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Abstract

We investigate how neural language mod-
els acquire individual words during training,
extracting learning curves and ages of acqui-
sition for over 600 words on the MacArthur-
Bates Communicative Development Inventory
(Fenson et al., 2007). Drawing on studies of
word acquisition in children, we evaluate mul-
tiple predictors for words’ ages of acquisition
in LSTMs, BERT, and GPT-2. We find that
the effects of concreteness, word length, and
lexical class are pointedly different in children
and language models, reinforcing the impor-
tance of interaction and sensorimotor experi-
ence in child language acquisition. Language
models rely far more on word frequency than
children, but, like children, they exhibit slower
learning of words in longer utterances. Inter-
estingly, models follow consistent patterns
during training for both unidirectional and bidi-
rectional models, and for both LSTM and
Transformer architectures. Models predict
based on unigram token frequencies early in
training, before transitioning loosely to bigram
probabilities, eventually converging on more
nuanced predictions. These results shed light
on the role of distributional learning mecha-
nisms in children, while also providing insights
for more human-like language acquisition in
language models.

1 Introduction

Language modeling, predicting words from
context, has grown increasingly popular as a pre-
training task in NLP in recent years; neural lan-
guage models such as BERT (Devlin et al., 2019),
ELMo (Peters et al., 2018), and GPT (Brown et al.,
2020) have produced state-of-the-art performance
on a wide range of NLP tasks. There is now a sub-
stantial amount of work assessing the linguistic
information encoded by language models (Rogers
et al., 2020); in particular, behavioral approaches
from psycholinguistics and cognitive science have

been applied to study language model predictions
(Futrell et al., 2019; Ettinger, 2020). From a
cognitive perspective, language models are of
theoretical interest as distributional models of lan-
guage, agents that learn exclusively from statistics
over language (Boleda, 2020; Lenci, 2018).

However, previous psycholinguistic studies of
language models have nearly always focused on
fully-trained models, precluding comparisons to
the wealth of literature on human language acqui-
sition. There are limited exceptions. Rumelhart
and McClelland (1986) famously studied past
tense verb form learning in phoneme-level neural
networks during training, a study which was repli-
cated in more modern character-level recurrent
neural networks (Kirov and Cotterell, 2018). How-
ever, these studies focused only on sub-word fea-
tures. There remains a lack of research on language
acquisition in contemporary language models,
which encode higher level features such as syntax
and semantics.

As an initial step towards bridging the gap
between language acquisition and language mod-
eling, we present an empirical study of word
acquisition during training in contemporary lan-
guage models, including LSTMs, GPT-2, and
BERT. We consider how variables such as word
frequency, concreteness, and lexical class con-
tribute to words’ ages of acquisition in language
models. Each of our selected variables has effects
on words’ ages of acquisition in children; our lan-
guage model results allow us to identify the extent
to which each effect in children can or cannot
be attributed in principle to distributional learn-
ing mechanisms.

Finally, to better understand how computational
models acquire language, we identify consistent
patterns in language model training across archi-
tectures. Our results suggest that language models
may acquire traditional distributional statistics
such as unigram and bigram probabilities in a
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systematic way. Understanding how language
models acquire language can lead to better archi-
tectures and task designs for future models, while
also providing insights into distributional learning
mechanisms in people.

2 Related Work

Our work draws on methodologies from word ac-
quisition studies in children and psycholinguistic
evaluations of language models. In this section,
we briefly outline both lines of research.

2.1 Child Word Acquisition

Child development researchers have previously
studied word acquisition in children, identifying
variables that help predict words’ ages of ac-
quisition in children. In Wordbank, Frank et al.
(2017) compiled reports from parents reporting
when their child produced each word on the
MacArthur-Bates Communicative Development
Inventory (CDI; Fenson et al., 2007). For each
word w, Braginsky et al. (2016) fitted a logistic
curve predicting the proportion of children that
produce w at different ages; they defined a word’s
age of acquisition as the age at which 50% of chil-
dren producew. Variables such as word frequency,
word length, lexical class, and concreteness were
found to influence words’ ages of acquisition in
children across languages. Recently, it was shown
that fully trained LSTM language model surprisals
are also predictive of words’ ages of acquisition
in children (Portelance et al., 2020). However,
no studies have evaluated ages of acquisition in
language models themselves.

2.2 Evaluating Language Models

Recently, there has been substantial research eval-
uating language models using psycholinguistic
approaches, reflecting a broader goal of interpret-
ing language models (BERTology; Rogers et al.,
2020). For instance, Ettinger (2020) used the out-
put token probabilities from BERT in carefully
constructed sentences, finding that BERT learns
commonsense and semantic relations to some degree,
although it struggles with negation. Gulordava
et al. (2018) found that LSTM language models
recognize long distance syntactic dependencies;
however, they still struggle with more complicated
constructions (Marvin and Linzen, 2018).

These psycholinguistic methodologies do not
rely on specific language model architectures or

fine-tuning on a probe task. Notably, because these
approaches rely only on output token probabilities
from a given language model, they are well suited
to evaluations early in training, when fine-tuning
on downstream tasks is unfruitful. That said, pre-
vious language model evaluation studies have fo-
cused on fully-trained models, progressing largely
independently from human language acquisition
literature. Our work seeks to bridge this gap.

3 Method

We trained unidirectional and bidirectional lan-
guage models with LSTM and Transformer ar-
chitectures. We quantified each language model’s
age of acquisition for each word in the CDI
(Fenson et al., 2007). Similar to word acquisition
studies in children, we identified predictors for
words’ ages of acquisition in language models.1

3.1 Language Models

Datasets and Training Language models were
trained on a combined corpus containing the
BookCorpus (Zhu et al., 2015) and WikiText-103
datasets (Merity et al., 2017). Following Devlin
et al. (2019), each input sequence was a sentence
pair; the training dataset consisted of 25.6M sen-
tence pairs. The remaining sentences (5.8M pairs)
were used for evaluation and to generate word
learning curves. Sentences were tokenized using
the unigram language model tokenizer imple-
mented in SentencePiece (Kudo and Richardson,
2018). Models were trained for 1M steps, with
batch size 128 and learning rate 0.0001. As a
metric for overall language model performance,
we report evaluation perplexity scores in Table 1.
We include evaluation loss curves, full training
details, and hyperparameters in Appendix A.1.

Transformers The two Transformer models
followed the designs of GPT-2 (Radford et al.,
2019) and BERT (Devlin et al., 2019), allowing us
to evaluate both a unidirectional and bidirectional
Transformer language model. GPT-2 was trained
with the causal language modeling objective,
where each token representation is used to predict
the next token; the masked self-attention mech-
anism allows tokens to attend only to previous
tokens in the input sequence. In contrast, BERT
used the masked language modeling objective,

1Code and data are available at https://github.com
/tylerachang/word-acquisition-language-models.
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# Parameters Perplexity

LSTM 37M 54.8
GPT-2 108M 30.2
BiLSTM 51M 9.0
BERT 109M 7.2

Table 1: Parameter counts and evaluation per-
plexities for the trained language models. For
reference, the pre-trained BERT base model from
Huggingface reached a perplexity of 9.4 on our
evaluation set. Additional perplexity comparisons
with comparable models are included in Ap-
pendix A.1.

where masked tokens are predicted from sur-
rounding tokens in both directions.

Our BERT model used the base size model from
Devlin et al. (2019). Our GPT-2 model used the
similar-sized model from Radford et al. (2019),
equal in size to the original GPT model. Parameter
counts are listed in Table 1. Transformer models
were trained using the Huggingface Transformers
library (Wolf et al., 2020).

LSTMs We also trained both a unidirectional
and bidirectional LSTM language model, each
with three stacked LSTM layers. Similar to GPT-2,
the unidirectional LSTM predicted the token at
time t from the hidden state at time t − 1. The
bidirectional LSTM (BiLSTM) predicted the to-
ken at time t from the sum of the hidden states at
times t− 1 and t+ 1 (Aina et al., 2019).

3.2 Learning Curves and Ages of Acquisition

We sought to quantify each language model’s
ability to predict individual words over the course
of training. We considered all words in the CDI
that were considered one token by the language
models (611 out of 651 words).

For each such token w, we identified up to
512 occurrences of w in the held-out portion of
the language modeling dataset.2 To evaluate a
language model at training step s, we fed each
sentence pair into the model, attempting to predict
the masked token w. We computed the surprisal:

2We only selected sentence pairs with at least eight tokens
of context, unidirectionally or bidirectionally depending on
model architecture. Thus, the unidirectional and bidirectional
samples differed slightly. Most tokens (92.3%) had the max-
imum of 512 samples both unidirectionally and bidirection-
ally, and all tokens had at least 100 samples in both cases.

Figure 1: Learning curves for the word ‘‘walk’’ in a
BERT language model and human children. Blue hori-
zontal lines indicate age of acquisition cutoffs. The blue
curve represents the fitted sigmoid function based on
the language model surprisals during training (black).
Child data obtained from Frank et al. (2017).

− log2(P (w)) averaged over all occurrences of w
to quantify the quality of the models’ predictions
for word w at step s (Levy, 2008; Goodkind and
Bicknell 2018).

We computed this average surprisal for each
target word at approximately 200 different steps
during language model training, sampling more
heavily from earlier training steps, prior to model
convergence. The selected steps are listed in Ap-
pendix A.1. By plotting surprisals over the course
of training, we obtained a learning curve for each
word, generally moving from high surprisal to
low surprisal. The surprisal axis in our plots is
reversed to reflect increased understanding over
the course of training, consistent with plots show-
ing increased proportions of children producing a
given word over time (Frank et al., 2017).

For each learning curve (4 language model
architectures × 611 words), we fitted a sigmoid
function to model the smoothed acquisition of
word w. Sample learning curves are shown in
Figures 1 and 2.

Age of Acquisition To extract age of acquisi-
tion from a learning curve, we established a cut-
off surprisal where we considered a given word
‘‘learned.’’ In child word acquisition studies, an
analogous cutoff is established when 50% of chil-
dren produce a word (Braginsky et al., 2016).

Following this precedent, we determined our
cutoff to be 50% between a baseline surprisal
(predicting words based on random chance) and
the minimum surprisal attained by the model for
word w. We selected the random chance baseline
to best reflect a language model’s ability to predict
a word with no access to any training data, similar
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Figure 2: Learning curves for the word ‘‘eat’’ for all four language model architectures. Blue horizontal lines
indicate age of acquisition cutoffs, and blue curves represent fitted sigmoid functions.

to an infant’s language-specific knowledge prior
to any linguistic exposure. We selected minimum
surprisal as our other bound to reflect how well
a particular word can eventually be learned by a
particular language model, analogous to an adult’s
understanding of a given word.

For each learning curve, we found the inter-
section between the fitted sigmoid and the cutoff
surprisal value. We defined age of acquisition for
a language model as the corresponding training
step, on a log10 scale. Sample cutoffs and ages of
acquisition are shown in Figures 1 and 2.

3.3 Predictors for Age of Acquisition

As potential predictors for words’ ages of acqui-
sition in language models, we selected variables
that are predictive of age of acquisition in children
(Braginsky et al., 2016). When predicting ages
of acquisition in language models, we computed
word frequencies and utterance lengths over the
language model training corpus. Our five selected
predictors were:

• Log-frequency: The natural log of the word’s
per-1000 token frequency.

• MLU: We computed the mean length of
utterance as the mean length of sequences
containing a given word.3 MLU has been
used as a metric for the complexity of syn-
tactic contexts in which a word appears (Roy
et al., 2015).

• n-chars: As in Braginsky et al. (2016), we
used the number of characters in a word as a
coarse proxy for the length of a word.

3We also considered a unidirectional MLU metric (count-
ing only previous tokens) for the unidirectional models,
finding that it produced similar results.

• Concreteness: We used human-generated
concreteness norms from Brysbaert et al.
(2014), rated on a five-point scale. We im-
puted missing values (3% of words) using
the mean concreteness score.

• Lexical class: We used the lexical classes an-
notated in Wordbank. Possible lexical classes
were Noun, Verb, Adjective, Function Word,
and Other.

We ran linear regressions with linear terms for
each predictor. To determine statistical signifi-
cance for each predictor, we ran likelihood ratio
tests, comparing the overall regression (including
the target predictor) with a regression including
all predictors except the target. To determine the
direction of effect for each continuous predictor,
we used the sign of the coefficient in the overall
regression.

As a potential concern for interpreting regres-
sion coefficient signs, we assessed collinearities
between predictors by computing the variance in-
flation factor (VIF) for each predictor. No VIF
exceeded 5.0,4 although we did observe moderate
correlations between log-frequency and n-chars
(r = −0.49), and between log-frequency and
concreteness (r = −0.64). These correlations
are consistent with those identified for child-
directed speech in Braginsky et al. (2016). To
ease collinearity concerns, we considered single-
predictor regressions for each predictor, using
adjusted predictor values after accounting for log-
frequency (residuals after regressing the predictor
over log-frequency). In all cases, the coefficient
sign in the adjusted single predictor regression
was consistent with the sign of the coefficient in
the overall regression.

4Common VIF cutoff values are 5.0 and 10.0.
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LSTM GPT-2 BiLSTM BERT Children

Log-frequency ∗∗∗(−) ∗∗∗(−) ∗∗∗(−) ∗∗∗(−) ∗∗∗(−)
MLU ∗∗(+) ∗∗∗(+) ∗∗∗(+) ∗∗∗(+)
n-chars ∗∗∗(−) ∗∗∗(−) ∗∗∗(−) ∗∗∗(−) ∗∗(+)
Concreteness ∗∗∗(−)
Lexical class ∗∗∗ ∗∗∗ ∗∗∗

R2 0.93 0.92 0.95 0.94 0.43

Table 2: Significant predictors for a word’s age of acquisition are marked by aste-
risks (p < 0.05∗; p < 0.01∗∗; p < 0.001∗∗∗). Signs of coefficients are notated in
parentheses. The R2 denotes the adjusted R2 in a regression using all five predictors.

When lexical class (the sole categorical predic-
tor) reached significance based on the likelihood
ratio test, we ran a one-way analysis of covariance
(ANCOVA) with log-frequency as a covariate.
The ANCOVA ran a standard ANOVA on the
age of acquisition residuals after regressing over
log-frequency. We used Tukey’s honestly sig-
nificant difference (HSD) test to assess pairwise
differences between lexical classes.

3.4 Age of Acquisition in Children

For comparison, we used the same variables
to predict words’ ages of acquisition in chil-
dren, as in Braginsky et al. (2016). We obtained
smoothed ages of acquisition for children from
the Wordbank dataset (Frank et al., 2017). When
predicting ages of acquisition in children, we com-
puted word frequencies and utterance lengths over
the North American English CHILDES corpus of
child-directed speech (MacWhinney, 2000).

Notably, CHILDES contained much shorter
sentences on average than the language model
training corpus (mean sentence length 4.50 to-
kens compared to 15.14 tokens). CDI word
log-frequencies were only moderately correlated
between the two corpora (r = 0.78). This aligns
with previous work finding that child-directed
speech contains on average fewer words per utter-
ance, smaller vocabularies, and simpler syntactic
structures than adult-directed speech (Soderstrom,
2007). These differences were likely compounded
by differences between spoken language in the
CHILDES corpus and written language in the
language model corpus. We computed word fre-
quencies and MLUs separately over the two
corpora to ensure that our predictors accurately
reflected the learning environments of children
and the language models.

We also note that the language model training
corpus was much larger overall than the CHILDES
corpus. CHILDES contained 7.5M tokens, while
the language model corpus contained 852.1M to-
kens. Children are estimated to hear approximately
13K words per day (Gilkerson et al., 2017), for
a total of roughly 19.0M words during their first
four years of life. Because contemporary language
models require much more data than children
hear, the models do not necessarily reflect how
children would learn if restricted solely to linguis-
tic input. Instead, the models serve as examples
of relatively successful distributional learners,
establishing how one might expect word acquisi-
tion to progress according to effective distribu-
tional mechanisms.

4 Results

Significant predictors of age of acquisition are
shown in Table 2, comparing children and each of
the four language model architectures.

Log-frequency In children and all four lan-
guage models, more frequent words were learned
earlier (a negative effect on age of acquisition). As
shown in Figure 3, this effect was much more pro-
nounced in language models (adjusted R2 = 0.91
to 0.94) than in children (adjusted R2 = 0.01).5

5Because function words are frequent but acquired later by
children, a quadratic model of log-frequency on age of acqui-
sition in children provided a slightly better fit (R2 = 0.03)
if not accounting for lexical class. A quadratic model of
log-frequency also provided a slightly better fit for unidirec-
tional language models (R2 = 0.93 to 0.94), particularly for
high-frequency words; in language models, this could be due
either to a floor effect on age of acquisition for high-frequency
words or to slower learning of function words. Regardless,
significant effects of other predictors remained the same
when using a quadratic model for log-frequency.

5



Figure 3: Effects of log-frequency on words’ ages of
acquisition (AoA) in the BiLSTM and children. The
BiLSTM was the language model architecture with the
largest effect of log-frequency (adjusted R2 = 0.94).

The sizeable difference in log-frequency predic-
tivity emphasizes the fact that language models
learn exclusively from distributional statistics over
words, while children have access to additional
social and sensorimotor cues.

MLU Except in unidirectional LSTMs, MLU
had a positive effect on a word’s age of acquisition
in language models. Interestingly, we might have
expected the opposite effect (particularly in Trans-
formers) if additional context (longer utterances)
facilitated word learning. Instead, our results are
consistent with effects of MLU in children; words
in longer utterances are learned later, even after
accounting for other variables. The lack of effect
in unidirectional LSTMs could simply be due to
LSTMs being the least sensitive to contextual in-
formation of the models under consideration. The
positive effect of MLU in other models suggests
that complex syntactic contexts may be more diffi-
cult to learn through distributional learning alone,
which might partly explain why children learn
words in longer utterances more slowly.

n-chars There was a negative effect of n-chars
on age of acquisition in all four language models;
longer words were learned earlier. This contrasts
with children, who acquire shorter words earlier.
This result is particularly interesting because the
language models we used have no information
about word length. We hypothesize that the ef-
fect of n-chars in language models may be driven
by polysemy, which is not accounted for in our
regressions. Shorter words tend to be more pol-
ysemous (a greater diversity of meanings; Casas
et al., 2019), which could lead to slower learning
in language models. In children, this effect may
be overpowered by the fact that shorter words are
easier to parse and produce.

Concreteness Although children overall learn
more concrete words earlier, the language models
showed no significant effects of concreteness on
age of acquisition. This entails that the effects
in children cannot be explained by correlations
between concrete words and easier distributional
learning contexts. Again, this highlights the im-
portance of sensorimotor experience and concep-
tual development in explaining the course of child
language acquisition.

Lexical Class The bidirectional language mod-
els showed no significant effects of lexical class
on age of acquisition. In other words, the differ-
ences between lexical classes were sufficiently ac-
counted for by the other predictors for BERT and
the BiLSTM. However, in the unidirectional lan-
guage models (GPT-2 and the LSTM), nouns and
function words were acquired later than adjectives
and verbs.6 This contrasts with children learning
English, who on average acquired nouns ear-
lier than adjectives and verbs, acquiring function
words last.7

Thus, children’s early acquisition of nouns
cannot be explained by distributional properties
of English nouns, which are acquired later by uni-
directional language models. This result is com-
patible with the hypothesis that nouns are acquired
earlier because they often map to real world
objects; function words might be acquired later
because their meanings are less grounded in sen-
sorimotor experience. It has also been argued that
children might have an innate bias to learn ob-
jects earlier than relations and traits (Markman,
1994). Lastly, it is possible that the increased sa-
lience of sentence-final positions (which are more
likely to contain nouns in English and related lan-
guages) facilitates early acquisition of nouns in
children (Caselli et al., 1995). Consistent with
these hypotheses, our results suggest that English
verbs and adjectives may be easier to learn from a
purely distributional perspective, but children ac-
quire nouns earlier based on sensorimotor, social,
or cognitive factors.

6Significant pairwise comparisons between lexical classes
are listed in Appendix A.2.

7There is ongoing debate around the existence of a uni-
versal ‘‘noun bias’’ in early word acquisition. For instance,
Korean and Mandarin-speaking children have been found to
acquire verbs earlier than nouns, although this effect appears
sensitive to context and the measure of vocabulary acquisition
(Choi and Gopnik, 1995; Tardif et al., 1999).
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Language models Children

First a, and, for, he, her,

his, I, it, my, of, on,

she, that, the, to,

was, with, you

baby, ball, bye,

daddy, dog, hi,

mommy, moo, no,

shoe, uh, woof, yum

Last bee, bib, choo,

cracker, crayon,

giraffe, glue, kitty,

moose, pancake,

popsicle, quack,

rooster, slipper, tuna,

yum, zebra

above, basement,

beside, country,

downtown, each,

hate, if, poor, walker,

which, would,

yourself

Table 3: First and last words acquired by the lan-
guage models and children. For language models,
we identified words that were in the top or bot-
tom 5% of ages of acquisition for all models. For
children, we identified words in the top or bottom
2% of ages of acquisition.

4.1 First and Last Learned Words

As a qualitative analysis, we compared the first
and last words acquired by the language models
and children, as shown in Table 3. In line with our
previous results, the first and last words learned by
the language models were largely determined by
word frequencies. The first words acquired by the
models were all in the top 3% of frequent words,
and the last acquired words were all in the bottom
15%. Driven by this effect, many of the first words
learned by the language models were function
words or pronouns. In contrast, many of the first
words produced by children were single-word
expressions, such as greetings, exclamations, and
sounds. Children acquired several highly frequent
words late, such as ‘‘if,’’ which is in the 90th
frequency percentile of the CHILDES corpus. Of
course, direct comparisons between the first and
last words acquired by the children and language
models are confounded by differing datasets and
learning environments, as detailed in Section 3.4.

4.2 Age of Acquisition vs. Minimum
Surprisal

Next, we assessed whether a word’s age of ac-
quisition in a language model could be predicted
from how well that word was learned in the fully
trained model. To do this, we considered the min-
imum surprisal attained by each language model

for each word. We found a significant effect of
minimum surprisal on age of acquisition in all
four language models, even after accounting for
all five other predictors (using likelihood ratio
tests; p < 0.001). In part, this is likely because the
acquisition cutoff for each word’s fitted sigmoid
was dependent on the word’s minimum surprisal.

It could then be tempting to treat minimum sur-
prisal as a substitute for age of acquisition in lan-
guage models; this approach would require only
publicly available fully trained language mod-
els. Indeed, the correlation between minimum
surprisal and age of acquisition was substantial
(Pearson’s r = 0.88 to 0.92). However, this cor-
relation was driven largely by effects of log-
frequency, which had a large negative effect on
both metrics. When adjusting minimum surprisal
and age of acquisition for log-frequency (using
residuals after linear regressions), the correlation
decreased dramatically (Pearson’s r = 0.22 to
0.46). While minimum surprisal accounts for a sig-
nificant amount of variance in words’ ages of ac-
quisition, the two metrics are not interchangeable.

4.3 Alternative Age of Acquisition
Definitions

Finally, we considered alternative operationaliza-
tions of words’ ages of acquisition in language
models. For instance, instead of defining an acqui-
sition cutoff at 50% between random chance and
the minimum surprisal for each word, we could
consider the midpoint of each fitted sigmoid curve.
This method would be equivalent to defining up-
per and lower surprisal baselines at the upper and
lower asymptotes of the fitted sigmoid, relying on
the assumption that these asymptotes roughly ap-
proximate surprisal values before and after train-
ing. However, this assumption fails in cases where
the majority of a word’s learning curve is mod-
eled by only a sub-portion of the fitted sigmoid.
For example, for the word ‘‘for’’ in Figure 4,
the high surprisal asymptote is at 156753.5, com-
pared to a random chance surprisal of 14.9 and a
minimum surprisal of 4.4. Using the midpoint age
of acquisition in this case would result in an age
of acquisition of −9.6 steps (log10).

We also considered alternative cutoff propor-
tions (replacing 50%) in our original age of
acquisition definition. We considered cutoffs at
each possible increment of 10%. The signs of
nearly all significant coefficients in the overall
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Figure 4: LSTM learning curves for the words ‘‘for,’’ ‘‘eat,’’ ‘‘drop,’’ and ‘‘lollipop.’’ Blue horizontal lines
indicate age of acquisition cutoffs, and blue curves represent fitted sigmoid functions. Green dashed lines indicate
the surprisal if predicting solely based on unigram probabilities (raw token frequencies). Early in training, language
model surprisals tended to shift towards the unigram frequency-based surprisals.

regressions (see Table 2) remained the same for all
language models regardless of cutoff proportion.8

5 Language Model Learning Curves

The previous sections identified factors that pre-
dict words’ ages of acquisition in language mod-
els. We now proceed with a qualitative analysis
of the learning curves themselves. We found that
language models learn traditional distributional
statistics in a systematic way.

5.1 Unigram Probabilities

First, we observed a common pattern in word
learning curves across model architectures. As ex-
pected, each curve began at the surprisal value
corresponding to random chance predictions.
Then, as shown in Figure 4, many curves shifted
towards the surprisal value corresponding to
raw unigram probabilities (i.e., based on raw
token frequencies). This pattern was particularly
pronounced in LSTM-based language models,
although it appeared in all architectures. Inter-
estingly, the shift occurred even if the unigram
surprisal was higher (or ‘‘worse’’) than random-
chance surprisal, as demonstrated by the word
‘‘lollipop’’ in Figure 4. Thus, we posited that lan-
guage models pass through an early stage of train-
ing where they approximate unigram probabilities.

To test this hypothesis, we aggregated each
model’s predictions for randomly masked tokens
in the evaluation dataset (16K sequences), includ-
ing tokens not on the CDI. For each saved training
step, we computed the average Kullback-Leibler

8The only exception was a non-significant positive co-
efficient for n-chars in BERT with a 90% acquisition
cutoff.

(KL) divergence between the model predictions
and the unigram frequency distribution. For com-
parison, we also computed the KL divergence with
a uniform distribution (random chance) and with
the one-hot true token distribution. We note that
the KL divergence with the one-hot true token
distribution is equivalent to the cross-entropy loss
function using log base two.9

As shown in Figure 5, we plotted the KL diver-
gences between each reference distribution and
the model predictions over the course of training.
As expected, all four language models converged
towards the true token distribution (minimizing
the loss function) throughout training, diverg-
ing from the uniform distribution. Divergence
from the uniform distribution could also reflect
that the models became more confident in their
predictions during training, leading to lower en-
tropy predictions.

As hypothesized, we also found that all four
language models exhibited an early stage of train-
ing in which their predictions approached the
unigram distribution, before diverging to reflect
other information. This suggests that the mod-
els overfitted to raw token frequencies early in
training, an effect which was particularly pro-
nounced in the LSTM-based models. Importantly,
because the models eventually diverged from the
unigram distribution, the initial unigram phase
cannot be explained solely by mutual informa-
tion between the true token distribution and uni-
gram frequencies.

9All KL divergences were computed using log base two.
KL divergences were computed as KL(yref , ŷ), where ŷ was
the model’s predicted probability distribution and yref was
the reference distribution.

8



Figure 5: KL divergences between reference distributions and model predictions over the course of training. The
KL divergence with the one-hot true token distribution is equivalent to the base two cross-entropy loss. Early in
training, the models temporarily overfitted to unigram then bigram probabilities.

5.2 Bigram Probabilities
We then ran a similar analysis using bigram
probabilities, where each token probability was
dependent only on the previous token. A bi-
gram distribution Pb was computed for each
masked token in the evaluation dataset, based
on bigram counts in the training corpus. As
dictated by the bigram model definition, we de-
fined Pb(wi) = P (wi|wi−1) for unidirectional
models, and Pb(wi) = Pb(wi|wi−1, wi+1) ∝
P (wi|wi−1)P (wi+1|wi) for bidirectional models.
We computed the average KL divergence be-
tween the bigram probability distributions and the
language model predictions.

As shown in Figure 5, during the unigram learn-
ing phase, the bigram KL divergence decreased for
all language models. This is likely caused by mu-
tual information between the unigram and bigram
distributions; as the models approached the uni-
gram distribution, their divergences with the
bigram distributions roughly approximated the
average KL divergence between the bigram and
unigram distributions themselves (average KL =
3.86 between unidirectional bigrams and uni-
grams; average KL = 5.88 between bidirectional
bigrams and unigrams). In other words, the mod-
els’ initial decreases in bigram KL divergences
can be explained predominantly by unigram fre-
quency learning.

However, when the models began to diverge
from the unigram distribution, they continued to

approach the bigram distributions. Each model
then hit a local minimum in average bigram KL
divergence before diverging from the bigram dis-
tributions. This suggests that the models overfitted
to bigram probabilities after the unigram learning
phase. Thus, it appears that early in training, lan-
guage models make predictions based on unigram
frequencies, then bigram probabilities, eventually
learning to make more nuanced predictions.

Of course, this result may not be surprising for
LSTM-based language models. Because tokens
are fed into LSTMs sequentially, it is intuitive
that they would make use of bigram probabilities.
Our results confirm this intuition, and they further
show that Transformer language models follow a
similar pattern. Because BERT and GPT-2 only
encode token position information through learned
absolute position embeddings before the first self-
attention layer, they have no architectural reason
to overfit to bigram probabilities based on adja-
cent tokens.10 Instead, unigram and bigram learn-
ing may be a natural consequence of the language
modeling task, or even distributional learning
more generally.

6 Discussion

We found that language models are highly sen-
sitive to basic statistics such as frequency and

10Absolute position embeddings in the Transformers were
randomly initialized at the beginning of training.
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bigram probabilities during training. Their acqui-
sition of words is also sensitive to features such
as sentence length and (for unidirectional models)
lexical class. Importantly, the language models
exhibited notable differences with children in the
effects of lexical class, word lengths, and con-
creteness, highlighting the importance of social,
cognitive, and sensorimotor experience in child
language development.

6.1 Distributional Learning, Language
Modeling, and NLU

In this section, we address the broader relationship
between distributional language acquisition and
contemporary language models.

Distributional Learning in People There is on-
going work assessing distributional mechanisms
in human language learning (Aslin and Newport,
2014). For instance, adults can learn syntactic
categories using distributional information alone
(Reeder et al., 2017). Adults also show effects
of distributional probabilities in reading times
(Goodkind and Bicknell, 2018) and neural re-
sponses (Frank et al., 2015). In early language
acquisition, there is evidence that children are
sensitive to transition (bigram) probabilities be-
tween phonemes and between words (Romberg
and Saffran, 2010), but it remains an open ques-
tion to what extent distributional mechanisms can
explain effects of other factors (e.g., utterance
lengths and lexical classes) known to influence
naturalistic language learning.

To shed light on this question, we considered
neural language models as distributional language
learners. If analogous distributional learning mech-
anisms were involved in children and language
models, then we would observe similar word ac-
quisition patterns in children and the models. Our
results demonstrate that a purely distributional
learner would be far more reliant on frequency
than children are. Furthermore, while the effects
of utterance length on words’ ages of acquisition
in children can potentially be explained by distri-
butional mechanisms, the effects of word length,
concreteness, and lexical class cannot.

Distributional Models Studying language ac-
quisition in distributional models also has implica-
tions for core NLP research. Pre-trained language
models trained only on text data have become
central to state-of-the-art NLP systems. Language

models even outperform humans on some tasks
(He et al., 2021), making it difficult to pinpoint
why they perform poorly in other areas. In this
work, we isolated ways that language models
differ from children in how they acquire words,
emphasizing the importance of sensorimotor expe-
rience and cognitive development for human-like
language acquisition. Future work could inves-
tigate the acquisition of syntactic structures or
semantic information in language models.

Non-distributional Learning We showed that
distributional language models acquire words
in very different ways from children. Notably,
children’s linguistic experience is grounded in
sensorimotor and cognitive experience. Children
as young as ten months old learn word-object
pairings, mapping novel words onto perceptually
salient objects (Pruden et al., 2006). By the age of
two, they are able to integrate social cues such as
eye gaze, pointing, and joint attention (Çetinçelik
et al., 2021). Neural network models of one-word
child utterances exhibit vocabulary acquisition
trajectories similar to children when only using
features from conceptual categories and relations
(Nyamapfene and Ahmad, 2007). Our work shows
that these grounded and interactive features im-
pact child word acquisition in ways that cannot be
explained solely by intra-linguistic signals.

That said, there is a growing body of work
grounding language models using multimodal in-
formation and world knowledge. Language mod-
els trained on visual and linguistic inputs have
achieved state-of-the-art performance on visual
question answering tasks (Antol et al., 2015; Lu
et al., 2019; Zellers et al., 2021b), and models
equipped with physical dynamics modules are
more accurate than standard language models at
modeling world dynamics (Zellers et al., 2021a).
There has also been work building models di-
rectly for non-distributional tasks; reinforcement
learning can be used for navigation and multi-
agent communication tasks involving language
(Chevalier-Boisvert et al., 2019; Lazaridou et al.,
2017; Zhu et al., 2020). These models highlight
the grounded, interactive, and communicative na-
ture of language. Indeed, these non-distributional
properties may be essential to more human-like
natural language understanding (Bender and
Koller, 2020; Emerson, 2020). Based on our
results for word acquisition in language mod-
els, it is possible that these multimodal and
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non-distributional models could also exhibit more
human-like language acquisition.

7 Conclusion

In this work, we identified factors that predict
words’ ages of acquisition in contemporary lan-
guage models. We found contrasting effects of
lexical class, word length, and concreteness in
children and language models, and we observed
much larger effects of frequency in the models
than in children. Furthermore, we identified ways
that language models aquire unigram and bi-
gram statistics early in training. This work paves
the way for future research integrating language
acquisition and natural language understanding.
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A Appendix

A.1 Language Model Training Details

Language model training hyperparameters are
listed in Table 4. Input and output token em-
beddings were tied in all models. Each model was
trained using four Titan Xp GPUs. The LSTM,
BiLSTM, BERT, and GPT-2 models took four,
five, seven, and eleven days to train, respectively.

To verify language model convergence, we
plotted evaluation loss curves, as in Figure 6.
To ensure that our language models reached
performance levels comparable to contemporary
language models, in Table 6 we report perplexity
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Hyperparameter Value

Hidden size 768
Embedding size 768
Vocab size 30004
Max sequence length 128
Batch size 128
Train steps 1M
Learning rate decay Linear
Warmup steps 10000
Learning rate 1e-4
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.999
Dropout 0.1

Transformer hyperparameter Value

Transformer layers 12
Intermediate hidden size 3072
Attention heads 12
Attention head size 64
Attention dropout 0.1
BERT mask proportion 0.15

LSTM hyperparameter Value

LSTM layers 3
Context size 768

Table 4: Language model training hyperparameters.

comparisons between our trained models and mod-
els with the same architectures in previous work.
For BERT, we evaluated the perplexity of Hug-
gingface’s pre-trained BERT base uncased model
on our evaluation dataset (Wolf et al., 2020).
For the remaining models, we used the evalua-
tion perplexities reported in the original papers:
Gulordava et al. (2018) for the LSTM,11 Radford
et al. (2019) for GPT-2 (using the comparably-
sized model evaluated on the WikiText-103
dataset), and Aina et al. (2019) for the BiLSTM.
Because these last three models were cased, we
could not evaluate them directly on our uncased
evaluation set. Due to differing vocabularies,

11The large parameter count for the LSTM in Gulordava
et al. (2018) is primarily due to its large vocabulary without
a decreased embedding size.

Figure 6: Evaluation loss during training for all four
language models. Note that perplexity is equal to
exp(loss).

hyperparameters, and datasets, our perplexity
comparisons are not definitive; however, they
show that our models perform similarly to
contemporary language models.

Finally, we evaluated each of our models for
word acquisition at 208 checkpoint steps during
training, sampling more heavily from earlier steps.
We evaluated checkpoints at the following steps:

• Every 100 steps during the first 1000 steps.

• Every 500 steps during the first 10,000 steps.

• Every 1000 steps during the first 100,000
steps.

• Every 10,000 steps for the remainder of
training (ending at 1M steps).

A.2 Lexical Class Comparisons
We assessed the effect of lexical class on age
of acquisition in children and each language
model. As described in the text, when lexical class
reached significance based on the likelihood ratio
test (accounting for log-frequency, MLU, n-chars,
and concreteness), we ran a one-way analysis of
covariance (ANCOVA) with log-frequency as a
covariate. There was a significant effect of lexical
class in children and the unidirectional language
models (the LSTM and GPT-2; p < 0.001).

Pairwise differences between lexical classes
were assessed using Tukey’s honestly signifi-
cant difference (HSD) test. Significant pairwise
differences are listed in Table 5.
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LSTM GPT-2 Children

Adj < Function ∗∗∗ Adj < Function ∗∗∗ Nouns < Adj ∗∗∗

Adj < Nouns ∗∗ Adj < Other ∗ Nouns < Verbs ∗∗∗

Adj < Other ∗∗ Verbs < Function ∗∗∗ Nouns < Function ∗∗∗

Verbs < Function ∗∗∗ Verbs < Nouns ∗ Function > Adj ∗∗∗

Verbs < Nouns ∗∗ Verbs < Other ∗∗ Function > Verbs ∗∗∗

Verbs < Other ∗ Nouns < Function ∗∗∗ Function > Other ∗∗∗

Other < Adj ∗∗

Other < Verbs ∗∗

Table 5: Significant pairwise differences between lexical classes when predicting
words’ ages of acquisition in language models and children (adjusted p < 0.05∗;
p < 0.01∗∗; p < 0.001∗∗∗). A higher value indicates that a lexical class is acquired
later on average. The five possible lexical classes were Noun, Verb, Adjective
(Adj), Function Word (Function), and Other.

Ours Previous work
# Params Perplexity # Params Perplexity

LSTM 37M 54.8 72M a 52.1
GPT-2 108M 30.2 117M b 37.5
BiLSTM 51M 9.0 42M c 18.1
BERT 109M 7.2 110M d 9.4

Table 6: Rough perplexity comparisons between
our trained language models and models with the
same architectures in previous work (aGulordava
et al., 2018; bRadford et al., 2019; cAina et al.,
2019; dWolf et al., 2020).

16


	Introduction
	Related Work
	Child Word Acquisition
	Evaluating Language Models

	Method
	Language Models
	Learning Curves and Ages of Acquisition
	Predictors for Age of Acquisition
	Age of Acquisition in Children

	Results
	First and Last Learned Words
	Age of Acquisition vs. Minimum Surprisal
	Alternative Age of Acquisition Definitions

	Language Model Learning Curves
	Unigram Probabilities
	Bigram Probabilities

	Discussion
	Distributional Learning, Language Modeling, and NLU

	Conclusion
	Appendix
	Language Model Training Details
	Lexical Class Comparisons


