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Abstract

This paper presents Diff-Explainer, the first
hybrid framework for explainable multi-hop
inference that integrates explicit constraints
with neural architectures through differen-
tiable convex optimization. Specifically, Diff-
Explainer allows for the fine-tuning of neural
representations within a constrained optimi-
zation framework to answer and explain
multi-hop questions in natural language. To
demonstrate the efficacy of the hybrid frame-
work, we combine existing ILP-based solvers
for multi-hop Question Answering (QA) with
Transformer-based representations. An exten-
sive empirical evaluation on scientific and
commonsense QA tasks demonstrates that
the integration of explicit constraints in a
end-to-end differentiable framework can sig-
nificantly improve the performance of non-
differentiable ILP solvers (8.91%–13.3%).
Moreover, additional analysis reveals that
Diff-Explainer is able to achieve strong perfor-
mance when compared to standalone Trans-
formers and previous multi-hop approaches
while still providing structured explanations
in support of its predictions.

1 Introduction

Explainable Question Answering (QA) in com-
plex domains is often modeled as a multi-hop
inference problem (Thayaparan et al., 2020;
Valentino et al., 2021; Jansen et al., 2021). In this
context, the goal is to answer a given question
through the construction of an explanation, typi-
cally represented as a graph of multiple intercon-
nected sentences supporting the answer (Figure 1).
(Khashabi et al., 2018; Jansen, 2018; Kundu et al.,
2019; Thayaparan et al., 2021).

However, explainable QA models exhibit lower
performance when compared to state-of-the-art
approaches, which are generally represented by

Transformer-based architectures (Khashabi et al.,
2020; Devlin et al., 2019; Khot et al., 2020).
While Transformers are able to achieve high ac-
curacy due to their ability to transfer linguistic
and semantic information to downstream tasks,
they are typically regarded as black-boxes (Liang
et al., 2021), posing concerns about the inter-
pretability and transparency of their predictions
(Rudin, 2019; Guidotti et al., 2018).

To alleviate the aforementioned limitations and
find a better trade-off between explainability and
inference performance, this paper proposes Diff-
Explainer (∂-Explainer), a novel hybrid frame-
work for multi-hop and explainable QA that
combines constraint satisfaction layers with pre-
trained neural representations, enabling end-to-
end differentiability.

Recent works have shown that certain convex
optimization problems can be represented as in-
dividual layers in larger end-to-end differentia-
ble networks (Agrawal et al., 2019a,b; Amos and
Kolter, 2017), demonstrating that these layers can
be adapted to encode constraints and dependen-
cies between hidden states that are hard to capture
via standard neural networks.

In this paper, we build upon this line of re-
search, showing that convex optimization layers
can be integrated with Transformers to improve
explainability and robustness in multi-hop in-
ference problems. To illustrate the impact of
end-to-end differentiability, we integrate the con-
straints of existing ILP solvers (i.e., TupleILP
[Khot et al., 2017], ExplanationLP [Thayaparan
et al., 2021]) into a hybrid framework. Specif-
ically, we propose a methodology to transform
existing constraints into differentiable convex
optimization layers and subsequently integrate
them with pre-trained sentence embeddings based
on Transformers (Reimers et al., 2019).
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Figure 1: Example of a multi-hop QA problem with an
explanation represented as a graph of multiple inter-
connected sentences supporting the answer (Xie et al.,
2020; Jansen et al., 2018).

To evaluate the proposed framework, we
perform extensive experiments on complex
multiple-choice QA tasks requiring scientific and
commonsense reasoning (Clark et al., 2018; Xie
et al., 2020). In summary, the contributions of
the paper are as follows:

1. A novel differentiable framework for multi-
hop inference that incorporates constraints
via convex optimization layers into broader
Transformer-based architectures.

2. An extensive empirical evaluation demon-
strating that the proposed framework allows
end-to-end differentiability on downstream
QA tasks for both explanation and answer
selection, leading to a substantial improve-
ment when compared to non-differentiable
constraint-based and transformer-based ap-
proaches.

3. We demonstrate that Diff-Explainer is more
robust to distracting information in address-
ing multi-hop inference when compared to
Transformer-based models.

2 Related Work

Constraint-Based Multi-hop QA Solvers ILP
has been employed to model structural and seman-
tic constraints to perform multi-hop QA. Table-
ILP (Khashabi et al., 2016) is one of the earliest

approaches to formulate the construction of expla-
nations as an optimal sub-graph selection problem
over a set of structured tables and evaluated on
multiple-choice elementary science question an-
swering. In contrast to TableILP, TupleILP (Khot
et al., 2017) was able to perform inference over
free-form text by building semi-structured rep-
resentations using Open Information Extraction.
SemanticILP (Khashabi et al., 2018) also comes
from the same family of solvers that leveraged
different semantic abstractions, including seman-
tic role labelling, named entity recognition and
lexical chunkers for inference. In contrast to pre-
vious approaches, Thayaparan et al. (2021) pro-
posed the ExplanationLP model that is optimized
towards answer selection via Bayesian optimiza-
tion. ExplanationLP was limited to fine-tuning
only nine parameters as it is intractable to fine-
tune large models using Bayesian optimization.

Hybrid Reasoning with Transformers A
growing line of research focuses on adopting
Transformers for interpretable reasoning over
text (Clark et al., 2021; Gontier et al., 2020; Saha
et al., 2020; Tafjord et al., 2021). For example,
Saha et al. (2020) introduced the PROVER model
that provides an interpretable transformer-based
model that jointly answers binary questions over
rules while generating the corresponding proofs.
These models are related to the proposed frame-
work for exploring hybrid architectures. However,
these models assume that the rules are fully avail-
able in the context and are still mostly applied
on synthetically generated datasets. In this paper,
we take a step forward in this direction propos-
ing an hybrid model for addressing scientific and
commonsense QA which require the construction
of complex explanations through multi-hop infer-
ence on external knowledge bases.

Differentiable Convex Optimization Layers
Our work is in line with previous works that
have attempted to incorporate optimization as a
neural network layer. These works have intro-
duced differentiable modules for quadratic prob-
lems (Donti et al., 2017; Amos and Kolter, 2017),
satisfiability solvers (Wang et al., 2019), and sub-
modular optimizations (Djolonga and Krause,
2017; Tschiatschek et al., 2018). Recent works
also offer differentiation through convex cone
programs (Busseti et al., 2019; Agrawal et al.,
2019a). In this work, we use the differentiable
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convex optimization layers proposed by Agrawal
et al. (2019b). These layers provide a way to
abstract away from the conic form, letting users
define convex optimization in natural syntax. The
defined convex optimization problem is con-
verted by the layers into a conic form to be solved
by a conic solver (O’Donoghue, 2021).

3 Multi-hop Question Answering via
Differentiable Convex Optimization

The problem of Explainable Multi-Hop Ques-
tion Answering can be stated as follows:

Definition 3.1 (Explanations in Multi-Hop Ques-
tion Answering). Given a question Q, answer a
and a knowledge base Fkb (composed of natural
language sentences), we say that we may infer
hypothesis h (where hypotheses h is the con-
catenation of Q with a) if there exists a subset
(Fexp) of supporting facts {f1, f2, . . .} ⊆ Fkb

of statements which would allow a human being
to deduce h from {f1, f2, . . .}. We call this set
of facts an explanation for h.

Given a question (Q) and a set of candidate
answers C = {c1, c2, c3, . . . , cn} ILP-based
approaches (Khashabi et al., 2016; Khot et al.,
2017; Thayaparan et al., 2021), convert them
into a list of hypothesis H = {h1, h2, h3, . . . ,
hn} by concatenating question and candidate an-
swer. For each hypothesis hi these approaches
typically adopt a retrieval model (e.g., BM25,
FAISS (Johnson et al., 2017)), to select a list of
candidate explanatory facts F = {f1, f2, f3,
. . . , fk}, and construct a weighted graph G =
(V,E,W ) with edge weights W : E → R

where V = {{hi} ∪ F}, edge weight Wik of
each edge Eik denote how relevant a fact fk is
with respect to the hypothesis hi.

Based on these definitions, ILP-based QA can
be defined as follows:

Definition 3.2 (ILP-Based Multi-Hop QA). Find
a subset V ∗ ⊆ V , h ∈ V ∗, V ∗ \ {h} = Fexp

and E∗ ⊆ E such that the induced subgraph
G∗ = (V ∗, E∗) is connected, weight W [G∗ =
(V ∗, E∗)] :=

∑
e∈E∗ W (e) is maximal and ad-

heres to set of constraints Mc designed to emu-
late multi-hop inference. The hypothesis hi with
the highest subgraph weight W [G∗ = (V ∗, E∗)]
is selected to be the correct answer cans.

The ILP-based inference has two main chal-
lenges in producing convincing explanations.
First, design edge weights W , ideally capturing
a quantification of the relevance of the fact to
the hypothesis. Second, define constraints that
emulate the multi-hop inference process.

3.1 Limitations with Existing
ILP formulations

In previous work, the construction of the
graph G requires predetermined edge-weights
based on lexical overlaps (Khot et al., 2017) or
semantic similarity using sentence embeddings
(Thayaparan et al., 2021), on top of which com-
binatorial optimization strategies are performed
separately. From those approaches, Explanation-
LP proposed by Thayaparan et al. (2021) is the
only approach that modifies the graph weight
function by optimizing the weight parameters θ
by fine-tuning them for inference via Bayesian
Optimization over pre-trained embeddings.

In contrast, we posit that learning the graph
weights dynamically by fine-tuning the underlying
neural embeddings towards answer and explana-
tion selection will lead to more accurate and robust
performance. To this end, the constraint optimiza-
tion strategy should be differentiable and efficient.
However, Integer Linear Programming based ap-
proaches present two critical shortcomings that
prevent achieving this goal:

1. The Integer Linear Programming formula-
tion operates with discrete inputs/outputs re-
sulting in non-differentiability (Paulus et al.,
2021). Consequently, it cannot be integrated
with deep neural networks and trained end-
to-end. Making ILP differentiable requires
non-trivial assumptions and approximations
(Paulus et al., 2021).

2. Integer Programming is known to be NP-
complete, with the special case of 0-1 inte-
ger linear programming being one of Karp’s
21 NP-complete problems (Karp, 1972).
Therefore, as the size of the combinatorial
optimization problem increases, finding exact
solutions becomes computationally intrac-
table. This intractability is a strong limita-
tion for multi-hop QA in general since these
systems typically operate on large knowl-
edge bases and corpora.
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3.2 Subgraph Selection via Semi-Definite
Programming

Differentiable convex optimization (DCX) lay-
ers (Agrawal et al., 2019b) provide a way to
encode constraints as part of a deep neural net-
work. However, an ILP formulation is non-convex
(Wolsey, 2020; Schrijver, 1998) and cannot be
incorporated into a differentiable convex opti-
mization layer. The challenge is to approximate
ILP with convex optimization constraints.

In order to alleviate this problem, we turn to
Semi-Definite programming (SDP) (Vandenberghe
and Boyd, 1996). SDP is non-linear but convex
and has shown to efficiently approximate combi-
natorial problems.

A semi-definite optimization is a convex opti-
mization of the form:

minimize C ·X (1)
s.t A ·X = bi, i = 1, 2, · · · , m, (2)

X � 0, (3)

Here X ∈ S
n is the optimization variable and

C,A1, . . . , Ap ∈ S
n, and b1, . . . , bp ∈ R. X � 0

is a matrix inequality with S
n denotes a set of

n× n symmetric matrices.
SDP is often used as a convex approxima-

tion of traditional NP-hard combinatorial graph
optimization problems, such as the max-cut prob-
lem, the dense k-subgraph problem and the qua-
dratic {0 − 1} programming problem (Lovász
and Schrijver, 1991).

Specifically, we adopt the semi-definite re-
laxation of the following quadratic {0, 1}
problem:

maximize yTWy (4)
y ∈ {0, 1}n (5)

Here W is the edge weight matrix of the
graph G and the optimal solution for this prob-
lem ŷ indicates if a node is part of the induced
subgraph G∗.

We follow Helmberg (2000) in their reformu-
lation and relaxation of this problem. Instead of
vectors y ∈ {0, 1}n, we optimize over the set
of positive semidefinite matrices satisfying the

SDP constraint in the following relaxed convex
optimization problem:1

maximize 〈W,Y 〉 (6)

s.t Y − diag(Y )diag(Y )T � 0 (7)

where 〈W,Y 〉 = trace(WY ), Y = yyT ,
diag(Y ) = y.

The optimal solution for Y in this problem
Ê ∈ [0, 1] indicates if an edge is part of the
subgraph G∗. In addition to the semi-definite
constraints, we also impose multi-hop inference
constraints Mc. These constraints are introduced
in Section 3.4 and the Appendix.

This reformulation provides the tightest ap-
proximation for the optimization with the convex
constraints. Since this formulation is convex,
we can now integrate it with differentiable convex
optimization layers. Moreover, the semi-definite
program relaxation can be solved by adopting
the interior-point method (De Klerk, 2006;
Vandenberghe and Boyd, 1996) which has been
proved to run in polynomial time (Karmarkar,
1984). To the best of our knowledge, we are the
first to employ SDP to solve a natural language
processing task.

3.3 Diff-Explainer: End-to-End
Differentiable Architecture

Diff-Explainer is an end-to-end differentiable
architecture that simultaneously solves the con-
straint optimization problem and dynamically
adjusts the graph edge weights for better perfor-
mance. We adopt differentiable convex optimiza-
tion for the optimal subgraph selection problem.
The complete architecture and setup are described
in the subsequent subsections and Figure 2.

We transform a multi-hop question answering
dataset into a multi-hop QA dataset by convert-
ing an example’s question (q) and the set of
candidate answers C = {c1, c2, c3, . . . , cn}
into hypotheses H = {h1, h2, h3, . . . , hn}
(See Figure 2A) by using the approach proposed
by Demszky et al. (2018). To build the initial
graph, for the hypotheses set H we adopt a

1See Helmberg (2000) for the derivation from the original
optimization problem.
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Figure 2: Overview of our approach: Illustrates the end-to-end architectural diagram of Diff-Explainer for
the provided example.

retrieval model to select a list of candidate ex-
planatory facts F = {f1, f2, f3, . . . , fk} to
construct a weighted complete bipartite graph
G = (H, F, E, W ), where the weights Wik

of each edge Eik denote how relevant a fact fk
is with respect to the hypothesis hi. Departing
from traditional ILP approaches (Thayaparan
et al., 2021; Khashabi et al., 2016, 2018), the
aim is to select the correct answer cans and
relevant explanations Fexp with a single graph.

In order to demonstrate the impact of Diff -
Explainer, we reproduce the formalization intro-
duced by previous ILP solvers. Specifically, we
approximate the two following solvers:

• TupleILP (Khot et al., 2017): TupleILP
constructs a semi-structured knowledge base
using tuples extracted via Open Information
Extraction (OIE) and performs inference
over them. For example, in Figure 2A, F1
will be decomposed into (a stick; is a;
object) and the subject (a stick) will be
connected to the hypothesis to enforce con-
straints and build the subgraph.

• ExplanationLP (Thayaparan et al., 2021):
ExplanationLP classifies facts into abstract
and grounding facts. Abstract facts are core
scientific statements. Grounding facts help
connect the generic terms in the abstract facts
to the terms in the hypothesis. For example,
in Figure 2A, F1 is a grounding fact and
helps to connect the hypothesis with the ab-
stract fact F7. The approach aims to emulate
abstract reasoning.

Further details of these approaches can be found
in the Appendix.

To demonstrate the impact of integrating a con-
vex optimization layer into a broader end-to-end
neural architecture, Diff-Explainer employs a
transformer-based sentence embedding model.
Figure 2B describes the end-to-end architec-
tural diagram of Diff-Explainer. Specifically, we
incorporate a differentiable convex optimiza-
tion layer with Sentence-Transformer (STrans)
(Reimers et al., 2019), which has demonstrated
state-of-the-art performance on semantic sentence
similarity benchmarks.

STrans is adopted to estimate the relevance be-
tween hypothesis and facts during the construction
of the initial graph. We use STrans as a bi-encoder
architecture to minimize the computational over-
load and operate on large number of sentences. The
semantic relevance score from STrans is comple-
mented with a lexical relevance score computed
considering the shared terms between hypothe-
ses and facts. We calculate semantic and lexical
relevance as follows:

Semantic Relevance (s): Given a hypothesis
hi and fact fj we compute sentence vectors
of �hi = STrans(hi) and �fj = STrans(fj)
and calculate the semantic relevance score using
cosine-similarity as follows:

sij = S(�hi , �fj ) =
�hi · �fj

‖�hi ‖‖�fj ‖
(8)

Lexical Relevance (l): The lexical relevance
score of hypothesis hi and fj is given by the
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percentage of overlaps between unique terms
(here, the function trm extracts the lemmatized
set of unique terms from the given text):

lij = L(hi, fj) =
|trm(hi) ∩ trm(fj)|

max(|trm(hi)|, |trm(fj)|)
(9)

Given the above scoring function, we con-
struct edge weights matrix (W ) as follows:

Wij = [θs1, θ
s
2, . . . , θ

s
n] · [sD1

ij , s
D2

ij , . . . , s
Dn
ij ]

+[θl1, θ
l
2, . . . , θ

l
n] · [lD1

ij , l
D2

ij , . . . , l
Dn
ij ]

(10)

Here relevance scores are weighted by weight
parameters (θ) with θ clamped to [0, 1]. sDk

ij (or
lDk
ij ) is sij (or lij) if (i, j) satisfy condition Dk

or 0 otherwise. TupleILP has two weights each
for lexical and semantic relevance. Meanwhile,
ExplanationLP has nine weights based on the
type of fact and relevance type. Additional de-
tails on how to calculate W for each approach
can be found in the Appendix.

3.4 Answer and Explanation Selection
Given edge variable Y and node variable y
(diag(Y ) = y) (see section 3.2) where 1 means
the edge/node is part of the subgraph and 0
otherwise, we design the the answer selection
constraint is defined as follows:

∑
i ∈ H

Yii = 1 (11)

Each entry in the edge diagonal represents a value
between 0 and 1, indicating whether the cor-
responding node in the initial graph should be
included in the optimal subgraph.

Explanation selection is done via the following
constraint that limits the number of nodes in the
subgraph to be m.

∑
i ∈ V

Yii = m+ 1 (12)

Apart from these functional constraints, ILP
based methods also impose semantic and struc-
tural constraints. For instance, ExplanationLP
places explicit grounding-abstract fact chain con-
straints to perform efficient abstractive reasoning
and TupleILP enforces constraints to leverage
the SPO structure to align and select facts. See
the Appendix on how these constraints are de-
signed and imposed within Diff-Explainer.

Algorithm 1: Training Diff-Explainer
Data: Mc ← Multi-hop inference constraints
Data: Ansc ← Answer selection constraint
Data: Expc ←

Explanation selection constraint
Data: fw ← Graph weight function
G ← fact-graph-construction(H, F )
l ← L(H, F )
θ ← clamp([0, 1])
epoch ← 0
while epoch ≤ max epochs do

�F ← STrans(F )
�H ← STrans(H)

s ← S( �H, �F )
W ← fw(s, l; θ)

Ê ← DCX(W, {Mc, Ansc, Expc})
V̂ ← diag(Ê)

Lans ← l1(V̂ [h1, h2, . . . , hn], cans)
if Fexp is available then

Lexp ← lb(V̂ [f1, f2, . . . , fk], Fexp)
loss = Lans + Lexp

else
loss = Lans

end
update θ, STrans using AdamW

optimizer by minimizing loss
epoch ← epoch+ 1

end
Result: Store best θ and STrans

The output from the DCX layer returns the
solved edge adjacency matrix Ê with values be-
tween 0 and 1. We interpret the diagonal values
of Ê be the probability of the specific node to be
part of the selected subgraph. The final step is to
optimize the sum of the L1 loss l1 between the
selected answer and correct answer cans for the
answer loss Lans:

Lans = l1(diag(Ê)[h1, h2, . . . , hn], cans)
(13)

As well as the binary cross entropy loss lb
between the selected explanatory facts and true
explanatory facts Fexp for the explanatory loss
Lexp:

Lexp = lb(diag(Ê)[f1, f2, . . . , fk], Fexp)
(14)
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We add the losses to backpropagate to learn
the θ weights and fine-tune the sentence trans-
formers. The pseudo-code to train Diff-Explainer
end-to-end is summarized in Algorithm 1.

4 Empirical Evaluation

Question Sets: We use the following multiple-
choice question sets to evaluate the Diff-Explainer.

(1) WorldTree Corpus (Xie et al., 2020): The
4,400 question and explanations in the World-
Tree corpus are split into three different sub-
sets: train-set, dev-set, and test-set. We use the
dev-set to assess the explainability performance
since the explanations for test-set are not pub-
licly available.

(2) ARC-Challenge Corpus (Clark et al.,
2018): ARC-Challenge is a multiple-choice ques-
tion dataset which consists of question from
science exams from grade 3 to grade 9. These
questions have proven to be challenging to an-
swer for other LP-based question answering and
neural approaches.

Experimental Setup: We use all-mpnet-base-
v2 model as the Sentence Transformer model
for the sentence representation in Diff-Explainer.
The motivation to choose this model is to use a
pre-trained model on natural language inference
and MPNetBase (Song et al., 2020) is smaller
compared to large models like BERTLarge, en-
abling us to encode a larger number of facts.
Similarly, for fact retrieval representation, we
use all-mpnet-base-v2 trained with gold expla-
nations of WorldTree Corpus to achieve a Mean
Average Precision of 40.11 in the dev-set. We
cache all the facts from the background knowl-
edge and retrieve the top k facts using MIPS
retrieval (Johnson et al., 2017). We follow a sim-
ilar setting proposed by Thayaparan et al. (2021)
for the background knowledge base by combin-
ing over 5000 abstract facts from the WorldTree
table store (WTree) and over 100,000 is-a ground-
ing facts from ConceptNet (CNet) (Speer et al.,
2016). Furthermore, we also set m = 2 in line
with the previous configurations from TupleILP
and ExplanationLP.2

2We fine-tune Diff-Explainer using a learning rate of 1e-5,
14 epochs, with a batch size of 8.

Baselines: In order to assess the complexity of
the task and the potential benefits of the convex
optimization layers presented in our approach, we
show the results for different baselines. We run
all models with k = {1, . . . , 10, 25, 50, 75, 100}
to find the optimal setting for each baseline and
perform a fair comparison. For each question, the
baselines take as input a set of hypotheses, where
each hypothesis is associated with k facts, ranked
according to the fact retrieval model.

(1) IR Solver (Clark et al., 2018): This approach
attempts to answer the questions by computing
the accumulated score from all k obtained from
summing up the retrieval scores. In this case, the
retrieval scores are calculated using the cosine
similarity of fact and hypothesis sentence vectors
obtained from the STrans model trained on gold
explanations. The hypothesis associated with the
highest score is selected as the one containing the
correct answer.

(2) BERTBase and BERTLarge (Devlin et al.,
2019): To use BERT for this task, we concatenate
every hypothesis with k retrieved facts, using the
separator token [SEP]. We use the HuggingFace
(Wolf et al., 2019) implementation of BertFor-
SequenceClassification, taking the prediction with
the highest probability for the positive class as
the correct answer.3

(3) PathNet (Kundu et al., 2019): PathNet is
a graph-based neural approach that constructs a
single linear path composed of two facts con-
nected via entity pairs for reasoning. It uses the
constructed paths as evidence of its reasoning pro-
cess. They have exhibited strong performance for
multiple-choice science questions.

(4) TupleILP and ExplanationLP: Both rep-
lications of the non-differentiable solvers are
implemented with the same constraints as Diff-
Explainer via SDP approximation without fine-
tuning end-to-end; instead, we fine-tune the θ
parameters using Bayesian optimization4 and fro-
zen STrans representations. This baseline helps
us to understand the impact of the end-to-end
fine-tuning.

3We fine-tune both versions of BERT using a learning
rate of 1e-5, 10 epochs, with a batch size of 16 for Base
and 8 for Large.

4We fine-tune for 50 epochs using the Adpative Exper-
imentation Platform.
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Model Acc

Baselines
IR Solver 50.48

BERTBase (Without Retrieval) 45.43
BERTBase 58.06
BERTLarge (Without Retrieval) 49.63
BERTLarge 59.32

TupleILP 49.81
ExplanationLP 62.57

PathNet 43.40

Diff-Explainer
TupleILP constraints
- Answer Selection only 61.13
- Answer and explanation selection 63.11
ExplanationLP constraints
- Answer selection only 69.73
- Answer and explanation selection 71.48

Table 1: Answer selection performance for the
baselines and across different configurations of
our approach on WorldTree Corpus.

4.1 Answer Selection

WorldTree Corpus: Table 1 presents the an-
swer selection performance on the WorldTree
corpus in terms of accuracy, presenting the best
results obtained for each model after testing for
different values of k. We also include the results
for BERT without explanation in order to evaluate
the influence extra facts can have on the final
score. We also present the results for two differ-
ent training goals, optimizing for only the answer
and optimizing jointly for answer and explanation
selection.

We draw the following conclusions from the
empirical results obtained on the WorldTree cor-
pus (the performance increase here is expressed
in absolute terms):

(1) Diff-Explainer with ExplanationLP and Tuple-
ILP outperforms the respective non-differentiable
solvers by 13.3% and 8.91%. This increase in
performance indicates that Diff-Explainer can in-
corporate different types of constraints and signif-
icantly improve performance compared with the
non-differentiable version.
(2) It is evident from the performance obtained by
a large model such as BERTLarge (59.32%) that

Model Background KB Acc

TupleILP (Khot et al., 2017) TupleInf 23.83
ExplanationLP (Thayaparan
et al., 2021)

WTree & CNet 40.21

TupleILP (Ours) TupleInf 29.12
ExplanationLP (Ours) WTree & CNet 37.40

Diff-Explainer
TupleILP
Constraints

TupleInf 33.95

ExplanationLP
Constraints

WTree & CNet 42.95

Table 2: Answer Selection performance on ARC
corpus with Diff-Explainer fine-tuned on answer
selection.

we are dealing with a non-trivial task. The best
Diff-Explainer setting (with ExplanationLP) out-
performs the best transformer-based models with
and without explanations by 12.16% and 21.85%.
Additionally, we can also observe that both with
TupleILP and ExplanationLP, we obtain better
scores over the transformer-based configurations.
(3) Fine-tuning with explanations yielded bet-
ter performance than only answer selection with
ExplanationLP and TupleILP, improving perfor-
mance by 1.75% and 1.98%. The increase in per-
formance indicates that Diff-Explainer can learn
from the distant supervision of answer selection
and improve in a strong supervision setting.
(4) Overall, we can conclude that incorporating
constraints using differentiable convex optimiza-
tion with transformers for multi-hop QA leads to
better performance than pure constraint-based or
transformer-only approaches.

ARC Corpus: Table 2 presents a comparison
of baselines and our approach with different back-
ground knowledge bases: TupleInf, the same as
used by TupleILP (Khot et al., 2017), and World-
Tree & ConceptNet as used by ExplanationLP
(Thayaparan et al., 2021). We have also reported
the original scores reported by the respective
approaches.

For this dataset, we use our approach with the
same settings as the model applied to WorldTree,
and fine-tune for only answer selection since ARC
does not have gold explanations. Models em-
ploying Large Language Models (LLMs) trained
across multiple question answering datasets like
UnifiedQA (Khashabi et al., 2020) and Aristo-
BERT (Xu et al., 2021) have demonstrated strong
performance in ARC with an accuracy of 81.14
and 68.95 in respectively.
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Model Explainable Accuracy

BERTLarge No 35.11

IR Solver (Clark et al., 2016) Yes 20.26
TupleILP (Khot et al., 2017) Yes 23.83
TableILP (Khashabi et al., 2016) Yes 26.97
ExplanationLP (Thayaparan et al., 2021) Yes 40.21
DGEM (Clark et al., 2016) Partial 27.11
KG2 (Zhang et al., 2018) Partial 31.70
ET-RR (Ni et al., 2019) Partial 36.61
Unsupervised AHE (Yadav et al., 2019a) Partial 33.87
Supervised AHE (Yadav et al., 2019a) Partial 34.47
AutoRocc (Yadav et al., 2019b) Partial 41.24

Diff-Explainer (ExplanationLP) Yes 42.95

Table 3: ARC challenge scores compared with
other Fully or Partially explainable approaches
trained only on the ARC dataset.

To ensure a fair comparison, we only com-
pare the best configuration of Diff-Explainer with
other approaches that have been trained only on
the ARC corpus and provide some form of expla-
nations in Table 3. Here the explainability column
indicates if the model delivers an explanation for
the predicted answer. A subset of the approaches
produces evidence for the answer but remains
intrinsically black-box. These models have been
marked as Partial.
(1) Diff-Explainer improves the performance of
non-differentiable solvers regardless of the back-
ground knowledge and constraints. With the same
background knowledge, our model improves the
original TupleILP and ExplanationLP by 10.12%
and 2.74%, respectively.
(2) Our approach also achieves the highest
performance for partially and fully explainable
approaches trained only on ARC corpus.
(3) As illustrated in Table 3, we outperform
the next best fully explainable baseline (Expla-
nationLP) by 2.74%. We also outperform the
stat-of-the-art model AutoRocc (Yadav et al.,
2019b) (uses BERTLarge) that is only trained
on ARC corpus by 1.71% with 230 million fewer
parameters.
(4) Overall, we achieve consistent performance
improvement over different knowledge bases
(TupleInf, Wordtree & ConceptNet) and ques-
tion sets (ARC, WorldTree), indicating that the
robustness of the approach.

4.2 Explanation Selection
Table 4 shows the Precision@K scores for ex-
planation retrieval for PathNet, ExplanationLP/
TupleILP, and Diff-Explainer with Explanation-

Model Precision@1 Precision@2

TupleILP 40.44 31.21
ExplanationLP 51.99 40.41

PathNet 19.79 13.73

Diff-Explainer
TupleILP (Best) 40.64 32.23
ExplanationLP (Best) 56.77 41.91

Table 4: F1 score for explanation selection in
WorldTree dev-set.

Figure 3: Comparison of accuracy for different number
of retrieved facts.

LP/TupleILP trained on answer and explanation
selection. We choose Precision@K as the evalua-
tion metric as the design of the approaches is not
to construct full explanations but to take the top
k = 2 explanations and select the answer.

As evident from the table, our approach signif-
icantly outperforms PathNet. We also improved
the explanation selection performance over the
non-differentiable solvers indicating the end-to-
end fine-tuning also helps improve the selection
of explanatory facts.

4.3 Answer Selection with Increasing
Distractors

As noted by previous works (Yadav et al., 2019b,
2020), the answer selection performance can de-
crease when increasing the number of used facts
k for Transformer. We evaluate how our ap-
proach stacks compared with transformer-based
approaches in this aspect, presented in Figure 3.
As we can see, the IR Solver decreases in perfor-
mance as we add more facts, while the scores for
transformer-based models start deteriorating for
k > 5. Such results might seem counter-intuitive
since it would be natural to expect a model’s
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Question (1): Fanning can make a wood fire burn hotter because the fanning: Correct Answer: adds more oxygen
needed for burning.
PathNet
Answer: provides the energy needed to keep the fire going. Explanations: (i) fanning a fire increases the oxygen
near the fire, (ii) placing a heavy blanket over a fire can be used to keep oxygen from reaching a fire
ExplanationLP
Answer: increases the amount of wood there is to burn. Explanations: (i) more burning causes fire to be hotter,
(ii) wood burns
Diff-Explainer ExplanationLP
Answer: adds more oxygen needed for burning. Explanations: (i) more burning causes fire to be hotter, (ii)
fanning a fire increases the oxygen near the fire

Question (2): Which type of graph would best display the changes in temperature over a 24 hour period? Correct
Answer: line graph.
PathNet
Answer: circle/pie graph. Explanations: (i) a line graph is used for showing change; data over time
ExplanationLP
Answer: circle/pie graph. Explanations: (i) 1 day is equal to 24 hours, (ii) a circle graph; pie graph can be used
to display percents; ratios
Diff-Explainer ExplanationLP
Answer: line graph. Explanations: (i) a line graph is used for showing change; data over time, (ii) 1 day is equal
to 24 hours

Question (3): Why has only one-half of the Moon ever been observed from Earth? Correct Answer: The Moon
rotates at the same rate that it revolves around Earth.
PathNet
Answer: The Moon has phases that coincide with its rate of rotation. Explanations: (i) the moon revolving
around; orbiting the Earth causes the phases of the moon, (ii) a new moon occurs 14 days after a full moon
ExplanationLP
Answer: The Moon does not rotate on its axis. Explanations: (i) the moon rotates on its axis, (ii) the dark half of
the moon is not visible
Diff-Explainer ExplanationLP
Answer: The Moon is not visible during the day. Explanations: (i) the dark half of the moon is not visible, (ii) a
complete revolution; orbit of the moon around the Earth takes 1; one month

Table 5: Example of predicted answers and explanations (Only CENTRAL explanations) obtained from
our model with different levels of fine-tuning.

performance to increase as we add supporting
facts. However, in practice, that does not apply
as by adding more facts, there is an addition of
distractors that such models may not filter out.

We can prominently see this for BERTLarge

with a sudden drop in performance for k = 10,
going from 56.61 to 30.26. Such a drop is likely
being caused by substantial overfitting; with the
added noise, the model partially lost the abil-
ity for generalization. A softer version of this
phenomenon is also observed for BERTBase.

In contrast, our model’s performance increases
as we add more facts, reaching a stable point
around k = 50. Such performance stems from
our combination of overlap and relevance scores
along with the structural and semantic constraints.
The obtained results highlight our model’s robust-
ness to distracting knowledge, allowing its use in

data-rich scenarios, where one needs to use facts
from extensive knowledge bases. PathNet is also
exhibiting robustness across increasing distrac-
tors, but we consistently outperform it across all k
configurations.

On the other hand, for smaller values of k
our model is outperformed by transformer-based
approaches, hinting that our model is more suitable
for scenarios involving large knowledge bases
such as the one presented in this work.

4.4 Qualitative Analysis

We selected some qualitative examples that show-
case how end-to-end fine-tuning can improve
the quality and inference and presented them
in Table 5. We use the ExplanationLP for non-
differentiable solver and Diff-Explainer as they
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Figure 4: ILP-based natural language inference.

yield higher performance in answer and expla-
nation selection.

For Question (1), Diff-Explainer retrieves both
explanations correctly and is able to answer cor-
rectly. Both PathNet and ExplanationLP have
correctly retrieved at least one explanation but
performed incorrect inference. We hypothesize
that the other two approaches were distracted by
the lexical overlaps in question/answer and facts,
while our approach is robust towards distractor
terms. In Question (2), our model was able only
to retrieve one explanation correctly and was dis-
tracted by the lexical overlap to retrieve an irrel-
evant one. However, it still was able to answer
correctly. In Question (3), all the approaches an-
swered the question incorrectly, including our
approach. Even though our approach was able to
retrieve at least one correct explanation, it was not
able to combine the information to answer and
was distracted by lexical noise. These shortcom-
ings indicate that more work can be done, and
different constraints can be experimented with for
combining facts.

5 Conclusion

We presented a novel framework for encoding ex-
plicit and controllable assumptions as an end-to-
end learning framework for question answering.
We empirically demonstrated how incorporating
these constraints in broader Transformer-based ar-
chitectures can improve answer and explanation
selection. The presented framework adopts con-
straints from TupleILP and ExplanationLP, but

Diff-Explainer can be extended to encode different
constraints with varying degrees of complexity.

This approach can also be extended to han-
dle other forms of multi-hop QA, including open-
domain, cloze style, and answer generation. ILP
has also been employed for relation extraction
(Roth and Yih, 2004; Choi et al., 2006; Chen
et al., 2014), semantic role labeling (Punyakanok
et al., 2004; Koomen et al., 2005), sentiment anal-
ysis (Choi and Cardie, 2009), and explanation re-
generation (Gupta and Srinivasaraghavan, 2020).
We can adapt and improve the constraints pre-
sented in this approach to build explainable ap-
proaches for the respective tasks.

Diff-Explainer is the first work investigating
the intersection of explicit constraints and latent
neural representations to the best of our knowl-
edge. We hope this work will open the way for
future lines of research on neuro-symbolic mod-
els, leading to more controllable, transparent and
explainable NLP models.
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6 Appendix

6.1 Model Description

This section presents a detailed explanation of
TupleILP and ExplanationLP:

TupleILP TupleILP uses Subject-Predicate-
Object tuples for aligning and constructing the
explanation graph. As shown in Figure 4C, the
tuple graph is constructed and lexical overlaps are
aligned to select the explanatory facts. The con-
straints are designed based on the position of text
in the tuple.

ExplanationLP Given hypothesis H1 from
Figure 4A, the underlying concept the hypothesis
attempts to test is the understanding of fric-
tion. Different ILP approaches would attempt to
build explanation graph differently. For example,
ExplanationLP (Thayaparan et al., 2021) would
classify core scientific facts (F6-F8) into abstract
facts and the linking facts (F1-F5) that connects
generic or abstract terms in the hypothesis into
grounding fact. The constraints are designed to
emulate abstraction by starting to from the con-
crete statement to more abstract concepts via the
grounding facts as shown in Figure 4B.

6.2 Objective Function

In this section, we explain how to design the ob-
jective function for TupleILP and ExplanationLP
to adopt with Diff-Explainer.

Given n candidate hypotheses and k candi-
date explanatory facts, A represents an adjacency
matrix of dimension ((n + k) × (n + k)) where
the first n columns and rows denote the candi-
date hypotheses, while the remaining rows and col-
umns represent the candidate explanatory facts.
The adjacency matrix denotes the graph’s lexical
connections between hypotheses and facts. Spe-
cifically, each entry in the matrix Aij contains
the following values:

Aij =

⎧⎨
⎩

1, i ≤ n, j > n, |trm(hi) ∩ trm(fj−n)| > 0

1, j ≤ n, i > n, |trm(hj) ∩ trm(fi−n)| > 0

0, otherwise
(15)

Given the relevance scoring functions, we con-
struct edge weights matrix (W ) via a weighted
function for each approach as follows:

TupleILP The weight function for Diff-
Explainer with TupleILP constraints is:

Wij = (θsrSij + θlrLij)×Aij ∀i, j ∈ V (24)

ExplanationLP Give Abstract KB (FA) and
Grounding KB (FG), the weight function for
Diff-Explainer with Explanation LP is as follows:

Wij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−θggLij vj , vk ∈ FG

−θaaLij vj , vk ∈ FA

θgaLij vj ∈ FG, vk ∈ FA

θqglLij + θqgsSij vj ∈ FG, vk = hi

θqalLij + θqalSij vj ∈ FA, vk = hi

(25)

6.3 Constraints with Disciplined
Parameterized Programming (DPP)

In order to adopt differentiable convex optimiza-
tion layers, the constraints should be defined
following the Disciplined Parameterized Program-
ming (DPP) formalism (Agrawal et al., 2019b),
providing a set of conventions when construct-
ing convex optimization problems. DPP consists
of functions (or atoms) with a known curvature
(affine, convex or concave) and per-argument
monotonicities. In addition to these, DPP also
consists of Parameters which are symbolic con-
stants with an unknown numerical value assigned
during the solver run.

TupleILP We extract SPO tuples f t
i =

{fS
i , fP

i , fO
i } for each fact fi using an Open

Information Extraction model (Stanovsky et al.,
2018). From the hypothesis hi we extract the set
of unique terms hhti = {thi

1 , thi
2 , thi

3 , . . . , thi
l }

excluding stopwords.
In addition to the aforementioned constraints

and semidefinite constraints specified in Equa-
tion 7, we adopt part of the constraints from
TupleILP (Khot et al., 2017). In order to imple-
ment TupleILP constraints, we extract SPO tuples
f t
i = {fS

i , fP
i , fO

i } for each fact fi using an
Open Information Extraction model (Stanovsky
et al., 2018). From the hypotheses H we also
extract the set of unique terms Ht = {t1, t2,
t3, . . . , tl} excluding stopwords. The constraints
are described in Table 6.

ExplanationLP ExplanationLP constraints are
described in Table 6.
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Description DPP Format Parameters

TupleILP
Sub graph must have ≤ w1 active
tuples

∑
i ∈ F

Yii ≤ w1 + 1 (16)
–

Active hypothesis term must have
≤ w2 edges Hθ [:, :, i]� Y ≤ w2 ∀i ∈ Ht (17)

Hθ is populated by hypothesis term matrix H
with dimension ((n+ k)× (n+ k)× l) and the
values are given by:

Hijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, ∀ k ∈ Ht, i ∈ H, j ∈ F,

tk ∈ trm(hi), tk ∈ trm(fj)

1, ∀ k ∈ Ht, i ∈ F, j ∈ H,

tk ∈ trm(hj), tk ∈ trm(fi)

0, otherwise
(18)

Active tuple must have active
subject Y � TS

θ >= E �Aθ (19)
Aθ populated by adjacency matrix A, TS

θ by
subject tuple matrix TS with dimension ((n +
k)× (n+ k)) and the values are given by:

TS
ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, i ∈ H, j ∈ F,

|trm(hi) ∩ trm(fS
j )| > 0

1, i ∈ F, j ∈ H,

|trm(hj) ∩ trm(fS
i )| > 0

0, otherwise

(20)

Active tuple must have ≥ w3

active fields
Y � TS

θ + Y � TP
θ + Y � TO

θ ≥ w3(Y �Aθ)
(21)

Aθ populated by adjacency matrix A and TS
θ ,

TP
θ , TO

θ populated by subject, predicate and
object matrices TS , TP , TO respectively. Predi-
cate and object tuples are converted intoTP , TO

matrices similar to TS

Active tuple must have an edge to
some hypothesis term

Implemented during graph construction by only
considering tuples that have lexical overlap with
a hypothesis

–

ExplanationLP
Limits the total number of abstract
facts to w4 diag(Y ) · FAB

θ ≤ w4 (22)
FAB
θ is populated by Abstract fact matrix FAB ,

where:

FAB
ij =

{
1, i ∈ H, j ∈ FA

0, otherwise
(23)

Table 6: Adopting TupleILP and ExplanationLP constraints in DPP format. For this work we set the
hyperparameters w1 = 2, w2 = 2, w3 = 1 and w4 = 2.
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