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Abstract

Natural language understanding (NLU) has
made massive progress driven by large bench-
marks, but benchmarks often leave a long tail
of infrequent phenomena underrepresented.
We reflect on the question: Have transfer
learning methods sufficiently addressed the
poor performance of benchmark-trained mod-
els on the long tail? We conceptualize the long
tail using macro-level dimensions (underrep-
resented genres, topics, etc.), and perform a
qualitative meta-analysis of 100 representative
papers on transfer learning research for NLU.
Our analysis asks three questions: (i) Which
long tail dimensions do transfer learning stud-
ies target? (ii) Which properties of adaptation
methods help improve performance on the long
tail? (iii) Which methodological gaps have
greatest negative impact on long tail perfor-
mance? Our answers highlight major avenues
for future research in transfer learning for
the long tail. Lastly, using our meta-analysis
framework, we perform a case study com-
paring the performance of various adaptation
methods on clinical narratives, which provides
interesting insights that may enable us to make
progress along these future avenues.

1 Introduction

‘‘There is a growing consensus that significant,
rapid progress can be made in both text under-
standing and spoken language understanding by
investigating those phenomena that occur most
centrally in naturally occurring unconstrained
materials and by attempting to automatically ex-
tract information about language from very large
corpora.’’ (Marcus et al., 1993)

Since the creation of the Penn Treebank, using
shared benchmarks to measure and drive progress
in model development has been instrumental for
accumulation of knowledge in the field of natural
language processing, and has become a dominant

practice. Ideally, we would like shared benchmark
corpora to be diverse and comprehensive, which
can be addressed at two levels: (i) macro-level
dimensions such as language, genre, topic, and so
forth, and (ii) micro-level dimensions such as spe-
cific language phenomena like negation, deixis,
causal reasoning, and so on. However, diversity
and comprehensiveness are not straightforward
to achieve.

According to Zipf’s law, many micro-level lan-
guage phenomena naturally occur infrequently
and will be relegated to the long tail, except
in cases of intentional over-sampling. Moreover,
the advantages of restricting community focus to
a specific set of benchmark corpora and lim-
itations in resources lead to portions of the
macro-level space being under-explored, which
can further cause certain micro-level phenom-
ena to be under-represented. For example, since
most popular coreference benchmarks focus on
English narratives, they do not contain many in-
stances of zero anaphora, a phenomenon quite
common in other languages (e.g., Japanese, Chi-
nese). In such situations, model performance on
benchmark corpora may not be truly reflective
of expected performance on micro-level long tail
phenomena, raising questions about the ability
of state-of-the-art models to generalize to the
long tail.

Most benchmarks do not explicitly catalogue
the list of micro-level language phenomena that
are included or excluded in the sample, which
makes it non-trivial to construct a list of long tail
micro-level language phenomena. Hence, we for-
malize an alternate conceptualization of the long
tail: undersampled portions of the macro-level
space that can be treated as proxies for long
tail micro-level phenomena. These undersampled
long tail macro-level dimensions highlight gaps
and present potential new challenging directions
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for the field. Therefore, periodically taking stock
of research to identify long tail macro-level di-
mensions can help in highlighting opportunities
for progress that have not yet been tackled. This
idea has been gaining prominence recently; for
example, Joshi et al. (2020) survey languages
studied by NLP papers, providing statistical sup-
port for the existence of a macro-level long tail of
low-resource languages.

In this work, our goal is to attempt to character-
ize the macro-level long tail in natural language
understanding (NLU) and efforts that have tried
to address it from research on transfer learning.
Large benchmarks have driven much of the recent
methodological progress on NLU (Bowman et al.,
2015; Rajpurkar et al., 2016; McCann et al., 2018;
Talmor et al., 2019; Wang et al., 2019a,b), but
the generalization abilities of benchmark-trained
models to the long tail have been unclear. In tan-
dem, the NLP community has been successfully
developing transfer learning methods to improve
generalization of models trained on NLU bench-
marks (Ruder et al., 2019). The goal of transfer
learning research is to tackle the macro-level long
tail in NLU, leading to the question: How far
has transfer learning addressed performance of
benchmark models on the NLU long tail, and
where do we still fall behind?

Probing further, we perform a qualitative
meta-analysis of a representative sample of 100
papers on domain adaptation and transfer learn-
ing in NLU. We sample these papers based on
citation counts and publication venues (§2.1), and
document seven facets for each paper such as
tasks and domains studied, adaptation settings
evaluated, and so on. (§2.2). Adaptation meth-
ods proposed (or applied) are documented using
a hierarchical categorization described in §2.3,
which we develop by extending the hierarchy from
Ramponi and Plank (2020). With this information,
our analysis focuses on three questions:

• Q1: What long tail macro-level dimensions
do transfer learning studies target? Dimen-
sions include tasks, domains, languages
and adaptation settings covered in transfer
learning research.

• Q2: Which properties of adaptation meth-
ods help improve performance on long tail
dimensions?

• Q3: Which methodological gaps have great-
est negative impact on long tail performance?

The rest of the paper presents thorough answers
to these questions, laying out avenues for future
research on transfer learning that more effectively
address the macro-level long tail in NLU. We
also present a case study1 to demonstrate how our
meta-analysis framework can be use to systemati-
cally design experiments that provide insights that
enable us to make progress along these avenues.

2 Meta-Analysis Framework

2.1 Sample Curation

We gather a representative sample of work on do-
main adaptation or transfer learning in NLU from
the December 2020 dump of the Semantic Scholar
Open Research Corpus (S2ORC) (Lo et al., 2020).
First, we extract all abstracts published at 9 pres-
tigious *CL venues: ACL, EMNLP, NAACL,
EACL, COLING, CoNLL, SemEval, TACL, and
CL. This results in 25,141 abstracts, which are
filtered to retain those containing the terms ‘‘do-
main adaptation’’ or ‘‘transfer learning’’ in the
title or abstract,2 producing a set of 382 abstracts
after duplicate removal. Figure 2 shows the dis-
tribution of these retrieved abstracts across search
terms and years. From this graph we can see that
interest in this field has increased tremendously in
recent years, and that there has been a slight termi-
nology shift with recent work preferring the term
‘‘transfer learning’’ over ‘‘domain adaptation’’.

We manually screen this subset and remove ab-
stracts that are not eligible for our NLU-focused
analysis (e.g., papers on generation-focused tasks
like machine translation), leaving us with a set
of 266 abstracts. From this, we construct a final
meta-analysis sample of 100 abstracts via ap-
plication of two inclusion criteria. Per the first
criterion, all abstracts with 100 or more citations
are included because they are likely to describe
landmark advances.3 Then, remaining abstracts
(to bring our meta-analysis sample to 100) are
randomly chosen, after discarding ones with no
citations.4 The random sampling criterion ensures

1The codebase for our case study experiment is
available at:https://github.com/CC-RMD-EpiBio
/Domain-Adaptation-Meta-Analysis.

2Search scope is limited to title and abstract in order
to prefer papers that focus on transfer learning rather than
ones including a brief discussion or experiment on transfer
learning as part of an investigation of something else.

3This makes up 23% of the final meta-analysis sample.
4Mean citation count for randomly sampled set is 28.4.
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Figure 1: PRISMA diagram explaining our sample
curation process.

Figure 2: Distribution of papers retrieved by our search
strategy across search terms and years.

that we do not neglect studies that study less main-
stream topics by focusing solely on highly cited
work. This produces a final representative sample
of transfer learning work for our meta-analysis.
Figure 1 describes our sample curation process
via a PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) diagram
(Page et al., 2021).

Characterizing Limitations of Our Curation
Process: Since our sample curation process pri-
marily relies on a keyword-based search, it might
miss relevant work that does not use any of these
keywords. To characterize the limitations of our
curation process, we use two additional strategies
for relevant literature identification:

• Citation graph retrieval: Following
Blodgett et al. (2020), we include all
abstracts that cite or are cited by abstracts

Figure 3: t-SNE visualization of our meta-analysis
sample alongside additional transfer learning papers
missed by our keyword search.

included in our keyword-retrieved set of
382 abstracts. This retrieves 3727 additional
abstracts, but many of these works are
cited for their description or introduction of
new tasks, datasets, evaluation metrics, etc.
Therefore, we discard all works that do not
have the words ‘‘adaptation’’ or ‘‘transfer’’,
leaving 282 new abstracts.

• Nearest neighbor retrieval: We use
SPECTER (Cohan et al., 2020) to compute
embeddings for all abstracts included in our
keyword-retrieved set, as well as all abstracts
in the ACL anthology. Then we retrieve the
nearest neighbor for every abstract in our
keyword-retrieved set, which results in the
retrieval of 262 new abstracts.

Combining abstracts returned by both strate-
gies, we are able to identify 510 additional works.
However, while going over them manually, we
notice that despite our noise reduction efforts,
not all abstracts describe transfer learning work.
We perform an additional manual screening step
to discard such work, which leaves us with a
final set of 232 additional papers.5 To identify
whether the exclusion of these papers from the
initial sample may have led to visible gaps or
blind spots in our meta-analysis, we perform a
TSNE visualization of SPECTER embeddings for
both keyword-retrieved papers and this additional
set of papers. Figure 3 presents the results of this
visualization and indicates that there aren’t visible
distributional differences between the two subsets.

5We make this subset of papers available at: http://
www.shorturl.at/uFGIY.
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Hence, though our sample curation strategy is
imperfect, this seems to indicate that our final ob-
servations from the meta-analysis might not have
been very different. We note that this conclusion
comes with two caveats: (i) t-SNE embeddings are
not always reliable, and (ii) embedding overlap
does not necessarily confirm that annotations for
overlapping papers are similar/correlated. Keep-
ing these caveats in mind, we perform a spot check
for additional validation. For this spot check, we
consider the following highly cited large language
models that have been considered to be major re-
cent advances in transfer learning: ELMo, BERT,
RoBERTa, BART, T5, ERNIE, DeBERTa, and
ELECTRA. Note that we do not consider any
few-shot models (GPT3, PET, etc.) since our sam-
ple only consists of work that was accepted to a
*CL venue by December 2020. Of these major
language models, RoBERTa, DeBERTa, T5, and
ELECTRA were published at non-*CL venues
(JMLR and ICLR), which excludes them from
our sample. The remaining works (ELMo, BERT,
BART, and ERNIE) are all present in the set
of additional works we identified in this section,
lending further support to our conclusion that our
sampling strategy and subsequent analyses have
not overlooked influential work.

2.2 Meta-Analysis Facets

For every paper from our meta-analysis sample,
we document the following key facets:

Task(s): NLP task(s) studied in the work. Tasks
are grouped into 12 categories based on task
formalization and linguistic level (e.g., lexical,
syntactic), as shown in Table 1.

Domain(s): Source and target domains and/or
languages studied, along with datasets used for
each.

Task Model: Base model used for the task, to
which domain adaptation algorithms are applied.

Adaptation Method(s): Domain adaptation
method(s) proposed or used in the work.
Adaptation methods are grouped according to
the categorization showed in Figure 4 (details
in §2.3).

Adaptation Baseline(s): Baseline domain
adaptation method(s) to compare new methods
against.

Cat Tasks Included

TC Text classification tasks like senti-
ment analysis, hate speech detec-
tion, propaganda detection, etc.

NER Semantic sequence labeling tasks
like NER, event extraction, etc.

POS Syntactic sequence labeling tasks
like POS tagging, chunking, etc.

NLI Natural language inference, NLU
Tasks recast as NLI (e.g., GLUE)

SP Structured prediction tasks such as
entity and event coreference

WSD Word sense disambiguation
TRN Text ranking tasks (e.g., search)
TRG Text regression tasks
RC Reading comprehension
MF Matrix factorization
LI Lexicon induction
SLU Spoken language understanding

Table 1: Categorization of tasks studied. Note
that the matrix factorization (MF) category
includes text-based recommender systems.

Adaptation Settings: Source-target transfer
settings explored in the work (unsupervised
adaptation, multi-source adaptation, etc.).

Result Summary: Performance improvements
(if any), performance differences across multiple
source-target pairs or methods, and so forth.

2.3 Adaptation Method Categorization

For adaptation methods proposed or used in
each study, we assign type labels according to
the categorization presented in Figure 4. This
categorization is an extension of the one pro-
posed by Ramponi and Plank (2020).6 Broadly,
methods are divided into three coarse cate-
gories: (i) model-centric, (ii) data-centric, and
(iii) hybrid approaches. Model-centric approaches
perform adaptation by modifying the structure of
the model, which may include editing the fea-
ture representation, loss function, or parameters.
Data-centric approaches perform adaptation by
modifying or leveraging labeled/unlabeled data
from the source and target domains to bridge the

6Since our meta-analysis is not limited to neural un-
supervised domain adaptation, we need to add additional
classes.
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Figure 4: Categorization of adaptation methods proposed, extended, or used in all studies. This categorization is an
extension of the one proposed by Ramponi and Plank (2020), with blue blocks indicating newly added categories,
and yellow blocks indicating categories that have been moved to a different coarse category.

domain gap. Finally, hybrid approaches are ones
that cannot be clearly classified as model-centric
or data-centric. Each coarse category is divided
into fine subcategories.

Model-centric approaches are divided into
four categories, based on which portion of
the model they modify: (i) feature-centric, (ii)
loss-centric, (iii) parameter-centric, and (iv) en-
semble. Feature-centric approaches are further
divided into two fine subcategories: (i) feature
augmentation, and (ii) feature generalization. Fea-
ture augmentation includes techniques that learn
an alignment between source and target fea-
ture spaces using shared features called pivots
(Blitzer et al., 2006). Feature generalization in-
cludes methods that learn a joint representation
space using autoencoders, motivated by Glorot
et al. (2011) and Chen et al. (2012). Loss-centric
approaches contain one fine subcategory: loss
augmentation. This includes techniques that aug-
ment task loss with adversarial loss (Ganin and
Lempitsky, 2015; Ganin et al., 2016), multi-task
loss (Liu et al., 2019), or regularization terms.
Parameter-centric approaches include three fine
subcategories: (i) parameter initialization, (ii) new
parameter addition, and (iii) parameter freezing.
Finally ensemble, used in settings with multiple
source domains, includes techniques that learn to
combine predictions of multiple models trained
on source and target domains.

Data-centric approaches are divided into five
fine subcategories. Pseudo-labeling approaches
train classifiers that then produce ‘‘gold’’ la-
bels for unlabeled target data. This includes
semi-supervised learning methods such as boot-
strapping, co-training, self-training, and so on.
(e.g., McClosky et al., 2006). Active learning
approaches use a human-in-the-loop setting to
annotate a subset of target data that the model
can learn most from (Settles, 2009). Instance
learning approaches leverage neighborhood struc-
ture in joint source-target feature spaces to make
target predictions (e.g., nearest neighbor learn-
ing). Noising/denoising approaches include data
corruption/pre-processing that increase surface
similarity between source and target examples.
Finally, pretraining includes approaches that train
large-scale language models on unlabeled data
to learn better source and target representations,
a strategy that has gained popularity in recent
years (Gururangan et al., 2020).

Hybrid approaches contain two fine subcate-
gories that cannot be classified as model-centric
or data-centric because they involve manipulation
of the data distribution, but can also be viewed as
loss-centric approaches that edit the training loss.
Instance weighting approaches assign weights to
target examples based on similarity to source data.
Conversely, data selection approaches filter target
data based on similarity to source data. Table 2
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Category Example Methods Example Studies

Feat Aug (FA) Structural correspondence learning,
Frustratingly easy domain adaptation

(Blitzer et al., 2006; Daumé III,
2007)

Feat Gen (FG) Marginalized stacked denoising
autoencoders, Deep belief networks

(Jochim and Schütze, 2014; Ji et al.,
2015; Yang et al., 2015)

Loss Aug (LA) Multi-task learning, Adversarial learning,
Regularization-based methods

(Zhang et al., 2017; Liu et al., 2019;
Chen et al., 2020)

Init (PI) Prior estimation, Parameter matrix
initialization

(Chan and Ng, 2006; Al Boni et al.,
2015)

Add (PA) Adapter networks (Lin and Lu, 2018)

Freeze (FR) Embedding freezing, Layerwise freezing (Yin et al., 2015; Tourille et al.,
2017)

Ensemble (EN) Mixture of experts, Weighted averaging (McClosky et al., 2010; Nguyen
et al., 2014)

Instance Weighting (IW) Classifier based weighting (Jiang and Zhai, 2007; Jeong et al.,
2009)

Data Selection (DS) Confidence-based sample selection (Scheible and Schütze, 2013; Braud
and Denis, 2014)

Pseudo-Labeling (PL) Semi-supervised learning, Self-training (Umansky-Pesin et al., 2010; Lison
et al., 2020)

Noising/Denoising (NO) Token dropout (Pilán et al., 2016)

Active Learning (AL) Sample selection via active learning (Rai et al., 2010; Wu et al., 2017)

Pretraining (PT) Language model pretraining, Supervised
pretraining

(Conneau et al., 2017; Howard and
Ruder, 2018)

Instance Learning (IL) Nearest neighbor learning (Gong et al., 2016)

Table 2: Examples of methods from each category, and papers studying these methods. These lists
are non-exhaustive. In the interest of replicability, we have made our coding for all papers publicly
available at: http://www.shorturl.at/stuAT.

lists example adaptation methods for each fine
category and example studies from our meta-
analysis subset that use these methods.

3 Which Long Tail Macro-Level
Dimensions Do Transfer Learning
Studies Target?

The first goal of our meta-analysis is to docu-
ment long tail macro-level dimensions that transfer
learning studies have tested their methods on. We
look at distributions of tasks, domains, languages,
and adaptation settings studied in all papers in
our sample. Ten studies are surveys, position pa-
pers or meta-experiments, and so excluded from
these statistics. Studies can cover multiple tasks,
domains, languages, or settings so counts may be
higher than 90.

Task Distribution: Figure 5 gives a brief
overview of the distribution of tasks studied across
papers. Text classification tasks clearly dominate,
followed by semantic and syntactic tagging. Text
classification covers a variety of tasks, but sen-
timent analysis is the most well-studied, with
research driven by the multi-domain sentiment
detection (MDSD) dataset (Blitzer et al., 2007).
Conversely, structured prediction is under-studied
(<10% studies from our sample evaluate on
structured prediction tasks), despite covering a
variety of tasks such as coreference resolution,
syntactic parsing, dependency parsing, semantic
parsing, etc. This indicates that tasks with com-
plex formulations/objectives are under-explored.
We speculate that there may be two reasons for
this: (i) difficulty of collecting annotated data in
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Figure 5: Distribution of papers according to tasks
studied. Top three task categories are text classification
(TC), semantic sequence labeling (NER), and syntac-
tic sequence labeling (POS). Table 1 describes the
remaining task categories.

multiple domains/languages for such tasks,7 and
(ii) shift in output structures (e.g., different named
entity types in source and target domains) making
adaptation harder.

Languages Studied: Despite a focus on gen-
eralization, most studies in our sample rarely
evaluate on other languages aside from English.
As stated by Bender (2011), this is problem-
atic because the ability to apply a technique
to other languages does not necessarily guar-
antee comparable performance. Some studies
do cover multi-lingual evaluation or focus on
cross-linguality. Figure 6 shows the distribution
of languages included in these studies, which is
a limited subset. For a more comprehensive dis-
cussion of linguistic diversity in NLP research not
limited to transfer learning, we refer interested
readers to Joshi et al. (2020).

Domains Studied: Many popular transfer
benchmarks (Blitzer et al., 2007; Wang et al.,
2019a,b) are homogeneous. They focus on
narrative English, drawn from plentiful sources
such as news articles, reviews, blogs, essays, and
Wikipedia. This sidelines some categories of do-
mains8 that fall into the long tail: (i) non-narrative

7Note that despite these difficulties, efforts to collect data
for structured prediction tasks are underway, such as the mas-
sive Universal Dependencies project, which has collected
consistent grammar annotations for over 100 languages:
https://universaldependencies.org.

8Domain is an overloaded term covering genres, styles,
registers, etc., but we use it for consistency with prior work.

Figure 6: Distribution of multi-lingual studies accord-
ing to languages included.

HE #P NN #P

Clinical 10 Twitter 12
Biomedical 9 Conversations 10
Science 3 Forums 8
Finance 3 Emails 6
Literature 3
DefSec 1

Table 3: Counts of papers (#P) study-
ing high-expertise (HE) and non-narrative
(NN) domains (DefSec refers to security
and defense reports).

text (social media, conversations etc.), and (ii)
texts from high-expertise domains that use spe-
cialized vocabulary and knowledge (e.g., clinical
text). Table 3 shows the number of papers focus-
ing on high-expertise and non-narrative domains,
highlighting the lack of focus on these areas.

Adaptation Settings Studied: Most studies
evaluate methods in a supervised adaptation set-
ting, that is, labeled data is available from both
source and target domains. This assumption may
not always hold. Often adaptation must be per-
formed in harder settings such as unsupervised
adaptation (no labeled data from target domain),
adaptation from multiple source domains, on-
line adaptation, and so forth, and we refer to
all such settings aside from supervised adaptation
as unconventional adaptation settings. Figure 7
shows the distribution of unconventional settings
across papers, indicating that these settings are
understudied in literature.
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Figure 7: Distribution of papers according to uncon-
ventional (non-supervised) adaptation settings.

Open Issues: We can see that there is much
ground to cover in testing adaptation methods
on the macro long tail. Two research directions
may be key to achieving this: (i) develop-
ment of and evaluation on diverse benchmarks,
and (ii) incentivizing publication of research
on long tail domains at NLP venues. Diverse
benchmark development has gained momentum,
with the creation of benchmarks such as BLUE
(Peng et al., 2019) and BLURB (Gu et al.,
2020) for biomedical and clinical NLP, XTREME
(Hu et al., 2020) for cross-lingual NLP, and
GLUECoS (Khanuja et al., 2020) for code-
switched NLP. However, newly proposed adap-
tation methods are often not evaluated on them,
which is imperative to test the methods’ limitations
and generalization abilities. On the other hand,
application-specific or domain-specific evalua-
tions of adaptation methods are sidelined at NLP
venues and may be viewed as limited in terms
of bringing broader insights. But applied research
can unearth significant opportunities for advances
in transfer learning, and should be viewed from
a translational perspective (Newman-Griffis et al.,
2021). For example, source-free domain adap-
tation in which only a trained source model is
available with no access to source data (Liang
et al., 2020), was conceptualized partly due to
data sharing restrictions on Twitter or clinical
data. Though this issue is limited to certain do-
mains, source-free adaptation may be of broader
interest since it has implications for reducing
models’ reliance on large amounts of data. There-
fore, encouraging closer ties with applied trans-
fer learning research can help us gain more

Figure 8: Distribution of transfer learning studies ac-
cording to coarse method categories. DC, MC, and HY
refer to data-centric, model-centric, and hybrid coarse
categories, respectively.

Figure 9: Distribution of transfer learning studies ac-
cording to fine method categories. The top five fine
categories are feature augmentation (FA), loss augmen-
tation (LA), pretraining (PT), parameter initialization
(PI), and pseudo-labeling (PL). Table 2 describes the
remaining categories in more detail.

insight into limitations of existing techniques on
the macro long tail.

4 Which Properties Of Adaptation
Methods Help Improve Performance
On Long Tail Dimensions?

The second goal of our meta-analysis is to iden-
tify which categories of adaptation methods have
been tested extensively and have exhibited good
performance on various long tail macro-level
dimensions. Figures 8 and 9 provide an over-
view of categories of methods tested across all
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Figure 10: Distribution of fine method categories from studies evaluating on long tail domains. Note that FA
stands for feature augmentation, LA for loss augmentation, PL for pseudo-labeling, PT for pretraining, IW for
instance weighting, and PI for parameter initialization. Table 2 describes the remaining categories in more detail.

papers in our subset. We can see that studies
overwhelmingly develop or use model-centric
methods. Within this coarse category, feature
augmentation (FA) and loss augmentation (LA)
are the top two categories, followed by pretrain-
ing (PT), which is data-centric. Parameter ini-
tialization (PI) and pseudo labeling (PL) round
out the top five. Feature augmentation being
the most explored category is no surprise, given
that much pioneering early domain adaptation
work in NLP (Blitzer et al., 2006, 2007; Daumé III,
2007) developed methods to learn shared fea-
ture spaces between source and target domains.
Loss augmentation methods have gained promi-
nence recently, with multi-task learning providing
large improvements (Liu et al., 2015, 2019). Pre-
training methods, both unsupervised (Howard and
Ruder, 2018) and supervised (Conneau et al.,
2017), have also gained popularity with large
transformer-based language models (Peters et al.,
2018; Devlin et al., 2019, etc.) achieving huge
gains across tasks.

To specifically identify techniques that work
on long tail domains, we look at categories of
methods evaluated on high-expertise domains or
non-narrative domains (or both). Figures 10a, 10b,
and 10c present the distributions of fine method
categories tested on high-expertise domains,
non-narrative domains, and both domain types,
respectively. While feature augmentation tech-
niques remain the most explored category for
high-expertise domains, we see a change in trend
for non-narrative domains. Loss augmentation
and pretraining are more commonly explored
categories. The difference in dominant model cat-
egories can be partly attributed to easy availability
of large-scale unlabeled data and weak signals

(e.g., likes, shares), particularly for social media.
Such user-generated content (called ‘‘fortuitous
data’’ by Plank [2016]) is leveraged well by pre-
training or multi-task learning techniques, making
them popular choices for non-narrative domains.
In contrast, high-expertise domains (security and
defense reports, finance, etc.) often lack fortui-
tous data, with methods developed for them fo-
cusing on learning shared feature spaces.

Ten studies in our meta-analysis sample eval-
uate on both domain types. Five of these studies
(described in Table 4) operationalize two key ideas
that seem to improve adaptation performance but
have remained relatively under-explored in the
context of recent methods like pretraining:

• Incorporating Source-target Distance:
Several methods explicitly incorporate dis-
tance between source and target domain (e.g.,
Xing et al., 2018; Wang et al., 2018). Aside
from allowing flexible adaptation based on
the specific domain pairs being considered,
adding source-target distance provides two
benefits. It offers an additional avenue to an-
alyze generalizability by monitoring source-
target distance during adaptation. It also
allows performance to be estimated in ad-
vance using source-target distance, which can
be helpful when choosing an adaptation tech-
nique for a new target domain. Kashyap et al.
(2020) provide a comprehensive overview
of source-target distance metrics and discuss
their utility in analysis and performance
prediction. Despite these benefits, very little
work has tried to incorporate source-target
distance into newer adaptation method
categories such as pretraining.
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Study Method Performance

(Arnold et al., 2008) Manually constructed feature hierarchy across domains,
allowing back off to more general features (FA)

Positive transfer from 5 corpora
(biomedical, news, email) to email

(McClosky et al., 2010) Mixture of domain-specific models chosen via source-target
similarity features (e.g., cosine similarity) (EN)

Positive transfer to biomedical, literature
and conversation domains

(Yang and Eisenstein, 2015) Dense embeddings induced from template features and
manually defined domain attribute embeddings (FA)

Positive transfer to 4/5 web domains and
10/11 literary periods

(Xing et al., 2018) Multi-task learning method with source-target distance
minimization as additional loss term (LA)

Positive transfer on 4/6 intra-medical
settings (EHRs, forums) and 5/9 narra-
tive to medical settings

(Wang et al., 2018) Source-target distance minimized using two loss penalties (LA) Positive transfer to medical and
Twitter data

Table 4: Model and performance details for studies testing on high-expertise and non-narrative domains.
Fine method categories used in these studies include feature augmentation (FA), loss augmentation
(LA), ensembling (EN), pretraining (PT), parameter initialization (PI), and pseudo-labeling (PL).

• Incorporating Nuanced Domain Variation:
Despite NLP treating domain variation as
a dichotomy (source vs. target), domains
vary along a multitude of dimensions (topic,
genre, medium of communication, etc.)
(Plank, 2016). Some methods acknowledge
this nuance and treat domain variation as
multi-dimensional, either in a discrete feature
space (Arnold et al., 2008) or in a continu-
ous embedding space (Yang and Eisenstein,
2015). This allows knowledge sharing across
dimensions common to both source and
target, improving transfer. This idea has
also remained under-explored, though recent
work such as the development of domain
expert mixture (DEMix) layers (Gururangan
et al., 2021) has attempted to incorporate
nuanced domain variation into pretraining.

Open Issues: Interestingly many studies from
our sample do not analyze failures, namely,
source-target pairs on which adaptation methods
do not improve performance. For some studies
in Table 4, adaptation methods do not improve
performance on all source-target pairs. But fail-
ures are not investigated, presenting the question:
Do we know blind spots for current adaptation
methods? Answering this is essential to develop a
complete picture of the generalization capabilities
of adaptation methods. Studies that present neg-
ative transfer results (e.g., Plank et al., 2014) are
rare, but should be encouraged to develop a sound
understanding of adaptation techniques. Analy-
ses should also study ties between datasets used
and methods applied, highlighting dimensions
of variation between source-target domains and
how adaptation methods bridge them (Kashyap
et al., 2020; Naik et al., 2021). Such analyses

can uncover important lessons about generaliz-
ability of adaptation methods and the kinds of
source-target settings they can be expected to
improve performance on.

Identifying Under-explored and Promising
Methods: Annotating long tail macro-level di-
mensions and adaptation method categories stud-
ied by all works included in our representative
sample has the additional benefit of providing
a framework to identify both the most under-
explored, as well as most promising methods,
under various settings. Tables 5 and 6 provide ev-
idence gap maps presenting the number of works
from our sample that study the utility of various
method categories on different tasks and domains
respectively.9 The first thing we note is that both
maps are highly sparse, indicating that there is
little to no evidence for several combinations,
many of which are worth exploring. In partic-
ular, given recent state-of-the-art advances, the
following settings seem ripe for exploration:

• Parameter Addition and Freezing: Though
there are only four studies in our sample
(providing positive evidence) that study pa-
rameter addition and freezing methods, we
believe that given the advent of large-scale
language models, these categories merit fur-
ther exploration for popular task categories
(TC, POS, NER, NLI, SP). Both methods
attempt to improve generalization by reduc-
ing overfitting which is likely to be more
prevalent with large language models, and
are additionally efficient methods that do not
require a large number of extra parameters.

9We do not include languages because our meta-analysis
does not solely focus on multilingual and cross-lingual work.
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Table 5: Evidence gap map showing which method categories have not been explored sufficiently
for various task categories. Please refer to Tables 1 and 2 for task abbreviations.

Table 6: Evidence gap map showing which
method categories have not been explored
sufficiently for various long tail domain
categories. Note that HE and NN refer
to high-expertise and non-narrative do-
mains. Please refer to Table 2 for model
abbreviations.

• Active Learning: Studies included in our
sample provide positive evidence for the use
of active learning in an adaptation setting,
but they have mainly evaluated on text clas-
sification (primarily sentiment analysis). We
hypothesize that active learning during adap-
tation might also prove to be beneficial for
task categories POS, NER, and SP, which re-
quire more complex, linguistically informed
annotation.

• Data Selection: Despite being similar in na-
ture to instance weighting methods for which

several studies provide positive evidence,
data selection methods seem to have been
under-explored. We believe that these meth-
ods might be useful for POS, NER, and SP
tasks for which large-scale fortuitous data
is not as easily available, and adaptation
must also take into account shifts in output
structure.

Despite the scarcity of both maps, there are certain
method-task and method-domain combinations
for which our meta-analysis sample includes a
reasonable number of studies (≥10%). For these
combinations, we provide a quick performance
summary below:

• Feature Augmentation: On text classifica-
tion, 12 of 25 studies use FA methods as
baselines. Of the remaining 13 studies, 6 pro-
vide strong positive evidence—that is, the
FA method outperforms all methods across
all settings/domains tested. The remaining 7
provide mixed results—that is, there are cer-
tain domains on which this method category
doesn’t work best. On semantic sequence la-
beling tasks like NER, 4 of 13 studies use FA
methods as baselines, 5 show strong positive
results, and 4 show mixed results. Finally,
on high-expertise domains, 1 study uses FA
methods as baselines, 5 show strong posi-
tive results, and 6 show mixed results. These
observations indicate that despite their pop-
ularity, feature augmentation methods are
not as strong as other method categories.

• Loss Augmentation: For text classifica-
tion, 8 of 21 studies use LA methods as
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baselines. Of the remaining 13 studies, 11
provide strong positive evidence, while only
2 provide mixed results. On non-narrative
domains, 9 of 11 studies provide strong
positive evidence, while 2 provide mixed
results. Based on their performance, loss
augmentation methods seem to be extremely
promising, especially for text classification
and non-narrative domains.

• Pretraining: For text classification, 4 of 13
studies use pretraining as a baseline. Of the
remaining 9 studies, 8 provide strong posi-
tive evidence and only one provides mixed
results. Despite their relatively recent emer-
gence, pretraining methods also seem to be
extremely promising based on performance.

5 Which Methodological Gaps Have
Greatest Negative Impact On Long
Tail Performance?

The final goal of our meta-analysis is to iden-
tify methodological gaps in developing adaptation
methods for long tail domains, which provide
avenues for future research. Our observations
highlight three areas: (i) combining adaptation
methods, (ii) incorporating external knowledge,
and (iii) application to data-scarce settings.

5.1 Combining Adaptation Methods

The potential of combining multiple adaptation
methods has not been systematically and exten-
sively studied. Combining methods may be useful
in two scenarios. The first one is when source and
target domains differ along multiple dimensions
(topic, language, etc.) and different methods are
known to work well for each. The second one is
when methods focus on resolving issues in spe-
cific portions of the model such as feature space
misalignment, task level differences, and so forth.
Combining model-centric adaptation methods10,
that tackle each issue separately may improve per-
formance over individual approaches. Despite its
utility, method combination has only been system-
atically explored by one meta-study from 2010. On
the other hand, 23 studies apply a particular com-
bination of methods to their tasks/domains, but do
not analyze when these combinations do/do not
work. We summarize both sources of evidence
and highlight open questions.

10As per our categorization presented in §2.3.

Method Combination Meta-study: Chang et al.
(2010) observe that most adaptation methods ei-
ther tackle shift in feature space (P (X)) or shift in
how features are linked to labels (P (Y |X)). They
call the former category ‘‘unlabeled adaptation
methods’’ since feature space alignment can be
done using unlabeled data alone. Methods from
the latter category require some labeled target
data and are called ‘‘labeled adaptation meth-
ods.’’11 Through theoretical analysis, simulated
experiments and experiments with real-world data
on two tasks (named entity recognition and prepo-
sition sense disambiguation), they observe: (i)
combination generally improves performance, (ii)
combining best-performing individual methods
may not provide best combination performance,
and (iii) simpler labeled adaptation algorithms
(e.g., jointly training on source and target data)
interface better with strong unlabeled adaptation
algorithms.

Applying Particular Combinations: Table 7
lists all studies that apply method combinations
and fine-grained category labels from our hier-
archy for the methods used. Combining methods
from different coarse categories is the most popu-
lar strategy, utilized by 15 out of 23 studies. Five
studies combine methods from the same coarse
category, but different fine categories. They com-
bine model-centric methods that edit different
parts of the model (e.g., a feature-centric and a
loss-centric method). The last 3 studies combine
methods from the same fine category. Only 7
studies evaluate on at least one long tail domain.

Several studies observe performance improve-
ments (Yu and Kübler, 2011; Mohit et al., 2012;
Scheible and Schütze, 2013; Kim et al., 2017;
Yang et al., 2017; Alam et al., 2018), mirroring
the observation by Chang et al. (2010) that method
combination helps. However, this is not consis-
tent across all studies. For example, Jochim and
Schütze (2014) find that combining marginal-
ized stacked denoising autoencoders (mSDA)
(Chen et al., 2012) and frustratingly easy domain
adaptation (FEDA) (Daumé III, 2007) performs
worse than individual methods in preliminary ex-
periments on citation polarity classification. Both
methods are feature-centric, though mSDA is a
generalization method (FG) while FEDA is an
augmentation method (FA). Additionally, mSDA
is an unlabeled adaptation method while FEDA is

11These categories do not map cleanly to our hierarchy.
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Study Method LT

Different Coarse Categories

(Jeong et al., 2009) IW+PL ✔

(Hangya et al., 2018) PT+FA ✔

(Cer et al., 2018) PT+LA ✔

(Dereli and Saraclar, 2019) FA+PT ✔

(Ji et al., 2015) FG+IW
(Huang et al., 2019) PI+PL
(Li et al., 2012) LA+PL+IW
(Chan and Ng, 2007) AL+PI+IW
(Nguyen et al., 2014) PL+EN
(Yu and Kübler, 2011) PL+IW
(Scheible and Schütze, 2013) FA+PL+DS
(Tan and Cheng, 2009) FA+IW
(Mohit et al., 2012) LA+PL
(Rai et al., 2010) AL+LA
(Wu et al., 2017) AL+LA

Same Coarse Categories

(Lin and Lu, 2018) PA+FA ✔

(Zhang et al., 2017) FA+LA ✔

(Yan et al., 2020) FA+LA
(Yang et al., 2017) LA+PL+FA
(Gong et al., 2016) LA+PI

Same Fine Categories

(Alam et al., 2018) LA+LA ✔

(Lee et al., 2020) PL+PL
(Kim et al., 2017) LA+LA

Table 7: Category combinations explored by
studies that combine multiple methods. LT in-
dicates whether long tail domains were evaluated
on. Method categories explored include feature
augmentation (FA), feature generalization (FG),
loss augmentation (LA), parameter initialization
(PI), ensembling (EN), pseudo-labeling (PL),
pretraining (PT), active learning (AL), instance
weighting (IW), and data selection (DS).

a labeled adaptation method. Owing to negative
results, Jochim and Schütze (2014) do not experi-
ment further to find a combination that might have
worked. Wright and Augenstein (2020) show that
combining adversarial domain adaptation (ADA)
(Ganin and Lempitsky, 2015) with pretraining
does not improve performance, but combining
mixture of experts (MoE) with pretraining does.
This indicates that methods from the same coarse
category (model-centric) may react differently in
combination settings. Similarly, studies achieving

positive results do not analyze which properties
of chosen methods allow them to combine well,
and whether this success extends to other methods
with similar properties.

Open Questions: To understand method combi-
nation, we must examine the following questions:

• Is it possible to draw general conclusions
about the potential of combining methods
from various coarse or fine categories?

• Which properties of adaptation methods are
indicative of their ability to interface well
with other methods?

• Do task and/or domain of interest influ-
ence the abilities of methods to combine
successfully?

5.2 Incorporating External Knowledge
Most methods leverage labeled/unlabeled text
to learn generalizable representations. However,
knowledge from sources beyond text such as on-
tologies, human understanding of domain/task
variation, and so on, can also improve adap-
tation performance. This is especially true for
domains with expert-curated ontologies (e.g.,
UMLS for biomedical/clinical text [Bodenreider,
2004]). From our study sample, we observe some
exploration of the following knowledge sources:

Ontological Knowledge: Romanov and Shivade
(2018) use UMLS for clinical natural language
inference via two techniques: (i) retrofitting word
vectors as per UMLS (Faruqui et al., 2015), and
(ii) using UMLS concept distance-based attention.
Retrofitting hurts performance, whereas concept
distance provides modest improvements.

Domain Variation: Arnold et al. (2008) and
Yang and Eisenstein (2015) incorporate human
understanding of domain variation in discrete
and continuous feature spaces, respectively, with
some success (Table 4). Structural correspondence
learning (Blitzer et al., 2006) relies on manu-
ally defined pivot features common to source
and target domains, and shows performance
improvements.

Task Variation: Zarrella and Marsh (2016)
incorporate human understanding of knowledge
required for stance detection to define an auxiliary
hashtag prediction task, which improves target
task performance.
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Manual Adaptation: Chiticariu et al. (2010)
manually customize rule-based NER models,
matching scores achieved by supervised models.

Another source that is not explored by stud-
ies in our sample, but has gained popularity, is
providing task descriptions for sample-efficient
transfer learning (Schick and Schütze, 2021). De-
spite initial explorations, the potential of external
knowledge sources is largely under-explored.

Open Questions: Given varying availability of
knowledge sources across tasks/domains, com-
paring their performance across domains may
be impractical. But studies experimenting with
a specific source can still probe the following
questions:

• Can reliance on labeled/unlabeled data
be reduced while maintaining the same
performance?

• Does incorporating the knowledge source
improve interpretability of the adaptation
method?

• Can we preemptively identify a subset
of samples which may benefit from the
knowledge?

5.3 Application to Data-scarce Settings

§3 shows that most studies test methods in a su-
pervised setting in which labeled and/or unlabeled
data is available from both source and target do-
mains. But availability of labeled or unlabeled
data is often limited for long tail domains and lan-
guages. Hence, methods should also be developed
for and applied to settings that reflect real-world
criteria like data availability. Data-scarce adapta-
tion settings might be harder, but are extremely
important since they closely resemble contexts in
which transfer learning is likely to be used. In
particular, more evaluation should be carried out
in the following data-scarce settings:

Unsupervised Adaptation: No labeled target
data is available. Methods can use unlabeled
target data or obtain distantly supervised target
data from auxiliary resources (gazetteers) and
user-generated signals (likes, shares, etc.).

Multi-source Adaptation: Instead of a single
large-scale source dataset, smaller datasets from
several source domains are available.

Online Adaptation: Especially pertinent for
productionizing models, in this setting, adapta-
tion methods must learn to adapt to new domains
on-the-fly. Often information about the target
domain beyond the current sample may not be
available.

Source-free Adaptation: A trained model must
be adapted to a target domain without source
domain data, either labeled or unlabeled. This
setting is especially useful for domains that have
strong data-sharing restrictions such as clinical
data.

Some of these settings have attracted at-
tention in recent years. Ramponi and Plank
(2020) comprehensively survey neural methods
for unsupervised adaptation. In their survey on
low-resource NLP, Hedderich et al. (2020) cover
transfer learning techniques that reduce need for
supervised target data. Wang et al. (2021) list
human-in-the-loop data augmentation and model
update techniques that can be used for data-scarce
adaptation. However, there is room to further study
application of adaptation methods in data-scarce
settings.

Open Questions: Broadly, two main questions
in this area still remain unanswered:

• At different levels of data scarcity (no labeled
target data, no unlabeled target data, etc.),
which adaptation methods perform best?

• Can we correlate source-target domain
distance and data-reliance of adaptation
methods?

6 Case Study: Evaluating Adaptation
Methods on Clinical Narratives

Finally, we attempt to demonstrate how our
meta-analysis framework and observations can be
used to systematically design case studies that can
provide answers to the prevailing open questions
laid out previously. As an example, we conduct
a case study to evaluate the effectiveness of pop-
ularly used adaptation methods on high-expertise
domains in an unsupervised adaptation setting, a
burgeoning area of interest (Ramponi and Plank,
2020). Specifically, our study focuses on the ques-
tion: Which method categories perform best for
semantic sequence labeling tasks when trans-
ferring from news to clinical narratives, given
an unsupervised setting (i.e., no labeled clinical
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data available)? We focus on two semantic se-
quence labeling tasks: entity extraction and event
extraction.

6.1 Datasets
We use the following entity extraction datasets:

• CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003): News stories an-
notated with four entity types: persons,
organizations, locations, and miscellaneous
names.

• i2b2 2006 (Uzuner et al., 2007): Medical
discharge summaries annotated with PHI
(private health information) entities of eight
types: patients, doctors, locations, hospitals,
dates, IDs, phone numbers, and ages.

• i2b2 2010 (Uzuner et al., 2011): Discharge
summaries annotated with three entity types:
medical problems, tests, and treatments.

• i2b2 2014 (Stubbs and Uzuner, 2015): Lon-
gitudinal medical records annotated with
PHI entities of eight broad types: name,
profession, location, age, date, contact, IDs,
and other.

All entities are annotated in IOB format. For event
extraction, we use the following datasets:

• TimeBank (Pustejovsky et al., 2003): News
articles annotated with events.

• i2b2 2012 (Sun et al., 2013): Discharge
summaries annotated with events.

• MTSamples (Naik et al., 2021): Medical
records annotated with events (test-only).

CoNLL 2003 and TimeBank are the source
datasets for all entity and event extraction ex-
periments, respectively, while the remaining are
target datasets. We focus on English narratives
only. Among the NER datasets, the label sets
for i2b22006 and i2b22014 can be mapped to
the label set for CoNLL2003, however the label
set for i2b22010 is quite distinct and cannot be
mapped. Therefore, we evaluate NER in two set-
tings: coarse and fine. In the coarse setting, the
model only detects entities, but does not predict
entity type, whereas in the fine setting, the model
detects entities and predicts types.

6.2 Adaptation Methods
The baseline model for both tasks is a
BERT-based sequence labeling model that

computes token-level representations using
BERT, followed by a linear layer that predicts
entity/event labels. We compare the performance
of adaptation methods from the top five fine cate-
gories most frequently applied to high-expertise
domains as per our analysis (Figure 10a), on top of
this BERT baseline. Since feature augmentation
(FA) methods require some target labeled data
to train target-specific weights and our focus is
on an unsupervised setting, our study tests the
remaining four categories:

• PL: From pseudo-labeling, we test the
self-training method. Self-training first trains
a sequence labeling model on the source
dataset (news), then uses this model to
generate labels for unlabeled target data (clin-
ical narratives). High-confidence predictions
from the ‘‘pseudo-labeled’’ clinical data are
combined with source data to train a new
sequence labeling model. This process can
be repeated iteratively.

• LA: From loss augmentation, we test ad-
versarial domain adaptation (Ganin and
Lempitsky, 2015). This method learns
domain-invariant representations by adding
an adversary that predicts an example’s do-
main and subtracting the loss from this
adversary from the overall model loss. This
setup is trained in a two-stage alternating
optimization process (complete details in
Ganin and Lempitsky [2015]).

• PT: From pretraining, we test
domain-adaptive pretraining as described by
Gururangan et al. (2020). This method tries
to improve target domain performance of
BERT-based models by continual masked
language modeling pretraining on unlabeled
text from the target domain.

• IW: From instance weighting, we test
classifier-based instance weighting. This
method trains a classifier on the task of
predicting an example’s domain, then runs
the classifier on all source domain exam-
ples and uses target domain probabilities as
weights. Source examples that ‘‘look’’ more
like the target domain get higher weights, im-
proving performance on the target domain.
We perform interleaved training, recom-
puting source weights after each model train-
ing pass.

970



i2b22006 i2b22010 i2b22014

AM P R F1 P R F1 P R F1

ZS 18.7 21.8 20.1 35.2 10.1 15.7 21.2 32.8 25.7
LA 16.1 21.2 18.3 36.6 15.4 21.7 27.5 28.6 28.0
PL 23.2 22.0 22.6 23.3 5.0 8.3 47.4 23.6 31.5
PT 19.5 22.1 20.7 38.1 12.8 19.1 27.3 27.4 27.3
IW 21.0 19.5 20.2 34.3 12.1 17.9 21.0 29.2 24.4

Table 8: Performance of all adaptation methods
on NER in the coarse setting. Recall that the
fine adaptation method categories we evaluate are
loss augmentation (LA), pseudo-labeling (PL),
pretraining (PT), and instance weighting (IW).

i2b22006 i2b22014

AM P R F1 P R F1

ZS 12.6 14.1 13.3 24.0 28.3 25.9
LA 16.1 15.8 16.0 22.8 25.7 24.2
PL 17.5 11.4 13.8 39.5 21.4 27.7
PT 10.0 12.3 11.1 17.1 22.3 19.4
IW 14.4 14.1 14.2 21.8 25.6 23.6

Table 9: Performance of all adaptation methods
on NER in the fine setting. Recall that the fine
adaptation method categories we evaluate are
loss augmentation (LA), pseudo-labeling (PL),
pretraining (PT), and instance weighting (IW).

i2b22012 MTSamples

AM P R F1 P R F1

ZS 48.8 15.3 23.3 91.4 48.0 63.0
LA 51.7 19.0 27.8 88.1 58.5 70.3
PL 44.1 11.4 18.2 91.8 39.3 55.1
PT 41.5 10.4 16.6 90.2 46.3 61.2
IW 50.5 18.1 26.6 90.6 48.4 63.1

Table 10: Performance of all adaptation meth-
ods on event extraction. Recall that the fine
adaptation method categories we evaluate are
loss augmentation (LA), pseudo-labeling (PL),
pretraining (PT), and instance weighting (IW).

6.3 Results

Tables 8 and 9 show the results of all adap-
tation methods on coarse and fine NER, while
Table 10 shows results on event extraction. ZS
indicates baseline model scores in a zero-shot set-
ting, that is, training on source and testing on
target with no adaptation. From these tables, we
can see that the best-performing method categories

are loss augmentation and pseudo-labeling across
different settings. Loss augmentation methods
work best for event extraction. For coarse NER,
pseudo-labeling methods work better on target
datasets whose labels can be mapped to the source
(i.e., closer transfer tasks). For i2b22010, which
is more distant transfer, loss augmentation works
best. The effectiveness of pseudo-labeling is in-
teresting because it often suffers from the pitfall
of propagating errors made by the source-trained
model, which may in part explain its poor perfor-
mance on i2b22010. Early work on applying these
methods to parsing showed negative results or
minor improvements (Charniak, 1997; Steedman
et al., 2003), but these methods have shown more
promise in recent years with advances in embed-
ding representations. Finally, for fine NER, loss
augmentation and pseudo-labeling do better on
i2b22006 and i2b22014, respectively. Pretraining
is not the best-performing method in any setting,
which may be a side effect of continual pretraining
leading to some forgetting, negatively impacting
an unsupervised setting. This highlights the need
to systematically compare adaptation methods un-
der data-scarce settings because the ranking of
methods can change based on the availability and
quality of domain-specific data.

7 Conclusion

This work presents a qualitative meta-analysis of
100 representative papers on domain adaptation
and transfer learning in NLU, with the aim of
understanding performance of adaptation meth-
ods on the long tail. Through this analysis, we
assess current trends and highlight methodolog-
ical gaps that we consider to be major avenues
for future research in transfer learning for the
long tail. We observe that long tail coverage
in current research is far from comprehensive,
and identify two properties of adaptation meth-
ods that may improve long tail performance,
but have been under-explored: (i) incorporat-
ing source-target distance, and (ii) incorporating
nuanced domain variation. Additionally, we iden-
tify three major gaps that must be addressed to
improve long tail performance: (i) combining
adaptation methods, (ii) incorporating external
knowledge, and (iii) application to data-scarce
adaptation settings. Finally, we demonstrate the
utility of our meta-analysis framework and share
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observations in guiding the design of system-
atic meta-experiments to address prevailing open
questions by conducting a systematic evaluation
of popular adaptation methods for high-expertise
domains in a data-scarce setting. This case study
reveals interesting insights about the adaptation
methods evaluated and shows that significant
progress can be made towards developing a better
understanding of adaptation for the long tail by
conducting such experiments.
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