) and simple
(Simp-l) texts. Since SS often involves breaking
down a long complex sentence into smaller atomic
sentences (Honeyfield, 1977), we train each classi-
fier to predict labels on subsequences pertaining to
consecutive sentences within a paragraph. This en-
sures that the classifier’s predictions do not unduly
bias the generation of the end of sentence symbol
‘</S>’ after producing sentence-final punctuation.

For the underlying generator, G, we fine-tune
BART-large on approximately 1.4 million para-
phrase sentence pairs mined from the web.2 This
model has no explicit knowledge of complex
vs. simple language. To ensure a fair comparison to
previous work, we use the exact same training data
as Martin et al. (2021) and aim to keep training
hyperparameters as consistent as possible (detailed
in Appendix C).

In practice, combining the predictions from G
and B relies on a single weight parameter λ. For
our experiments, we derive suitable values for each
target-level by sweeping over possible whole num-
ber values in the range [0,10] and selecting the
best according to SARI on the validation set (see
Appendix D).

4 Experimental Setup

4.1 Data
We conduct our experiments on the Newsela corpus
of simplified news articles.3 In its current form, the

2In theory, given BART’s denoising autoencoding pre-
training, it could also be possible to avoid fine-tuning alto-
gether. However, initial experiments showed that the proba-
bility distribution of the off-the-shelf BART model is far too
peaked for the classifier’s predictions to have any effect.

3https://newsela.com/data/.
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# articles # manually aligned sentences
Simp-1 Simp-2 Simp-3 Simp-4

train 1,862 - - - -

train 35 1,341 1,245 1,042 841
test 10 365 353 309 256

valid 5 180 163 134 87

Table 1: Newsela English corpus articles and their manu-
ally aligned sentences from Jiang et al. (2020) for Simp-
0 to Simp-l.

corpus contains 1,912 English news articles that
have been professionally re-written according to
readability guidelines for children at multiple grade
levels (Xu et al., 2015). Article versions range from
Simp-0 to Simp-4, with the former referring to the
original, unsimplified article, suitable for upper
secondary school grades, and the latter indicating
the simplest versions, suitable for lower primary
school grades.4

While Newsela provides complex-simple align-
ments at the document level, it must be emphasised
that this alignment is not a requirement for our ap-
proach and thus training examples are randomly
shuffled each epoch. Nevertheless, we reason that
this type of alignment is beneficial since it ensures
that attribute classifiers are trained on compara-
ble examples covering the same domains. As a
consequence, each classifier must learn to distin-
guish between complex and simple text based on
relevant characteristics, such as the lexical choices
and grammatical structures for a target level, rather
than exploiting potentially misleading differences
in topical content (Kumar et al., 2019).

For automatic evaluation purposes, however,
sentence-level alignments are a must. To this end,
we make use of the manually aligned test and vali-
dation splits provided by Jiang et al. (2020). Setting
aside all sentence pairs from these splits ensures
that no unwanted data leakage occurs. An overview
of the corpus and manually aligned sentence pairs
is provided in Table 1.

4.2 Baselines

We compare our approach to two recently proposed
techniques for controlled SS and a naive baseline
that only uses paraphrasing.

4In this work, we assume that article versions (0-4) are
reliable indicators of level-appropriate simplifications and pro-
vide a detailed discussion on this assumption in Appendix
B.

MUSS Martin et al. (2021) leveraged large-scale
paraphrase data to fine-tune BART-large in combi-
nation with the ACCESS control method for sim-
plification (Martin et al., 2020). This method relies
on four control tokens which are prepended to the
source sequence and used to indicate the desired
length, edit distance, lexical complexity and syntac-
tic complexity as a ratio between the source and the
output sequence. At inference time, these special
tokens act as ‘control knobs’ for the simplification.
Following Martin et al. (2021), we derive optimal
control values through a parameter search on the
validation split (see Appendix C.4).

SUPER Following Scarton and Specia (2018),
we also train a level-aware supervised baseline with
a single special token indicating the target level
(e.g. <L3> = Simp-3) prepended to each source
sentence. For a fair comparison, we initialise this
model from the same BART-large checkpoint as
the other two models and fine-tune on the manually
aligned training sentences for all Newsela levels
simultaneously. This amounts to a low resource
setting with a total of 4,469 training instances.

PARA In addition, we also compare to a straight-
forward paraphrase generated by our underlying
generation model G with no controls or interven-
tion.

4.3 Evaluation Metrics

Reliably evaluating SS is an open challenge (Alva-
Manchego et al., 2021). However, a range of
both reference-based and reference-less automatic
metrics have been proposed (Martin et al., 2018).
We make use of the open-source EASSE package
(Alva-Manchego et al., 2019), which implements
relevant metrics such as SARI, BERTScore, Flesch-
Kincaid Grade Level (FKGL) and a host of quality
estimation measures for more fine-grained analysis
(these metrics are detailed in Appendix A).

5 Results & Discussion

Table 2 presents the results of our experiments on
the Newsela corpus. According to SARI, our pri-
mary metric, SS with FUDGE outperforms both
MUSS and the supervised baseline for all target lev-
els except for Simp-4. Our simplifications tend to
exhibit lower rates of compression and higher rates
of sentence splitting and additions, particularly as
the degree of simplification increases. This could
be considered advantageous for certain target au-
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Method SARI BERTScore FKGL Comp. ratio Sent. splits Lev. sim. Copies Add prop. Del prop.

Target Level: Simp-1 7.97 1.01 1.19 0.90 0.44 0.10 0.10

PARA 36.61 81.68 9.15 0.97 1.02 0.89 0.18 0.08 0.11
MUSS 35.69 75.95 7.75 0.81 1.00 0.84 0.01 0.07 0.24
SUPER 32.49 88.19 9.36 0.99 1.04 0.99 0.89 0.01 0.01
BSimp−1 36.10 80.45 8.81 0.94 1.01 0.88 0.13 0.07 0.13

Target Level: Simp-2 6.41 0.98 1.42 0.82 0.23 0.17 0.20

PARA 35.01 73.53 9.12 0.97 1.02 0.89 0.18 0.08 0.11
MUSS 36.57 65.91 7.27 0.78 1.03 0.75 0.00 0.15 0.35
SUPER 31.12 78.22 8.88 0.99 1.10 0.98 0.80 0.02 0.03
BSimp−2 38.32 70.75 7.42 0.96 1.25 0.84 0.08 0.12 0.17

Target Level: Simp-3 4.91 0.92 1.55 0.73 0.13 0.24 0.31

PARA 30.87 65.06 9.09 0.98 1.01 0.89 0.18 0.08 0.11
MUSS 38.05 56.03 5.19 0.62 1.01 0.68 0.00 0.12 0.45
SUPER 37.89 66.60 6.65 0.93 1.34 0.90 0.48 0.06 0.13
BSimp−3 39.56 61.46 6.44 1.00 1.45 0.81 0.02 0.20 0.20

Target Level: Simp-4 3.40 0.85 1.79 0.65 0.09 0.30 0.43

PARA 25.61 56.21 9.41 0.98 1.01 0.89 0.18 0.08 0.11
MUSS 39.63 51.73 5.61 0.65 1.04 0.68 0.00 0.13 0.44
SUPER 43.22 55.00 5.09 0.78 1.45 0.74 0.24 0.12 0.32
BSimp−4 37.03 49.60 4.60 1.02 2.14 0.76 0.00 0.28 0.28

Table 2: Target-level results on the manually aligned Newsela test set (Jiang et al., 2020). For reference-based
metrics (SARI, BERTScore), where higher values are better, we highlight systems according to their performance.
For FKGL and reference-less quality estimation metrics we embolden the systems that perform closest to the
level-specific references (provided in the intermediary rows).

diences and in settings where the loss of too much
information could be detrimental for the reader.
That said, it is also possible that not all additions
and sentence splits are warranted. For example,
degenerate repetitions or hallucinations could po-
tentially skew these results (see tables in Appendix
G for examples). Still, the positive influence of
FUDGE’s classifier is indeed most visible when
comparing against the paraphrase baseline, which
fails to generate more readable texts according to
FKGL.

We also note that the superior performance of
the fully supervised method for level Simp-4 is con-
sistent with the findings from Spring et al. (2021),
where a similar approach proved most effective
for simplifying ordinary German to A1-level Ger-
man, despite it being the target level with the least
amount of parallel data in both studies. For other
target levels, however, where the differences be-
tween source and target are perhaps more subtle,
this supervised model has a strong tendency to sim-
ply copy the input sentence.

While the MUSS baseline produces decent sim-
plifications according to SARI and FKGL, the

lower compression ratio and a higher proportion
of deleted N-grams indicate that this model also
tends to severely summarise the input. This infor-
mation loss causes model outputs to diverge from
the ground truth references and it is thus penalised
heavily by BERTScore.

FUDGE’s simplification operations are per-
formed actively during decoding by modifying the
generator’s prediction logits at each timestep, with
each decision being informed by the currently gen-
erated prefix and its potential continuations y1:i.
Therefore, this approach does not enforce a trans-
formation of the input text. This is an important
and desirable feature for SS as oftentimes not all
parts of a sentence need to be simplified (Garbacea
et al., 2021). Thus, assuming a well-trained classi-
fier B, simplification operations should occur only
when appropriate given the source sentence and the
generation context.5

Finally, using FUDGE for SS also makes use
of a single hyperparameter λ which controls the

5In an attempt to define ‘well-trained’, we demonstrate the
effect of the amount of classifier training data on simplification
performance in Appendix F.
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contribution from the classifier. In contrast, MUSS
requires setting an appropriate value for each of
the four control tokens to attain a suitable simpli-
fication. These are not only difficult to determine
for each target level (see Appendix E), but the way
in which these tokens interact with each other is
still unclear (Martin et al., 2020), making it diffi-
cult to set these values according to any underlying
intuition.

6 Conclusion & Future Work

We have explored a modular and adaptable ap-
proach to SS by reframing it as controlled para-
phrasing. We used FUDGE (Yang and Klein, 2021)
to steer the generation of paraphrastic sequences
toward different target levels. According to au-
tomatic metrics, this approach performs competi-
tively when compared to state-of-the-art methods.
In future work we aim to conduct a more detailed
analysis of the model outputs in order to better un-
derstand the qualitative differences and potential
shortcomings, as well as applying this method to
larger textual units beyond sentences.

Limitations

In this work we aimed to generate level-appropriate
sentence simplifications without the need for par-
allel aligned training data which is expensive to
produce and difficult to come by. Due to a lack of
existing work addressing simplification for specific
target levels, the number of comparable approaches
and relevant evaluation data sets are inherent limi-
tations of this work. While the approach proposed
by Martin et al. (2021) is not explicitly designed to
generate level-specific simplifications, we searched
for the most appropriate control tokens for each
target level and selected the best values accord-
ing to validation performance. To this end, we
used the code provided by Martin et al. (2021) but
note that we did not investigate potential improve-
ments to this parameter search. Secondly, to the
best of our knowledge, the Newsela English corpus
constitutes the only available resource containing
simplifications for readers at specific levels. Thus,
this current work does not seek to assess how well
this method generalises to other domains and lan-
guages.

Finally, our system evaluation relies on auto-
matic metrics. While we have strived to report met-
rics that cover the degree of simplification (SARI,
FKGL) and meaning preservation (BERTScore),

we acknowledge that extensive human evaluation
with the target audience is crucial in assessing the
viability and validity of any system intended to
adapt and rewrite text. On the one hand, degener-
ate outputs may lead to even more confusion and
less understandability, while, on the other hand, er-
roneous additions and deletions could be dangerous
in certain contexts (e.g. when applied to medical
or legal domain texts). Therefore, a thorough qual-
itative analysis of the proposed approach is still
required and planned for future work.
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eStopEnglish corpus: A new corpus for automatic
readability assessment and text simplification. In Pro-
ceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 297–304, New Orleans, Louisiana. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

34

https://doi.org/10.18653/v1/W18-7005
https://doi.org/10.18653/v1/W18-7005
https://doi.org/10.18653/v1/D17-1064
https://doi.org/10.18653/v1/W19-8662
https://doi.org/10.18653/v1/W19-8662
https://doi.org/10.18653/v1/W19-8662
https://aclanthology.org/2021.bea-1.2
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2021.findings-emnlp.334
https://doi.org/10.18653/v1/2021.findings-emnlp.334
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/P18-2113
https://doi.org/10.18653/v1/P18-2113
http://arxiv.org/abs/2104.07560
http://arxiv.org/abs/2104.07560
https://doi.org/10.3115/v1/E14-1076
https://doi.org/10.3115/v1/E14-1076
https://doi.org/10.3115/v1/E14-1076
https://doi.org/10.3115/v1/E14-1076
http://arxiv.org/abs/2008.08612
http://arxiv.org/abs/2008.08612
https://aclanthology.org/2021.ranlp-main.150
https://doi.org/10.18653/v1/2021.findings-acl.233
https://doi.org/10.18653/v1/2021.findings-acl.233
https://doi.org/10.18653/v1/2021.gem-1.1
https://doi.org/10.18653/v1/2021.gem-1.1
https://doi.org/10.18653/v1/W18-0535
https://doi.org/10.18653/v1/W18-0535
https://doi.org/10.18653/v1/W18-0535
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1015–
1024, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the Asso-
ciation for Computational Linguistics, 3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535, Online. Association for Computational
Linguistics.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 584–
594, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

A Evaluation Metrics for Sentence
Simplification

Simplicity SARI is intended to measure simplic-
ity by considering N-gram overlap between the
model output, source sentence and one or more
reference sentences. It rewards model outputs that
involve edit operations, such as deletions, additions
and copies, which correspond with the provided
references.

Fluency and meaning preservation BERTScore
uses BERT’s contextualised representations to com-
pute the similarity between tokens in the model
output and one or more references. It has been
shown to correlate better than BLEU for assessing
meaning preservation and fluency in SS (Scialom
et al., 2021).

Readability Flesch-Kincaid Grade Level
(FKGL) is often used as a proxy for estimating
text simplicity without a reference. Originally
developed for grading technical materials for
military personnel, it considers surface-level
statistics such as word and sentence length to
provide a single score. However, these scores
should be interpreted carefully as it has recently
been shown that this metric can be mislead by
degenerate and disfluent outputs (Tanprasert and
Kauchak, 2021).

Quality Estimation Measures For a more fine-
grained analysis of model outputs, we also report
quality estimation measures which are computed
between the source sentence and the model’s out-
put. These include the compression ratio, Leven-
shtein similarity, average number of sentence splits
performed, exact copies between source and target,
and the proportion of added and deleted N-grams.

B Target Levels in Newsela

Newsela contains articles written for different
graded reading levels (2-12) corresponding to pri-
mary and secondary school grades in the United
States. These grades can be considered true indi-
cators of an simplicity. However, assessing target-
level simplification for all available grades is chal-
lenging due to the sheer number of them and the
fact that not all of them are equally well represented
in the corpus. For example, there are 1,853 articles
for grade 12 but only 20 articles for grade 10 and 2
for grade 11.
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To simplify our target-level analysis, we follow
Xu et al. (2015) and assume that Newsela’s article
version IDs (0-4) are reliable indicators of a text’s
simplicity and thus adopt these as our target levels
(Simp-l). Figure 1 shows how the graded reading
levels are distributed over our target levels. As can
be seen, the article versions do not provide a clear
cut aggregation of all grades since there is a limited
degree of overlap, particularly between the lower
Simp-l levels. Nevertheless, a rough aggregation is
discernible; Simp-4 covers grades 2 to 4, Simp-3
consists predominately of grade 5, Simp-2 contains
grades 6 and 7, and Simp-1 covers grades 7 and
8. Finally, Simp-0 (the complex sources articles in
our study) is mostly restricted to grade 10 and up.

Figure 1: The distribution of graded reading levels
among article versions in Newsela. For simplicity, we
use as article versions our target levels for simplifica-
tion.

C Details on Model Training and
Inference

C.1 Resources
Model training and inference experiments were
performed on NVIDIA GeForce GTX TITAN X
GPUs with 12GB of memory.

C.2 Training Generation Models
For our underlying generator model G and the level-
aware supervised baseline, we fine-tuned BART-
large using Hugging Face’s Transformers library6

(Wolf et al., 2020). Training parameters used for
G aim to replicate the settings used by Martin et al.
(2021) who trained their models using Fairseq7

6https://github.com/huggingface/
transformers.

7https://github.com/facebookresearch/
fairseq.

(Ott et al., 2019). For the level-aware supervised
baseline, we aimed to replicate the settings used
by Spring et al. (2021) who trained their models
with Sockeye8. Note, in contrast to the paraphrase
model, the effective batch size and maximum train-
ing steps for this model are considerably smaller to
account for the differences in the size of the rele-
vant training data (1.4M paraphrase sentence pairs
vs. 4k aligned simplifications).

Paraphrase Model G
hyperparameter value

max src length 1024
max tgt length 256
eff. batch size 64
learning rate 3e-05
weight decay 0.01
optim adamw_hf
adam betas 0.9 - 0.999
adam epsilon 1e-8
lr scheduler polynomial
warmup steps 500
label smoothing 0.1
max steps 20000
num beams for pred 4
optim metric loss

Level-Aware Supervised Model

hyperparameter value

max src length 256
max tgt length 128
eff. batch size 16
learning rate 3e-05
weight decay 0.01
optim adamw_hf
adam betas 0.9 - 0.999
adam epsilon 1e-8
lr scheduler polynomial
warmup steps 500
label smoothing 0.1
max steps 5000
num beams for pred 4
optim metric rouge1

Table 3: Hyperparameters for training generation mod-
els.

C.3 Training FUDGE Classifiers

Our FUDGE classifiers Bsimp−l are unidirectional
three-layer LSTM-based RNNs with hidden layer
dimensionality of 512. These settings differ
slightly from the original implementation by Yang
and Klein (2021), who used smaller classifiers
for their tasks. The embedding matrix is con-
structed to cover the vocabulary of the underly-

8https://github.com/awslabs/sockeye.
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ing generator model (i.e. the tokenizer is shared
between G and B) and token embeddings are ini-
tialised using 300d pre-trained GloVe embeddings
(glove-wiki-gigaword-300) (Pennington
et al., 2014). For certain subwords and rare words
that are OOV in GloVe, we initialise their embed-
dings randomly.

C.4 Inference

For all models except MUSS we run inference with
beam search (k=5). A manual inspection of the
model outputs revealed that our underlying para-
phraser G showed a tendency to produce repetitions
in the target sequence. To counter this, we set the
repetition penalty equal to 1.2 when performing
inference with G. All other inference hyperparame-
ters use the default values set in Hugging Face. For
each source sentence in the test set, we generate the
top five model hypotheses according to the model
and select the first non-empty string as the final
model output.

For MUSS, we kept inference settings the same
as the default set by Martin et al. (2021). The only
differences are the control token values used for
performing inference on each of the Newsela sim-
plification levels, which we derive via a parameter
sweep on 50 items from the respective development
sets. Table 4 shows the relevant values used. Note
that these values are rounded up to the nearest 0.05
inside the model.

Comp.
Ratio

Leven-
shtein
Sim.

Word
Rank
Ratio

Dep.
Tree
Depth
Ratio

Simp-1 0.30 0.99 0.54 1.45
Simp-2 0.75 0.82 0.94 0.22
Simp-3 0.52 0.85 0.45 0.62
Simp-4 0.47 0.79 0.43 0.42

Table 4: Values used for target-level inference on the
Newsela English corpus with MUSS.

D Parameter Sweep for FUDGE

FUDGE has two hyperparameters which need to
be set at inference time. The first is a weight λ
that controls the strength of B’s contribution, while
the second aims to keep the cost associated with
classifying all possible continuations at each de-
coding timestep down by only considering the best
k predictions at each step (i.e. the most probable k
tokens according to the model). Initial experiments

showed that λ is indeed useful for controlling the
degree of simplification and finding a suitable λ is
essential. Meanwhile, using different pre-selection
k values (e.g. [50, 200]) had almost no effect on the
resulting generation sequence when using argmax
decoding techniques such as beam search. There-
fore, we followed the recommendation by Yang and
Klein (2021) and fixed the pre-selection k=200.

To get the best target-level simplifications, we
searched for the optimum λ value for each combi-
nation of Newsela simplification levels and each
target-level FUDGE on 50 sentences from the man-
ually aligned validation set (Jiang et al., 2020). Fig-
ure 2 shows the resulting SARI scores. For our
experiments, we selected the best scoring λ values
for each simplification level and its corresponding
FUDGE (i.e. plots along the diagonal). For cases
where more than one possible λ delivered good
results, we selected the lowest value > 0 (marked
with a vertical dotted line).

It is clear from Figure 2 that cross-matching tar-
get simplification levels with FUDGEs trained on a
different target level would also yield good, and in
some cases even better, results according to SARI
(e.g. target-level Simp-2 with BSimp−3). We hy-
pothesise that this is likely due to it being easier for
the classifier to correctly distinguish between the
positive (simple) and negative (complex) classes
when the stylistic differences between simplifica-
tion levels are larger. Indeed, ROC-AUC scores
for each target-level classifier on the respective test
sets increase from 0.67 to 0.96 going from Simp-
1 to Simp-4, indicating that FUDGEs trained on
higher simplification levels are better at distinguish-
ing between the classes.

E ACCESS Attributes on Newsela Corpus

While parameter sweeps are helpful, deciding on
optimal attribute values for target-level simplifi-
cation with ACCESS is non-trivial, especially if
limited validation data is on hand. Furthermore,
control values that might be suitable for one in-
put sentence, may not be suitable for another input
sentence. For example, it may not be possible to
reduce an already short input sentence to half of
its original length. To examine potentially suit-
able control values, we computed the ratio scores
on source-target pairs from the manually aligned
training split from Jiang et al. (2020) for all four
simplification levels of the Newsela English cor-
pus. Figure 3 shows that for most attributes the
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Figure 2: SARI scores from parameter sweep over different λ values for FUDGE at inference time.

largest density is on a value of 1.0, indicating no
difference between the source and target. For many
attribute values, the distributions are also relatively
wide and flat indicating that there could be many
potentially valid values, especially for the higher
simplification levels (e.g. Simp-2 - Simp-4).

F Ablation Experiment

Unlike a fully-supervised seq2seq approach,
FUDGE for SS does not require parallel complex-
simple sentence pairs for training. Instead, it relies
on contrastive instances to train its target-level clas-
sifiers. Such data is significantly easier to collect
from comparable corpus resources in many lan-
guages, e.g. language learning materials (Vajjala
and Lučić, 2018) or news articles produced specifi-

cally for certain target groups.9

However, an open question remains as to how
much data is required to train a suitable classifier.
While this may depend heavily on the target-level
simplified text both in topical and stylistic features,
we examined this question for Newsela’s Simp-4
target level. In contrast to our main experiments,
here, we fix the weighted contribution from the
classifier as λ = 1.0 (i.e. the minimum amount
of influence). Figure 4 depicts the relationship
between the amount of contrastive data used to train
BSimp−4 and the primary metrics for simplification
and quality estimation.

On these plots, a strong correlation is visible
between increasing the amount of contrastive data

9For example, Ligetil from the Danish Broadcasting Corpo-
ration (https://www.dr.dk/ligetil/) and Japan’s
News Web Easy (https://www3.nhk.or.jp/news/
easy/).
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Figure 3: Density of attribute values for the four control tokens used in the ACCESS simplification method (Martin
et al., 2020) and employed by MUSS (Martin et al., 2021).

and the degree to which the model simplifies the
input sentences. Clearly, while more data is helpful,
even small amounts of contrastive data (e.g. 500-
1000 examples) can already be effective in steering
the generations towards the target attribute.

G Model Output Examples

On closer inspection of the model outputs, we ob-
served some undesirable trends among all model
outputs. Firstly, the supervised approach (SUPER)
tends to keep edit operations to a minimum, result-
ing in model outputs that are very similar to the
input text. In cases where the ground truth simpli-
fication also happens to be a copy of the source,
overlap metrics are unduly maximised. Secondly,
MUSS tends to produce highly fluent simplifica-
tions yet these often resemble short summaries. For
longer sentences, outputs can be densely packed,
leading to even more complex sentences, or signif-
icant amounts of information are simply dropped
from the input. It remains an open question as to
whether or not this information loss is suitable for
simplifying towards a target level. Finally, we also

observed that FUDGE’s model outputs (Bsimp−l)
are more susceptible to disfluencies such as redun-
dant punctuation, subwords and phrases. This sug-
gests that the attribute classifier can unfortunately
have a negative impact on the generator in some
cases.

The tables below provide randomly sampled ex-
amples of model outputs for each target-level in
the Newsela English corpus. We colour parts of
the simplified texts based on the edit operations ap-
plied to the source text. Blue indicates additions or
explanations not in the source text. Green is used
to highlight lexical and punctuation substitutions.
Yellow shows operations on contractions (either
creating or deconstructing). Pink indicates phrases
that have been truncated or lexical deletions from
the source text. Violet is used for larger paraphras-
tic segments or positionally shuffled phrases. Unde-
sirable repetitions or hallucinations are italicised.
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Figure 4: Automatic simplification metrics for simplification as a function of the number of contrastive complex-
simple paragraphs from the Newsela English corpus used to train a FUDGE classifier BSimp−4.

Target Level: Simp-1

Simp-0 (source) They found that there was indeed a pattern in their motion — though it wasn’t
quite what they expected.

Simp-1 (reference) They found that there was indeed a pattern in their motion — though it was not
quite what they expected.

MUSS They found that there was a pattern in their motion - but it wasn’t what they
expected.

SUPER They found that there was indeed a pattern in their motion — though it wasn’t
quite what they expected.

Bsimp−1 They found that there was a pattern in their movement, though it wasn’t what
they expected.

Simp-0 (source) The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

Simp-1 (reference) The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

MUSS The tribes helped members of the expedition by bringing them food and helping
with navigation.

SUPER The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

Bsimp−1 The tribes helped members of the expedition through the winter, bringing food
and helping with navigation.
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Target Level: Simp-2

Simp-0 (source) The feat should be possible based on Einstein’s theory of general relativity, which
describes gravity as the warping of spacetime by energy and matter.

Simp-2 (reference) It should be possible based on Einstein’s theory of general relativity. His famous
theory describes gravity as the bending of space and time, which are one thing
called "spacetime."

MUSS Einstein’s theory, called general relativity, describes gravity as the warping of
spacetime by energy and matter.

SUPER The feat should be possible based on Einstein’s theory of general relativity, which
describes gravity as the warping of spacetime by energy and matter.

Bsimp−2 The feat is based on Einstein’s theory of general relativity. It describes gravity as
the warping of spacetime by matter and energy.

Simp-0 (source) Changes include moving the earliest date from which tribes must provide doc-
umentation of their existence into the 1930s and allowing tribes to reapply for
federal recognition under certain circumstances, something previously prohibited.

Simp-2 (reference) The revisions include establishing the 1930s as the earliest date from which tribes
must provide documentation of their existence. Also, tribes may reapply for
federal recognition under certain situations, something previously prohibited.

MUSS Changes include moving the earliest date for tribes to provide documentation
of existence into the 1930s, and allowing under certain circumstances tribes to
reapply for federal recognition.

SUPER Changes include moving the earliest date from which tribes must provide doc-
umentation of their existence into the 1930s and allowing tribes to reapply for
federal recognition under certain circumstances, something previously prohibited.

Bsimp−2 Changes include moving the earliest date from which tribes must provide docu-
mentation of their existence. Tribes will also be allowed to reapply for federal
recognition.

Target Level: Simp-3

Simp-0 (source) Cafes, restaurants and bakeries around the nation are feeling the pain from recent
outbreaks of bird flu, or avian influenza, expanding through the Midwest.

Simp-3 (reference) The rising prices is caused by recent outbreaks of bird flu.
MUSS Restaurants and bakeries around the nation are feeling the effects of the recent

bird flu outbreak in the Midwest.
SUPER Cafes, restaurants and bakeries around the nation are feeling the pain from recent

outbreaks of bird flu. The disease is spreading through the Midwest.
Bsimp−3 Cafes, restaurants and bakeries around the nation are feeling the pain of bird flu

outbreaks that have spread in the Midwest.

Simp-0 (source) "That is, a time traveler who emerges from a Deutschian CTC enters a universe
that has nothing to do with the one she exited in the future.

Simp-3 (reference) Lloyd says a time traveler coming from Deutsch’s CTC "enters a universe that
has nothing to do with the one she exited."

MUSS A Deutschian CTC traveler enters a universe that has nothing to do with the one
she left.

SUPER "That is, a time traveler who emerges from a Deutschian CTC enters a universe
that has nothing to do with the one she exited in the future.

Bsimp−3 "That is, a time traveler who emerges from a Deutschian CTC enters a universe.
This universe has nothing to do with the one she exited in the future. The universe
she enters into has nothing to do with the one she exited in the future.
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Target Level: Simp-4

Simp-0 (source) If the particle flips the switch, the machine emits a particle—the particle—back
into the CTC; if the switch isn’t flipped, the machine emits nothing.

Simp-4 (reference) If the particle flips the switch, the machine shoots a particle — the particle —
back into the CTC. If the switch isn’t flipped, the machine shoots out nothing.

MUSS If the particle turns, the machine sends a particle back to the CTC. If it doesn’t, it
sends nothing.

SUPER If the particle flips the switch, the machine emits a particle—the particle—back
into the CTC. If the switch isn’t flipped, the machine emits nothing.

Bsimp−4 If the switch is turned, the machine emits a particle-like stateBack into the CTC.
If the switch is not turned, the machine emits nothing.

Simp-0 (source) Deutsch’s insight was to postulate self-consistency in the quantum realm, to insist
that any particle entering one end of a CTC must emerge at the other end with
identical properties.

Simp-4 (reference) Deutsch assumes that tiny quantum particles are stable and fixed.
MUSS In quantum theory, Deutsch insisted that any particle entering one end of a CTC

must emerge at the other end with equal properties.
SUPER Deutsch’s idea was to show that any particle entering one end of a CTC must

emerge at the other end of a CTC must emerge at the other end with identical
properties.

Bsimp−4 Deutsch’s idea was to postulate a very nature. He was claiming that any particle
entering one end of a CTC must emerge at the other end with identical properties.
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