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Abstract
Text simplification, whose aim is to reduce
reading difficulty, can be decomposed into
four discrete rewriting operations: substitu-
tion, deletion, reordering, and splitting. How-
ever, due to a large distribution discrepancy
between existing training data and human-
annotated data, models may learn improper
operations, thus lead to poor generalization
capabilities. In order to bridge this gap, we
propose a novel data enhancement method,
SimSim, that generates training pairs by sim-
ulating specific simplification operations. Ex-
periments show that the models trained with
SimSim outperform multiple strong baselines
and achieve the better SARI on the Turk and
ASSET datasets. The newly constructed dataset
SimSim is available at https://github.com/
Sanqiang/sent_simplicaition_data.

1 Introduction & Related Work

Text simplification is a task to reduce the com-
plexity of a text while retain its original meaning.
It can facilitate people with low-literacy skills or
language impairments, such as children and indi-
viduals with dyslexia (Rello et al., 2013) and apha-
sia (Carroll et al., 1999), to read and understand
complicated materials (Watanabe et al., 2009). Nor-
mally, substitution, deletion, reordering, and split-
ting are considered as four core operations for per-
forming text simplification (Zhu et al., 2010). Thus
an ideal model should be capable of executing these
operations appropriately to simplify a text. How-
ever, by examining the degree that each operation is
exerted in different datasets, we observe that there
is an salient discrepancy between the human an-
notation and existing training data that is widely
used for training simplification models. To allevi-
ate this discrepancy, we propose an unsupervised
data construction method that distills each simpli-
fying operation into data via different automatic
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data enhancement measures. The empirical results
demonstrate that the resulting dataset SimSim can
support models to achieve better performance by
performing all operations properly.

2 Inspecting Simplification Datasets

At its essence, sentence simplification paraphrases
a sentence for better readability. It often involves a
subset of four rewriting operations/transformations:
splitting, dropping, reordering, and substitu-
tion (Zhu et al., 2010; Zhang and Lapata, 2017). A
high-quality sentence simplfication training dataset,
which contains many complex-simple sentence
pairs, should be well-aligned to provide a wide
coverage of different operations, so that the trained
models can have good generalizability. Most neu-
ral simplification models rely on training with
large datasets such as Newela (Xu et al., 2015)
and WikiLarge (Zhang and Lapata, 2017), which
are automatically collated with paired documents
written in different readability levels. The qual-
ity of auto-collated data has been questioned in
prior work (Jiang et al., 2020), however, it remains
unanswered on how well they represent the real
simplification distribution and on which aspects
they fall short. This motivated us to propose the
following five metrics to quantitatively examine
common training datasets:

2.1 Measuring Simplification Operations
Alignment between the pair of com-
plex/simplified sentence is a fundamental
property since the latter should preserve the
meaning of the former. Most datasets are collated
from paired complex-simple documents using
automatic alignment algorithms (Zhu et al., 2010;
Xu et al., 2015), their sentence pairs can be poorly
aligned. This is because editors may restructure the
words, sentences, or even paragraphs drastically
when rewriting a text into different readability
level. In consequence, sentences in a paraphrased
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document may not accurately pair with the original
ones. We adopt BERTScore (Zhang* et al., 2020)
to measure the semantic alignment between a
complex and a simple sentence.

Substitution denotes replacing complicated
words or phrases with simplified synonyms. We
adopt PPDB (Pavlick et al., 2015) to measure the
amount of substitutions between two sentences.
PPDB provides extensive substitution rules (see
examples in Table 1) and we measure the degree
of substitution by checking the ratio of simplified
tokens in a sentence pair (normalized by the length
of ssimp)).

Weight Type Rule
0.99623 [VP] recipient → have receive
0.75530 [NN] recipient → winner
0.58694 [NN] recipient → receiver

Table 1: Example of simplifying rules in PPDB

Dropping refers to the rewriting transformation
by removing unimportant or redundant parts from
a sentence. To measure the degree of dropping, we
calculate the ratio of the tokens being discarded
from a complex sentence.

Reordering denotes the rearrangement of parts
in a sentence to simplify its syntax and structure.
To measure the reordering, we extract the syntactic
structure of each sentence and compare the syntac-
tical change between each pair of sentences.

Concretely, following the method proposed
by Xu et al., we use a dependency parser (Hon-
nibal et al., 2020) to extract dependency relations
from a sentence. Then Jaccard similarity between
the two sets of relations is calculated to measure
the degree of reordering transformation.

Splitting divides a long sentence into several
shorter ones to reduce syntactic complexity. We
count the number of sentences on both sides, and a
help from the split is observed when the number of
sentences at the simplified side is larger.

2.2 Studies on Existing Datasets

We conducted quantitatively inspections using the
five proposed metrics on four mainstream datasets:
WikiLarge and Newela, which are commonly used
as training data in prior work, as well as the valida-
tion set of Turk (Xu et al., 2016) and ASSET (Alva-
Manchego et al., 2020). The latter two were an-
notated by human and are representative of real
distribution of text simplification. Figure 1 shows

Figure 1: The histograms and density estimates of four
property measures in simplification data.

the results on four metrics. On alignment, Turk
and ASSET contain most aligned sentence pairs
and almost all sentence pairs are of high similarity
(larger than 0.9), whereas WikiLarge and Newela
have a large proportion of poorly aligned pairs with
WikiLarge is more problematic. Turk and ASSET
also present more substitution than the two other
datasets, and WikiLarge exhibits a very different
distribution of dropping from the others, where
it discards more words and in certain extreme
cases only retains a few words at the simplified
side. Lastly, Turk and ASSET contain less reorder-
ing (leaning towards 1.0), whereas WikiLarge and
Newela contain sentences with drastic syntactic
changes. Table 2 shows the proportion of sentence
pairs contribute to splitting. A large proportion of
sentence pairs in ASSET help to split, which indi-
cates the splitting cannot be ignored but all other
datasets rarely help to split.

Corpus Proportion
Wikipedia 0.102
Newsela 0.002
Turk 0.044
ASSET 0.310
SimSim 0.399

Table 2: Proportion of sentence pairs helps to split

Overall, a large discrepancy in the rewriting dis-
tributions is shown between Turk, ASSET and the
two training datasets, which makes us wonder the
validity of the models trained with such biased
data. This motivates us to develop novel training
data that can better transfer real knowledge of text
simplification to models.
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3 SimSim: Data Enhancement by
Simulating Simplification

We think that a well-generalizable simplification
model needs to be trained on high quality training
pairs and simplification knowledge. we propose a
method to automatically refine/construct existing
training pairs and inject knowledge of simplifica-
tion by simulating various rewriting transforma-
tions. Unlike previous datasets (i.e. WikiLarge
and Newela) that heavily rely on paired documents
of different readabilities and can hardly scale up,
our method is capable of exploiting any text data
on the Internet as seed thus avoid those limitations.
We name the resulting dataset SimSim.

Overview Our method starts with a set of seed
sentences, then a series of enhancement steps are
performed on each seed sentence to generate a new
sentence so that the original seed sentence and the
new resulting sentence form a complex-simple pair.
Note that this method not only can enhance original
training pairs, it can also construct new pairs solely
using complex sentences. This method works on
other corpora too, but we leave it for future work.
To build seed sentences, we apply BERTScore on
each sentence pair in WikiLarge and Newela to
check their semantic alignment between the com-
plex and simple sentences. For those badly aligned
pairs, we remove their simple sentences to elimi-
nate the noise led by the misalignment. We take
the rest sentences as seeds for enhancement.

Constructing Paraphrastic Sentences by Back-
Translation The bottom line of simplifying a
sentence is to paraphrase it without alternating its
meaning. Rather than retrieving aligned sentences
from paired documents, we propose to create such
pairs with the help of back-translation. We expect
that the back-translated sentences should preserve
the meaning of the original sentences, meanwhile
demonstrate more linguistic diversity. The idea
has been proven effective for paraphrasing sen-
tences (Wieting et al., 2017) and improving transla-
tion with monolingual data (Sennrich et al., 2016).

We employ Google’s Neural Machine Transla-
tion System (GNMT) (Wu et al., 2016) for this
purpose, on account of its overall translation qual-
ity and the support of a large number of languages.
We translated each seed sentence into 103 pivot
languages and translated it back to English. Some
examples are shown in Table 3.
Candidate Selection with GPT-2. Paraphras-

tic sentences generated through back-translation
can contain language errors and unnatural expres-
sions. GPT-2, as a powerful neural language model
trained with open-domain text (Radford et al.,
2019), can help us to evaluate the quality of can-
didate sentences. GPT-2 gives a score (negative
log-likelihood) to a sentence, and we assume that
a better GPT-2 score means that the sentence is
more likely to be in high quality. Thus among all
103 candidates, we select the best one as the tar-
get sentence for further enhancement. Particularly,
if GPT-2 deems the back-translated sentence less
natural than the original one, it will be discarded.
Although, the remaining candidate sentences after
GPT-2 scoring can be considered to be well-aligned
and natural, they are not ready for training a sim-
plification model since most of them have not been
simplified yet. They therefore go through a set of
simulating steps as presented below:

Simulating Substitution In order to impose sub-
stitution knowledge into the candidate sentences,
we applied the paraphrasing rules in PPDB. To en-
sure the applied rules are proper, we use GPT-2
again to evaluate the quality of the resulting sen-
tences.

Simulating Dropping To distill the dropping op-
eration into data, we follow previous approach (Fil-
ippova and Altun, 2013) and augment the data by
randomly removing prepositional, adjective or ad-
verb phrases.

Simulating Splitting We find that back-
translation rarely splits a sentence into multiple
shorter ones. Thus we propose to include
WikiSplit (Botha et al., 2018) to incorporate
the splitting operation into our data. We put
WikiSplit sentence pairs into the seed bank and
we apply the above process to the target-side
sentences so as to mix the splitting transformation
with others.

SimSim Dataset By simulating different opera-
tions with the above steps, we present a new cor-
pus SimSim for the task of text simplification. As
shown in Figure 1 and Table 2, SimSim demon-
strates a closer distribution to the human-annotated
Turk and ASSET, from multiple rewriting aspects.
This suggests that SimSim may serve as a better
dataset for training simplification models.

4 Experiments
Setup We train Transformer-based vanilla
Encoder-Decoder models with five datasets. The
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Pivot Sentence NLL

Original It is situated at the coast of the Baltic sea , where it encloses the city of stralsund . 3.8020

Chinese It is located on the coast of the Baltic Sea and surrounds the city of Stralsund . 2.8642
Greek It is located on the shores of the Baltic Sea, where it encloses the city of Stralsund . 2.8379
Italy It is located on the Baltic Sea coast, where the city of Stralsund is located . 2.9493

Japanese It is located on the Baltic Sea coast and surrounds the city of Stralsund . 3.1864
Hindi It is situated on the banks of the Baltic sea, where it surrounds the town of Stralsund . 3.0487

Table 3: Examples of back-translation with GNMT. The rightmost column shows the Negative log-likelihood (NLL)
scores estimated by GPT-2.

first two are WikiLarge and Wiki-Auto, two
common training datasets. WikiLarge (Zhang
and Lapata, 2017) is constructed by automati-
cally aligning sentences in Simple Wikipedia
and Wikipedia, with the help of lexical-based
features, such as the Jaccard coefficient and
TF-IDF. It has 296k complex-simple sentence
pairs. Wiki-Auto (Jiang et al., 2020) uses a
neural CRF model in order to achieve a better
auto-alignment than the rule-based method used
in WikiLarge, which contains 488k pairs. The
remaining three datasets are the three variants of
SimSim dataset: (1) SimSim-S1, constructed by
directly applying 103-language back-translation
on candidate sentences, resulting millions of
pairs; (2) SimSim-S2, constructed by selecting the
most natural sentence from translated sentences
with GPT-2 (1.67M pairs); (3) SimSim-S3 further
improves SimSim-S2 by simulating different
rewriting operations (1.67M pairs). We use
Turk (Xu et al., 2016) and ASSET (Alva-Manchego
et al., 2020) for validation and testing. SARI (Xu
et al., 2016) is used as the evaluation measure
since it is widely used in the literature.

Train Data SARI↑
Score Add Delete Keep

SBMT-SARI
(Xu et al., 2016) 39.96 5.96 41.42 72.52
DMASS-DCSS

(Zhao et al., 2018) 40.45 5.72 42.23 73.41
EditNTS

(Dong et al., 2019) 38.23 3.36 39.15 72.13
Edit-Unsup-TS

(Kumar et al., 2020) 37.85 2.31 43.65 67.59

WikiLarge 38.84 4.78 41.19 70.53
Wiki-Auto 39.64 5.18 41.61 72.13

SimSim-S1 36.33 4.53 32.79 71.66
SimSim-S2 40.15 7.52 38.64 74.32
SimSim-S3 41.07 8.33 41.97 72.89

Table 4: Performance of vanilla Encoder-Decoder mod-
els and some other baselines tested on WikiTurk dataset.

Results The experiment results are presented in
Table 4 and 5. Between two models trained with

Train Data SARI↑
Score Add Delete Keep

Wiki-Auto 50.79 16.65 69.58 66.16

SimSim-S1 49.34 17.10 66.48 64.44
SimSim-S2 52.20 19.34 69.89 67.38
SimSim-S3 52.37 19.18 71.01 66.92

Table 5: Performance of vanilla Encoder-Decoder mod-
els tested on ASSET dataset.

Wiki-Auto and WikiLarge respectively, the one
on Wiki-Auto achieved better scores than that
of WikiLarge, which is helped by the improved
aligning algorithm. However, Wiki-Auto is still
limited to the contents in Wikipedia and contains
much noise. In comparison, models trained with
SimSim outperform WikiLarge and Wiki-Auto
consistently. Because SimSim is constructed in a
more controlled way, the sentences in each pair
are more aligned and more rewriting operations
are included. Among the three SimSim variants,
SimSim-S1, constructed by only back-translation,
performs the worst among the three, and worse than
two baselines. Back-translation itself can boost
the diversity of sentence pairs, nevertheless it also
introduces much noise in language. By utilizing
GPT-2 to select the most natural ones from back-
translated pairs, the model using SimSim-S2 out-
performs SimSim-S1 by a large margin. Moreover,
the SARI performance can be further boosted with
SimSim-S3, which applied multiple rewriting op-
erations on each training pair to simulate the real
simplification process.

5 Conclusion

In this study, we observe a significant discrepancy
exists between the human simplified sentences and
common training data and propose an unsupervised
data enhancement method, SimSim, to explicitly
teach the model appropriate operations by distilling
the knowledge into training data. The empirical
results show that the resulting dataset SimSim can
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support models to achieve better performance by
performing all operations properly.
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A Training Details

Our Transformer architecture uses an embedding
dimension of 512, fully connected layers of dimen-
sion 2048, 8 attention heads, 6 layers in the encoder
and 6 layers in the decoder. we used beam search
with a beam size of 8. For optimization, model
updates use a batch size of 400 and a LAMB op-
timizer with learning rate 0.001 (You et al., 2019)
and all the models were trained by 250,000 steps
(takes around 2-3 days). Training was done on a
single Cloud TPU V2.

B Evaluation Details

We computed SARI using the code provided at
https://github.com/cocoxu/simplification
and we mainly compare our results with studies
using the same evaluation protocal (Xu et al., 2016;
Zhang and Lapata, 2017; Zhao et al., 2018; Dong
et al., 2019; Kumar et al., 2020). Note that most
studies reported ASSET scores using a different
evaluation code and therefore we cannot include
their scores for the sake of fair comparison.

C Implementation Details

Our model implementation is based on Tensorflow
1.15 and Tensor2Tensor library https://github.
com/tensorflow/tensor2tensor.
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