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Abstract

Prompt-based approaches excel at few-shot
learning. However, Perez et al. (2021) re-
cently cast doubt on their performance as
they had difficulty getting good results in a
‘‘true’’ few-shot setting in which prompts and
hyperparameters cannot be tuned on a dev
set. In view of this, we conduct an extensive
study of PET, a method that combines textual
instructions with example-based finetuning.
We show that, if correctly configured, PET

performs strongly in true few-shot settings
without a dev set. Crucial for this strong perfor-
mance is a number of design choices, including
PET’s ability to intelligently handle multiple
prompts. We put our findings to a real-world
test by running PET on RAFT, a benchmark of
tasks taken from realistic NLP applications for
which no labeled dev or test sets are available.
PET achieves a new state of the art on RAFT
and performs close to non-expert humans for
7 out of 11 tasks. These results demonstrate
that prompt-based learners can successfully be
applied in true few-shot settings and underpin
our belief that learning from instructions will
play an important role on the path towards
human-like few-shot learning capabilities.

1 Introduction

With pretrained language models (LMs) getting
ever larger (Radford et al., 2019; Raffel et al.,
2020; Brown et al., 2020; Fedus et al., 2021),
instruction-based learning is a powerful method
for few-shot text classification (e.g., Schick and
Schütze, 2020; Jiang et al., 2020; Schick and
Schütze, 2021; Brown et al., 2020; Wei et al.,
2022; Sanh et al., 2022). The key idea is to give
an LM access to descriptive names for all possi-
ble outputs and to short prompts explaining the
task to be solved. In settings where at most a few
dozen examples are available, this simple idea
leads to substantial improvements over other ap-
proaches (Schick and Schütze, 2020, 2021; Gao
et al., 2021; Tam et al., 2021).

However, recent work has questioned the strong
few-shot performance of instruction-based ap-
proaches, arguing that they are evaluated in
scenarios that are not true few-shot settings (Perez
et al., 2021; Logan IV et al., 2021), mainly for two
reasons. First, some approaches (e.g., Xie et al.,
2019; Zhang et al., 2020; Chen et al., 2020; Tam
et al., 2021) make use of large development sets
to optimize hyperparameters. Second, it is argued
that manually designed instructions require man-
ual tuning on development sets to achieve strong
performance (Perez et al., 2021; Logan IV et al.,
2021). Indeed, performance can vary greatly—and
in mostly unpredictable ways—across different in-
structions (Jiang et al., 2020; Schick and Schütze,
2020); this issue even persists after finetuning on
hundreds of instructions (Sanh et al., 2022). More
generally, the need for human involvement is seen
as a serious drawback of manually designed in-
structions (Shin et al., 2020; Lester et al., 2021).
Thus, several recent studies have abandoned them
in favor of automatically generated prompts (Shin
et al., 2020; Gao et al., 2021; Hambardzumyan
et al., 2021; Li and Liang, 2021; Lester et al.,
2021).

Contrary to this trend, we argue that when
correctly configured, prompt-based approaches
achieve strong performance even in true few-shot
settings and that there is no problem with using
manually designed instructions. Quite the oppo-
site: Such instructions are often easy to specify
if one is familiar with the task to be solved, they
provide an intuitive interface to convey task-
specific knowledge, and, if properly used, they can
considerably improve model performance in few-
shot settings.

To provide empirical support for these claims,
we revisit PET (Schick and Schütze, 2020), a
method for combining instructions with example-
based finetuning, and thoroughly examine its per-
formance with human-made instructions in true
few-shot settings. We simulate a real-world sce-
nario by proceeding in two steps: First, we conduct
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Figure 1: PET achieves near-human performance for 7
out of 11 tasks of the RAFT benchmark (Alex et al.,
2021), for which labeled dev and test sets are not avail-
able. This demonstrates the potential of prompt-based
learners for few-shot learning in ‘‘true’’ real-world
settings, i.e., without any tuning of instructions or
hyperparameters on a dev set.

an extensive study of PET using three academic
datasets to analyze its ability to perform true
few-shot learning in a controlled environment and
derive best practices for the choice of instructions
and hyperparameters. We then put our findings
to the test and evaluate PET on a large variety of
real-world tasks from the RAFT benchmark (Alex
et al., 2021), for which no labeled dev or test sets
are available, enforcing a true few-shot setting
(Perez et al., 2021). On average, PET clearly out-
performs all baselines on this dataset and comes
surprisingly close to non-expert human perfor-
mance (see Figure 1). This demonstrates that
instruction-based learning can successfully be ap-
plied to real-world tasks in true few-shot settings.

Our main contributions are as follows:

• We investigate the performance of PET for
various models, tasks, and training set sizes,
its ability to cope with different instructions,
and its robustness to hyperparameter choices
in true few-shot settings.

• We show how PET can be used when no
unlabeled data is available and propose a
method for efficient classification in scenar-
ios with many different classes, addressing
two frequent real-world scenarios.

• We apply PET to RAFT (Alex et al., 2021), a
benchmark of real-world tasks. PET obtains a
new state of the art and achieves near-human
performance for 7 out of 11 tasks in a true
few-shot setting.

2 Related Work

As a precursor to instruction-based learning, some
studies have investigated ways of informing clas-
sifiers about the meaning of different output classes
both for text (Chang et al., 2008; Veeranna et al.,
2016; Zhou et al., 2018) and image classification
(Norouzi et al., 2014; Romera-Paredes and Torr,
2015); providing instructions in the form of short
prompts was first proposed by Radford et al.
(2019). This idea has since been applied to solve a
wide range of NLP tasks without any task-specific
training data (Puri and Catanzaro, 2019; Opitz,
2019; Davison et al., 2019; Schick et al., 2021;
Schick and Schütze, 2021; Wei et al., 2022; Sanh
et al., 2022). While most approaches rephrase
tasks as a language modeling problem, some use
prompts to reformulate them as different tasks for
which large amounts of training data are avail-
able (Levy et al., 2017; McCann et al., 2018;
Yin et al., 2019; Sun et al., 2021; Sainz et al.,
2021). Instruction-based learning has also been
used in few-shot settings; popular variants include
in-context learning, where the model’s parameters
are fixed and examples are provided as additional
context (Brown et al., 2020; Lu et al., 2021;
Kumar and Talukdar, 2021; Zhao et al., 2021; Min
et al., 2021), finetuning the entire model (Schick
and Schütze, 2020, 2021; Gao et al., 2021; Tam
et al., 2021), and prompt tuning, where only the
instruction itself is optimized (Shin et al., 2020;
Hambardzumyan et al., 2021; Li and Liang, 2021;
Lester et al., 2021).

Several works investigating the limitations of
instruction-based few-shot approaches find that
current LMs are mostly unable to understand com-
plex instructions that go beyond short prompts or
simple questions (Efrat and Levy, 2020; Weller
et al., 2020; Webson and Pavlick, 2021) and that
they are highly sensitive to the exact wording
of the instructions provided (Jiang et al., 2020;
Schick and Schütze, 2020; Chu et al., 2021; Elazar
et al., 2021). In a similar vein, Perez et al. (2021)
and Logan IV et al. (2021) argue that prior work
overestimates few-shot performance as manual
prompt tuning is required to achieve good per-
formance. Accordingly, some studies attempt to
obtain either prompts (Shin et al., 2020; Gao
et al., 2021; Li and Liang, 2021; Lester et al.,
2021) or meaningful names for output classes
(Schick et al., 2020; Gao et al., 2021) without
human involvement.
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Figure 2: Different choices of patterns and corresponding verbalizers for classifying movie reviews as positive
(+) or negative (−). The input is first converted into a cloze question using the pattern; classification is done by
computing the output whose verbalization is, according to the MLM, the most likely substitute for the mask.

Finally, many benchmarks have been proposed
for comparing few-shot approaches in a standard-
ized way (e.g., Mishra et al., 2021; Bragg et al.,
2021; Xu et al., 2021; Ye et al., 2021; Alex et al.,
2021). As our focus is on the real-world appli-
cability of few-shot methods, we evaluate PET on
the RAFT benchmark (Alex et al., 2021), which
measures performance in applied settings.

3 Pattern-Exploiting Training

We briefly review pattern-exploiting training
(PET) (Schick and Schütze, 2020, 2021), the
method we use for instruction-based text classi-
fication. At its core, PET combines textual in-
structions with regular finetuning using labeled
examples. To that end, users must specify one
or more patterns that convert an input example
x into a cloze question so that it can readily be
processed by a masked language model (MLM)
(Devlin et al., 2019).1 These patterns can take on
very different forms; some examples are shown in
Figure 2. In addition, users must inform the model
about the meaning of all output classes; this is
done with a verbalizer that assigns a natural lan-
guage expression to each output y (see Figure 2,
right). We refer to the combination of a pattern
and verbalizer as a pattern-verbalizer pair (PVP).

Given a single PVP, let p(y | x) be the prob-
ability that an MLM assigns to y’s verbalization
in the cloze question obtained by applying the
pattern to x, normalized over all y. The MLM is
finetuned on labeled examples (x, y) by minimiz-
ing the cross-entropy loss between p(y | x) and a
distribution that assigns a probability of 1.0 to y.

If a user specifies multiple PVPs, individual
models are trained for each pair. Similar to knowl-
edge distillation (Hinton et al., 2015), they are

1We use the term prompt to refer to a short sequence
of tokens that typically contains some form of instruction;
pattern is used to denote the function that adds a prompt to
an input.

then used to annotate unlabeled examples for train-
ing a final classifier with a regular sequence clas-
sification head (Devlin et al., 2019). We use the
weighted variant of PET without auxiliary lan-
guage modeling; see Schick and Schütze (2020)
for details.

4 True Few-Shot Learning with PET

After describing our experimental setup, we con-
duct experiments on academic datasets to answer
6 important research questions (Q1–Q6) on the
extent to which true few-shot learning is possible
with PET. The purpose of our experiments is also
to establish best practices for real-world scenarios
and experiments on RAFT (Alex et al., 2021).

Tasks and Datasets While they were heavily
used in prior work (e.g., Brown et al., 2020; Schick
and Schütze, 2021; Logan IV et al., 2021;
Webson and Pavlick, 2021), we decide against
tasks and datasets from GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) as they are
different from what we expect to see in real-world
applications. Instead, we experiment with AG’s
News, Yelp Reviews Full Star, and Yahoo Ques-
tions (Zhang et al., 2015) as these datasets
represent classification tasks in three different do-
mains that resemble real-world settings. We create
a broad variety of instructions for each task to be
able to experiment with a large number of differ-
ent patterns.

We consider settings with n = 10 and n = 100
training examples. For each n, we generate five
different training sets per task by randomly sam-
pling examples from the original training set while
ensuring that the number of examples is about the
same for each possible output class. In addition, for
both n = 10 and n = 100, we sample 1,000 unla-
beled examples from the original training set. We
repeat all of our experiments for all five training
sets and, by default, report average performance.
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PVPs We manually write a total of 23 patterns
per task, all of which can be categorized into one
of the following groups:2

• NULL: Following Logan IV et al. (2021), these
patterns simply insert a mask token.

• PUNC: Similar to some patterns of Schick
and Schütze (2020), these patterns only add
punctuation characters and a mask token.

• PROMPTS: Patterns in this group add short
prompts—typically consisting of no more
than three words—to the input, similar to
Radford et al. (2019) and Schick and Schütze
(2020).

• Q&A: These patterns rephrase the task as a
question q and append

Question: q Answer: [MASK].

to the input, similar to Brown et al. (2020)
and Schick et al. (2021).

For all patterns, we use a single verbalizer, adopted
from Schick and Schütze (2020). There is often
a single natural choice for the verbalizer (e.g.,
the category names for AG’s News / Yahoo
Questions), so finding many good verbalizers is
challenging.

Hyperparameters We consider a setting sim-
ilar to that of Schick and Schütze (2020) and
Schick and Schütze (2021) and, unless other-
wise specified, use the default settings of the PET

library.3 As our experiments require training hun-
dreds of models, we make a few changes to reduce
environmental impact (Strubell et al., 2019) and
computational cost: We use the base variant of
RoBERTa (Liu et al., 2019) as underlying LM
both for individual models and the final classifier,
we train only one model per PVP, and we reduce
the training steps for all individual models and the
final classifier to 100 and 1,000, respectively.

Monitoring Finetuning LMs on small datasets
is unstable (Devlin et al., 2019; Dodge et al., 2020)
and sometimes results in poor performance. We

2The full set of PVPs can be found at https://github
.com/timoschick/pet/tree/master/true-fsl.

3See https://github.com/timoschick/pet.

aim to detect failed finetuning without a labeled
test set using the following two checks:

• TRAIN SET UNDERFITTING: We check for train-
ing runs that result in less than 50% accuracy
on the training set. As finetuning on up to
100 examples typically leads to perfect pre-
dictions on the training set, this is a clear
indicator of failed finetuning.

• CONSTANT PREDICTIONS: We check for training
runs that result in the same class being pre-
dicted for all inputs, both on the training set
and the unlabeled set. Again, this is a clear
indicator of failed finetuning.

Whenever one of these two events occurs, we
restart training using a different seed.

Q1: How can we find the best pattern—or do
we even need to?
Slightly different patterns can have very dif-
ferent performance (Jiang et al., 2020; Schick
and Schütze, 2020; Schick et al., 2021;
Webson and Pavlick, 2021; Sanh et al., 2022,
inter alia) and popular model selection criteria
cannot reliably identify the best-performing pat-
terns in few-shot settings (Perez et al., 2021). We
thus investigate to what extent PET can eliminate
the need to find the best instruction even in
extreme settings where there are dozens of
candidates to choose from.

Setup Using our default setup, we train individ-
ual models for each PVP and a final PET model;
we also train models with iPET, an iterative variant
of PET introduced by Schick and Schütze (2020),
using 3 iterations.

Results Performance of individual models for
each pattern and of the distilled models obtained
using PET and iPET is shown in Figure 3. Interest-
ingly, sorting all pattern groups by their average
performance gives the exact same order for each
task and training set size: NULL patterns clearly
perform worst, followed by PUNC and PROMPT;
Q&A gives the best average results. Contrary to
findings of Logan IV et al. (2021), this shows
that LMs can benefit considerably from manu-
ally written instructions even if combined with
finetuning.

Crucially, PET’s performance is much higher
than average performance of individual patterns;
further, it consistently outperforms even the best
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Figure 3: Performance of individual patterns, PET and iPET on all tasks considered. Accuracy is shown on the
y-axis; the x-axis shows individual pattern ids where color is used to distinguish the different pattern categories
(NULL, PUNC, PROMPT, Q&A). Small bullets (•) correspond to individual training sets, large bullets (•) correspond
to average performance. Average performance across all patterns is shown as a dashed gray line. Q&A and PROMPT

perform better than NULL and PUNC; PET consistently outperforms even the best individual pattern.

pattern, verifying that PET indeed removes the
need to find the best pattern. While iPET gives
clear improvements for n = 10, it performs worse
than PET for n = 100. The reason for this may
be that we use a much smaller set of unlabeled
examples than prior work (Schick and Schütze,
2020, 2021).

Q2: Does performance of different patterns
transfer across models?

While our results for Q1 show a consistent order
of pattern groups for different training set sizes
and tasks, an important question for real-world
applications is whether the same finding also
holds for different model sizes and entirely dif-
ferent models.

Setup We consider BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan
et al., 2020) as underlying LMs;4 we experiment
with the base and large variants. For each model
and size, we repeat the same experiment as for Q1.

4For Yahoo, we do not consider BERT as it uses a
vocabulary that does not assign a single token to each
verbalization.

Results Figure 4 shows the performance of each
pattern group (i.e., average performance of all in-
dividual patterns in this group) and PET; scores are
normalized so that the best-performing approach
for each task, training set size, and model gets a
score of 1.0. With few exceptions, our findings
from Q1 regarding the relative performance of
pattern groups and PET (NULL < PUNC < PROMPT <
Q&A < PET) also hold for different models and
sizes. The performance of individual patterns
strongly correlates between different models and
sizes (Spearman’s ρ ≥ 0.7 except in one case).

Q3: Does PET still work if some PVPs are not
well understood?

Q1 and Q2 show that PET performs even better
than the best PVP for a large set of high-quality
PVPs. But perhaps the performance is much worse
if the LM fails to understand many patterns and
verbalizers, for example, because they are in a
style different from the model’s pretraining data?
For real-world scenarios, we want to know how
such ‘‘bad’’ PVPs affect the performance of PET.

Setup It is difficult to obtain large quantities of
bad instructions as they might occur in real-world
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Figure 4: Relative performance of individual pattern
groups and PET for different models and sizes. Scores
are normalized so that the best performance for each
task, number of examples, model, and size is 1.0. Our
findings from Q1 (NULL < PUNC < PROMPT < Q&A <
PET) also hold for other models and sizes.

scenarios. As a proxy, we resort to noise patterns
that add random tokens to the input, serving as
a lower bound for truly bad patterns. In concrete
terms, we add up to three randomly sampled tokens
before and after the input.5 We also create noise
verbalizers by assigning uniformly selected tokens
to each output class. Using this process, we ob-
tain 20 different intentionally bad PVPs per task.
For each task, we start with 3 randomly selected,
high-quality patterns from our original set of man-
ually designed instructions, add noise PVPs one
by one, and investigate the effect on performance.

Results The effect of adding noise PVPs is
shown in Figure 5. Performance hardly changes
even if more than half of the PVPs are noise PVPs,
demonstrating that PET is robust to ‘‘bad’’ instruc-
tions. Figure 5 also shows that performance is
substantially worse when using only noise PVPs.

5If there are multiple input texts, we shuffle their order
and additionally add 0–3 tokens in between them.

Figure 5: Performance of PET with three randomly
selected patterns when adding noise PVPs; the x-axis
shows the number of noise PVPs added. Performance
hardly changes when adding noise PVPs, showing that
PET is very robust to ‘‘bad’’ instructions. We also show
performance of using only noise PVPs with PET (NP+P)
and their average performance without PET (NP).

Q4: How many patterns are required for good
performance?

Orthogonal to Q3, what is the minimum number
of high-quality prompts required for good per-
formance? This is important because we want to
minimize the amount of time spent creating PVPs
in a practical setting.

Setup We generate, per task, 10 random permu-
tations of the 23 patterns. For each permutation
and training set, we use the same setup as in
Q1 to compute the average performance obtained
with PET when using only the first i, 1 ≤ i ≤ 5,
patterns.

Results Average performance of PET trained
with the first i patterns is shown in Figure 6, rela-
tive to the performance of PET trained with all 23
patterns. For all tasks and training set sizes, as little
as four patterns are already sufficient to achieve
performance close to that of PET trained with all 23
patterns. Surprisingly, PET’s performance is much
higher than the average performance of a model
trained on individual patterns even with i = 1.
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Figure 6: Relative performance of PET with only a
subset of patterns compared to that achieved using all
23 manually designed patterns. The x-axis shows the
number of patterns used. As little as 4 patterns are
sufficient to almost match the performance of a model
trained on all patterns.

This indicates that the process of knowledge dis-
tillation using unlabeled data is also beneficial
when using only a single instruction.

Q5: Are other hyperparameters important?

For true few-shot settings, we want the same set
of hyperparameter values to perform well across
different tasks; this enables us to adopt these val-
ues for new tasks without tuning on task-specific
validation sets. We investigate how the hyperpa-
rameters, learning rate, training steps, and batch
size affect performance.

Setup Based on previous work, we consider
learning rates from 10−4 to 10−6, training steps
from 10 to 1,000, and batch sizes from 1 to 32.
Learning rate and batch size are changed for the
individual models and the final classifier simul-
taneously; the number of training steps is varied
only for individual models. We modify each hy-
perparameter independently, keeping all other pa-
rameters at their default value (i.e., a learning rate
of 10−5, 100 steps and a batch size of 4).

Results Results are shown in Figure 7. For train-
ing steps and batch size, performance is relatively
stable across a wide range of different values, with
more steps and larger batch sizes typically lead-
ing to slightly better performance (especially for
n = 100). Learning rate clearly has the strongest
impact on performance, but values of 10−5 and
5 · 10−5 consistently give the best results across
tasks; these are also the values typically used for
finetuning in prior work (Devlin et al., 2019; Liu
et al., 2019).

Figure 7: Performance of PET (solid) and avg. per-
formance of individual models (dotted) for different
learning rates (LR), training steps (Steps), and batch
sizes. Except for LR, performance is stable across a
wide range of values. For readability, the legend is only
shown in the top left.

Q6: Do we really need unlabeled data?

In contrast to individual PVPs, PET needs un-
labeled data, which is not available in some
real-world settings. Building on earlier work
(Anaby-Tavor et al., 2020; Papanikolaou and
Pierleoni, 2020; Yang et al., 2020; Mohapatra
et al., 2020; Kumar et al., 2020; Schick and
Schütze, 2021), we investigate whether synthetic
examples can replace unlabeled data.

Setup We use GPT2-XL (Radford et al., 2019)
to generate synthetic unlabeled data: We provide
one or two random training examples without
labels as in-context examples (Brown et al., 2020)
and let the model generate an additional example.
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Figure 8: Minimum, average, and maximum accuracy
(in percent) of individual patterns compared to regular
PET and iPET as well as PET and iPET with synthetic data
(+SD). Accuracy with synthetic data is very similar to
that obtained with real data.

For two inputs x1 and x2, the input given to the
model is

Example 1:x1 ←↩ Example 2: x2 ←↩ Example 3:

where ←↩, denotes two consecutive line breaks. If
an input consists of two texts, we simply conca-
tenate them using the sequence +++ as a separator.

We generate 10,000 examples for n = 10 and
30,000 examples for n = 100 using top-p sam-
pling (Holtzman et al., 2020) with p = 0.9. For
each input, we stop the generation process as
soon as the model generates two consecutive line
breaks. We discard all examples for which the
model does not generate two consecutive line
breaks within 128 tokens; for datasets with text
pairs, we also discard examples where the model
fails to generate the sequence separator (+++).

As the datasets obtained with this method may
be highly imbalanced regarding the distribution
of (unknown) labels, we also experiment with a
balanced variant: We use the ensemble of models
trained on individual PVPs to assign labels to

each example and only keep so many examples
per label that the resulting dataset—which is used
for training the final classifier—is balanced.

Results Figure 8 shows the performance of in-
dividual patterns as well as PET and iPET with real
and synthetic unlabeled data. Except for iPET on
Yahoo Questions with n = 10, the accuracy of
synthetic data is within one point of real data, with
our balanced version performing slightly better.
For n = 10, using synthetic data even improves
accuracy in some cases. This shows that in the
absence of unlabeled examples, synthetic data ob-
tained from generative language models can serve
as a drop-in replacement without substantially
degrading performance.

5 PET for Real-World Tasks

We use our insights from §4 to apply PET to
the RAFT benchmark, a collection of 11 diverse
real-world tasks whose automated solution has in-
herent value to someone (Alex et al., 2021). These
tasks are challenging for few-shot approaches:
they require domain expertise, understanding of
detailed instructions, processing of long inputs,
and handling a large number of output classes.

Tasks and Datasets The RAFT benchmark in-
cludes 11 tasks from different domains: ADE,
B77, NIS, OSE, Over, SOT, SRT, TAI, ToS, TEH,
and TC; for a detailed overview see Alex et al.
(2021). Each task comes with 50 labeled training
examples; in accordance with the RAFT rules, we
additionally make use of the unlabeled data (rang-
ing from 150 to 5,000 examples) for PET’s distil-
lation step. In the case of RAFT, the unlabeled
set is the same as the test set. So unlike in §4, our
final classifier is directly trained on (unlabeled)
test examples.

PVPs Based on Q1 and Q2, we only employ
Q&A prompts. To obtain the question q, we make
minimal changes to the original instructions of
Alex et al. (2021); we rephrase all binary classifi-
cation tasks as yes/no questions. For example, we
rephrase the instruction ‘‘Label the sentence based
on whether it is related to an adverse drug effect
(ADE).’’ as ‘‘Is this sentence related to an adverse
drug effect (ADE)?’’ Following our results from
Q4, we specify 4 PVPs per task. For binary classi-
fication, we use two different patterns that either
include or omit the full task specification of Alex
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et al. (2021) and combine them with both a yes/no
verbalizer and a true/false verbalizer.6

Hyperparameters Based on the results of Q5,
we mostly keep hyperparameter defaults from §4.
However, we make the following changes:

• We replace RoBERTa (base) with ALBERT
(xxlarge, v2). While being much slower to
train, ALBERT was shown to outperform
RoBERTa both in regular and few-shot set-
tings (Lan et al., 2020; Schick and Schütze,
2021; Logan IV et al., 2021).

• Since 1,000 steps cover only 4,000 examples
at batch size 4, we finetune the distilled
model for 2,000 steps for tasks with more
than 4,000 unlabeled examples. This makes
sure all examples are seen at least once.

• Following Schick and Schütze (2020) and
Schick and Schütze (2021) we train three
individual models per PVP. This improves
robustness as performance can vary greatly
between individual finetuning runs.

Handling Many Labels The B77 dataset con-
sists of banking customer service queries, each
annotated with one of 77 possible intents. That
large a number of outputs leads to several issues
for PET: First, it is impossible to specify a mean-
ingful verbalizer that maps each intent to a single
token. We initially experimented with PET’s multi-
mask version (Schick and Schütze, 2021), but it
was too inefficient for experimentation. We in-
stead proceed as follows. We rephrase the task as
binary classification, where for each pair of query
x and intent y, the task is to decide whether y is
the correct intent for x. For each original training
example (x, y), we generate one example (x, y,
True) and four examples (x, y′,False) with ran-
domly sampled, incorrect intents y′. As this in-
creases the amount of data fivefold, we finetune
each individual model for 500 instead of 100 steps.

This approach still is not particularly efficient:
Reframing the task as binary classification means
that for each input, 77 forward passes are required
to find the correct intent. We thus train the final
model as a regular classifier with 77 different

6For a full list of all task specifications, see https://
github.com/oughtinc/raft-baselines. The full
set of PVPs can be found at https://github.com
/timoschick/pet/tree/master/true-fsl.

output classes; for training this classifier on input
x, we set the target probability of output y propor-
tional to the probability of True being the correct
output for (x, y) according to our ensemble of
binary classifiers.

Finally, another issue is that with 50 labeled
examples, at least 27 labels are not covered in
the training set; this may bias a model to never
predict these labels. To alleviate this issue, we train
two generations of models using iPET. For training
the second generation, we obtain training data
covering all possible labels similar to Schick and
Schütze (2020): For each label, we pick the two ex-
amples from the unlabeled data for which this label
is most likely according to the first generation.

The nature of RAFT makes it hard to measure
the impact of any of these choices. While we
could conduct experiments similar to those in §4,
none of the datasets considered there has a struc-
ture similar to B77; as our modifications affect
only one of 11 tasks, we leave further analysis for
future work.

Monitoring We checked for TRAIN SET UNDER-
FITTING and CONSTANT PREDICTIONS (§4) to detect
finetuning issues. Unlike in §4, on RAFT we en-
countered some issues that could not be resolved
simply by retraining with a different seed:

• We observed TRAIN SET UNDERFITTING for the
final classifier on B77. This may be due to the
classification head for 77 classes introducing
many new parameters; we train the final
model for 5,000 instead of 2,000 steps, which
fixed this issue.

• We observed CONSTANT PREDICTIONS for the
ToS training set. Doubling the number of
training steps resolved this problem.

• Finally, we also observed CONSTANT PREDIC-
TIONS on the unlabeled data of SRI. Upon
manually inspecting the training set, we ob-
served that all but one out of 50 examples
have the same label. As all models already
classified the training set perfectly, we left
the setup for our SRI submission unchanged.

Results For all 11 tasks, Table 1 shows results of
PET and baselines.7 As can be seen, PET performs

7All results are taken directly from the leaderboard
at https://huggingface.co/spaces/ought/raft
-leaderboard.
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Method ADE B77 NIS OSE Over SOT SRI TAI ToS TEH TC Avg

GPT-2 60.0 12.1 56.1 24.5 49.8 38.0 49.2 61.2 49.8 31.1 72.3 45.8
GPT-Neo 45.2 14.9 40.8 34.3 68.1 40.6 49.3 60.5 56.5 55.4 63.6 48.1
AdaBoost 54.3 02.3 62.6 47.5 83.8 45.5 50.6 55.6 56.0 44.3 62.5 51.4
snlt 60.3 24.8 58.5 30.2 83.1 33.6 49.2 62.6 54.0 44.9 79.1 52.8
GPT-3 68.6 29.9 67.9 43.1 93.7 76.9 51.6 65.6 57.4 52.6 82.1 62.7
SetFit 72.6 53.8 87.2 52.1 90.7 68.2 49.3 62.8 62.0 53.2 83.7 66.9
PET 82.2 59.3 85.7 64.6 90.8 81.6 49.3 63.8 57.6 48.3 82.4 69.6

Human 83.0 60.7 85.7 64.6 91.7 90.8 46.8 60.9 62.7 72.2 89.7 73.5

Table 1: Performance (macro F1 multiplied by 100) of baselines and PET on the RAFT benchmark
(Alex et al., 2021). Best model performance is shown in bold, best overall performance (including
human annotators) is underlined. The final column shows average performance across all 11 tasks.

better than all other approaches on average,
achieving near-human performance for 7 out of 11
tasks. Note, however, that non-expert humans per-
form worse than the majority baseline on SRI, so
results on this task should be taken with a grain of
salt. PET also clearly outperforms a GPT-3 model
(Brown et al., 2020) by almost 7 points, despite the
latter being larger by several orders of magnitude.
While PET is particularly successful on ADE, B77,
and OSE (where it outperforms GPT-3 by 13.6,
21.5, and 29.4 points, respectively), it performs
comparably poorly on datasets in the law (Over,
ToS) and social media (TEH, TC) domains. Our
approach for handling many labels performs sur-
prisingly well on B77 without any tuning of its
parameters. Due to the nature of RAFT, we cannot
perform further analysis or ablation studies.

6 Discussion

Our experimental results in §4 and §5 show that
strong performance in few-shot settings is clearly
possible without manual prompt tuning or hyper-
parameter optimization on large dev sets; in other
words, PET can successfully be applied in true
few-shot settings. While we believe that it should
be an important goal of future work to make LMs
more robust to different instructions, even with
current models it is relatively easy to success-
fully apply PET when following a few simple
principles—such as rephrasing the task in a Q&A
format, using simple vocabulary and single-token
verbalizers where possible, and specifying at least
a handful of different patterns. In light of these
findings, we also hope that future work will not
view human involvement in prompt design as
a drawback of instruction-based approaches, but

rather as an exciting possibility to communi-
cate with models in ways other than exclusively
through examples.

Our study has limitations. First, a major obsta-
cle to using PET in real-world applications is that
we do not know a priori how well it performs for
a given task; we therefore believe an important
next step is to investigate methods for estimating
performance without access to large test sets—for
example, through model calibration (Desai and
Durrett, 2020; Jiang et al., 2021; Zhao et al.,
2021)—in real-world settings. In addition, we did
not fully explore the capabilities of PET; for exam-
ple, we did not investigate domain-adaptive pre-
training (Gururangan et al., 2020) and auxiliary
language modeling (Chronopoulou et al., 2019),
both of which were shown to be helpful by Schick
and Schütze, (2020). We also did not quantify the
impact of our decisions regarding B77 and the
effectiveness of monitoring (§4) and only con-
sidered English models and datasets. Finally, we
did not examine PET’s performance beyond aggre-
gate scores. While this is not feasible on RAFT
due to its nature, performing such analysis either
with other datasets or with methods such as the
ones proposed by Ribeiro et al. (2020) would
be relevant future work to understand real-world
capabilities of instruction-based approaches more
comprehensively.

7 Conclusion

In light of recent work casting doubt on the
performance of prompt-based approaches in true
few-shot settings (Perez et al., 2021), we have con-
ducted an extensive study of PET. In a controlled
environment, we found that manually designed
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instructions outperform null prompts, with Q&A-
style prompts performing best (Q1, Q2). Across
different tasks, models and training set sizes, PET

consistently outperforms even the best individ-
ual prompt (Q1, Q2). We have also shown that
PET is robust to uninformative prompts and to dif-
ferent choices of hyperparameters (Q3, Q5), that
as little as four prompts are sufficient to reach
good performance (Q4), and that synthetic exam-
ples can be used to replace unlabeled data (Q6).
Based on these insights, we applied PET to a
benchmark of real-world tasks, where it achieves
near-human performance for 7 out of 11 tasks
without any tuning on a dev set, demonstrating
the potential of instruction-based approaches in
true few-shot settings.
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