
Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 17 - 28
December 7, 2022 ©2022 Association for Computational Linguistics

Algorithmic Diversity and Tiny Models:
Comparing Binary Networks and the Fruit Fly Algorithm on Document

Representation Tasks
Tanise Ceron * △ Nhut Truong * 2 Aurelie Herbelot * 2O

△ Institute for Natural Language Processing, University of Stuttgart, Germany
2 Center for Mind/Brain Sciences, University of Trento, Italy

O Department of Information Engineering and Computer Science, University of Trento, Italy
tanise.ceron@ims.uni-stuttgart.de,

{leminhnhut.truong,aurelie.herbelot}@unitn.it

Abstract

Neural language models have seen a dramatic
increase in size in the last years. While many
still advocate that ‘bigger is better’, work in
model distillation has shown that the number of
parameters used by very large networks is actu-
ally more than what is required for state-of-the-
art performance. This prompts an obvious ques-
tion: can we build smaller models from scratch,
rather than going through the inefficient process
of training at scale and subsequently reducing
model size? In this paper, we investigate the
behaviour of a biologically inspired algorithm,
based on the fruit fly’s olfactory system. This
algorithm has shown good performance in the
past on the task of learning word embeddings.
We now put it to the test on the task of seman-
tic hashing. Specifically, we compare the fruit
fly to a standard binary network on the task
of generating locality-sensitive hashes for text
documents, measuring both task performance
and energy consumption. Our results indicate
that the two algorithms have complementary
strengths while showing similar electricity us-
age.

1 Introduction

In 2022, the vast majority of state-of-the-art NLP
systems are implemented as deep neural models,
that is, neural networks with complex architectures
which can contain hundreds of billions of param-
eters. Such models have become so expensive to
train that most institutions cannot afford anymore
to generate them from scratch. They have also been
shown to generate non-negligible amounts of CO2

emissions (Strubell et al., 2019).
An active research area focuses on model distil-

lation (e.g. Sanh et al., 2019), that is, the process
of pruning pretrained large models to only retain
the weights truly essential to the system’s perfor-
mance. The result of distillation is a much smaller
architecture, faster to run, and less memory-hungry.

*Equal contribution

However, training a large model to then reduce
its size seems to be a waste of resources. Ideally,
we would make the right design choices to directly
implement a model with a reasonable number of pa-
rameters. With this goal in mind, the present paper
looks at a biologically-inspired architecture which
have shown potential as a ‘small model’ for lan-
guage processing: The Fruit Fly Algorithm (FFA).

The FFA is inspired by the olfactory system of
the fruit fly, Drosophila melanogaster. It algorith-
mically describes how the fly encodes smells in
its environment into a binary pattern of activations,
using just two layers of neurons. The usefulness
of the biological algorithm for computer science
was first noted by Dasgupta et al. (2017), who mod-
eled the mechanism as a kind of local-sensitivity
hashing relying on random projections, and used
it to hash pre-trained document and image vectors.
Preissner and Herbelot (2019, 2020) ported the
original algorithm to a Natural Language Process-
ing setting and made the fly learn word embeddings.
Liang et al. (2021) also applied the FFA to the task
of creating word embeddings, serving downstream
tasks such as word-sense disambiguation and docu-
ment classification.

The FFA produces word embeddings of a qual-
ity comparable to that of traditional, classic meth-
ods such as GLOVE (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013). While it lags
behind the performance of large language models
like BERT (Devlin et al., 2019), it consumes only
a fraction of inference time as well as computing
power (Liang et al., 2021). Moreover, the FFA is
an explainable model, thanks to a shallow archi-
tecture and sparse, binary feature representations.
Taken together, these features promise to allevi-
ate the drawbacks of mainstream giant language
models, such as the need for expensive comput-
ing resources, environmental concerns and lack of
interpretability.

In our work, we aim to take the FFA one step

17



further and use it to perform semantic hashing,
that is, the task of learning locality-sensitive, bi-
nary vectors for various types of text input. In the
general area of computational efficiency, semantic
hashing is an extremely useful task: it generates
meaningful vector representations at a low number
of bits (typically between 8 and 128). The produced
hashes can be stored very efficiently and similarity
computations can be performed extremely fast over
them, using hamming distance.

In the present paper, we provide a comparison of
the FFA with another efficient hashing algorithm,
namely the Binary Neural Network (BNN) (Hubara
et al., 2016). Both techniques are very different in
terms of architecture and training regime. In the
spirit of increasing ‘algorithmic diversity’ (Preiss-
ner and Herbelot, 2020), we think it worthwhile to
investigate the respective benefits of the two meth-
ods, and we pitch them against each other on the
tasks of document classification and information
retrieval. Our results show that the two techniques
are complementary in strength while both satisfy-
ing requirements of energy efficiency.

2 Related work

Semantic hashing The task of semantic hash-
ing comes from the area of information retrieval,
where it is crucial to be able to cluster documents
according to their semantic similarity, in order to
retrieve documents given a query. One way of go-
ing about this problem is to assign a code, hash or
vector representation to each document. The more
similar the hash of two given documents, the more
semantically related they are. These representa-
tions should be storable in a fixed number of bits so
that the retrieval of documents – through hamming
distance – is fast and computationally efficient.

Models for semantic hashing vary, from very
simple methods involving counts or tf-idf values
(Salton and Michael, 1986), to more complex ones
involving deep learning. The current unsupervised
state-of-the-art systems rely on heavy machinery
such as generative models with variational autoen-
coders (Chaidaroon and Fang, 2017; Zhang and
Zhu, 2019; Hansen et al., 2020), which are capable
of reducing the high-dimensional data into a low
latent space.

Document classification The task of document
classification is a traditional one in NLP, and like
many other tasks, it has become associated with
more and more complex architectures. A few years

ago, classification used to be tackled using different
architectures of neural network such as CNNs (Liu
et al., 2017) and biLSTMs (Adhikari et al., 2019b)
with static word embeddings. Nowadays, the pre-
ferred method is to input the entire document into
a large language model (LLM), retrieve its repre-
sentation, and feed it into a fully connected layer or
a linear classifier. LLMs are based on Transform-
ers and have a massive amount of parameters, (e.g.
170 billion in GPT-3: Brown et al., 2020). They
have fostered substantial progress in search engines
in the last few years1 and indeed create excellent
text representations. But they also have the many
pitfalls mentioned in our introduction, from low in-
terpretability to high computational cost, as well as
erroneous filtering of content in the pretraining pro-
cess, disfavouring minority groups (Dodge et al.,
2021; Bender et al., 2021).

From a purely engineering point of view, the
drawbacks of LLMs have prompted the publica-
tion of various papers trying to tackle core is-
sues in the models. For instance, Adhikari et al.
(2019a) implement knowledge distillation as com-
pression technique in the BERT-large model to
deal with the problem of run-time memory caused
by these large systems. Another known issue is
that standard LLMs such as BERT (Devlin et al.,
2019) can only take up to 512 tokens input due
to their self-attention mechanisms. Therefore,
dealing with long documents can still be a chal-
lenge. Researchers have dealt with it by creat-
ing Transformer-based models that can take even
longer texts as input (Beltagy et al., 2020).

Our own stance is that, beside improving LLMs,
our community should experiment with more di-
verse computational architectures to solve the out-
standing problems. As Bender et al. (2021) point
out, we should be careful not to focus only on state-
of-the-art architectures and encourage instead re-
search efforts and funding into diversifying natural
language processing models.

3 Datasets

Six datasets were used to evaluate our algorithms:
20 Newsgroups2 (20news) (Lang, 2008), Agnews3

1https://blog.google/products/search/
search-language-understanding-bert/

2qwone.com/~jason/20Newsgroups/
20news-bydate.tar.gz

3groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html

18

https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/
qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz
qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz
groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html


(Zhang et al., 2015), Reuters4 (Lewis, 1997), TMC5

(Oza, 2010), Wikipedia (Wiki), and Web of Sci-
ence6 (WoS) (Kowsari et al., 2017). Statistics and
short descriptions of all datasets can be found in
Table 1.

All datasets are available to download, except
Wiki, which we collected by scraping English
Wikipedia pages. For the 20news dataset, we used
the specific version sorted by date. For Reuters,
we used the version ModApte R(90). For WoS,
we used the medium-size version. Three datasets
(20news, Agnews, and Reuters) had already been
provided separate train and test sets. Thus we kept
these test sets intact for the purpose of comparison,
and further split the train sets to extract validation
sets.

3.1 Pre-processing
All datasets are lowercased and tokenized with a
SentencePiece7 model, generated from the train
split. Using this tokenization method makes our
system ready to be used with languages other than
English. SentencePiece transforms the data into
tokens belonging to a vocabulary of d wordpieces,
with d set here at 10, 000. It also returns the log-
probabilities of each token in the training data. We
will write li to refer to the log-probability of token
i in the SentencePiece model.

After this initial pre-processing, each dataset is
vectorized. For a dataset of n documents, we obtain
a matrix of size n× d, where each row represents
a document and each column a token in our vo-
cabulary of word pieces. Each cell in the matrix
shows the normalized frequency of a token in the
document, reweighted by lpi , where p is an expo-
nent used to increase or decrease the effect of li.
The reason for weighing frequencies in this way,
rather than using a conventional measure such as
tf-idf, is that it allows the system to be incremental
at test stage. That is, any new document seen by the
model can be vectorized without needing access to
the entire document collection.

Finally, we experiment with keeping only the
top t words in each (reweighted) document vector,
which lets us optimize the number of infrequent
and/or uncharacteristic words seen by the system.

4Downloaded from nltk library.
5catalog.data.gov/dataset/

siam-2007-text-mining-competition-dataset
6data.mendeley.com/datasets/

9rw3vkcfy4/6 under the license CC BY 4.0
7https://github.com/google/

sentencepiece

That is, before feeding the input to the system, we
zero out the d− t cells with lowest weights in each
row of the matrix.

4 Models

4.1 The Binary Neural Network (BNN)

BNN (Hubara et al., 2016) is an example of a
light and efficient model, which bridges the gap
between production in industry and research. Thus,
the model provides an ideal comparison for our
FFA. BNNs have a reduced cost of computation
with respect to continuous neural networks because
weights and activations are binarized at run-time,
as well as during gradient computation, with +1
and -1 values. Weights and activations undergo a
deterministic binarization step:

xb = Sign(x) =

{
+1 if x ≥ 0,

−1 otherwise

where x is the continuous variable and xb is the
binarized value. The Stochastic Gradient De-
scent, however, is computed with the accumulated
continuous-valued weights in order to have high
precision.

Our BNN has one input layer, one hidden layer
and one output layer. It is trained to predict which
class(es) a certain document belongs to. The input
is a matrix Rn×d with the pre-processed documents
(cf. 3.1) where n is the number of documents in
the batch and d is 10,000. The output layer is a bi-
nary vector representation of dimensionality Rh×l

where h is the number of neurons in the hidden
layer and l is the number of labels in the dataset.
Cross Entropy loss is computed for single label
documents whereas in the multilabel classification
the loss combines a sigmoid layer and Binary Cross
Entropy.

We experiment with three sizes of hidden layers
(32, 64 and 128) and two different learning rates
(0.01 and 0.001). The training batch size is kept at
32 across datasets. Training is run for 50 epochs
with early stopping after 5 epochs. The number of
epochs of each final model varies between 6 and
42.

While the BNN is trained on a classification task,
it can also be used for semantic hashing. To get
an unseen document’s hash, we feed it into the
neural network and extract the hidden layer before
the classification layer as the representation of the

19

catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
data.mendeley.com/datasets/9rw3vkcfy4/6
data.mendeley.com/datasets/9rw3vkcfy4/6
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece


Dataset Multi-class Classes Num docs Train-val-test
split (%) Topics

20news No 20 18846 42-18-40 Newsgroups, such as motorcycles,
computer, politics, etc

Agnews No 4 127600 75-19-6 News articles about the world, sports,
business, and science/tech

Reuters Yes 90 10788 56-16-28 News articles on various topics, such as
jobs, gas, housing, wheat, etc

TMC Yes 22 28596 60-15-25 Air traffic reports

Wiki No 15 29924 60-20-20 Wikipedia pages in categories,
such as music, football, law, etc

WoS No 35 11967 60-20-20 Scientific papers’ abstracts in different fields,
such as biochemistry, psychology, etc

Table 1: Statistics and description of datasets

Figure 1: FFA architecture (figure adapted from Preiss-
ner and Herbelot (2020).

document. Since the activations of the hidden layer
are already binarized, the representation naturally
implements binary hashing.

4.2 The Fruit Fly Algorithm (FFA)

The Fruit Fly Algorithm (FFA) takes inspiration
from the fruit fly’s olfactory system. Specifically,
the fruit fly’s brain is composed of sparse connec-
tions between only two layers of neurons which can
assign binary activations to a particular smell (de-
fined as a combination of different types of chemi-
cals). These patterns of activations allow the fruit
fly to ‘conceptualise’ the environment and react to
new smells by comparing them to previous smells
the fly has been exposed to. Dasgupta et al. (2017)
first proposed an implementation of FFA to hash
existing pretrained embeddings. In our work, we
extend the FFA to learn binary document embed-
dings from scratch, with low energy consumption.

Following the implementation of (Dasgupta
et al., 2017), the FFA model consists of a small
feedforward architecture which transforms a doc-
ument to a binary vector to represent the hash of

the document (Fig 1). The input layer, the pro-
jection neuron layer or PN layer, is a vector of d
elements {x1...xd}, generated by the vectorization
process described in §3.1. Next, this input layer is
multiplied by a random projection matrix to form
the input to the second layer. The second layer,
(Kenyon Cell layer or KC layer), is represented as
a vector of k elements {y1...yk}, which is larger
than the PN layer (k >> d) and is kept at fixed
size. The projection matrix is sparse, that is, PN
and KC layers are not fully connected. Each KC
is connected with a constant number i of nodes in
the PN layer, and these connections are randomly
allocated at initialization time. The activation value
of each KC cell is then simply the sum of i activa-
tions from the PN layer. Note that although these
connections are uniformly distributed, certain allo-
cations will result in better performance. Finally,
hashing is done by a winner-takes-all (WTA) func-
tion that sorts the activations in the KC layer, then
takes only a small percentage of the most activated
values to produce a compact representation of the
document. Specifically, WTA(yi) = 1 if yi is one
of the k top values in y and 0 otherwise.

Moreover, we include a Locality Sensitive Hash-
ing (LSH) algorithm as a simple baseline. It is a
vanilla random projection method with one non-
binary weight matrix, followed by a binarization
step to achieve hash values. Random projection
LSH is similar to FFA, as the two are from the
random projection group of algorithms.

5 BNN and FFA comparison

Our two algorithms have many differences, from
their architecture to their optimization regime. We
will highlight those differences here to make our
experimental results more interpretable.

First, the BNN is a supervised method while

20



the FFA is in essence unsupervised. This means
that when training and optimizing the BNN, we are
looking for the best network weights and ideal hy-
perparameters (for both pre-processing and training
regime). In contrast, the FFA does not require train-
ing of weights, since the projections are random,
but still requires hyperparameter setting (including
pre-processing and fly-specific features such as the
number of random projections per KC or the WTA
rate). Note that the BNN uses backpropagation
while the FFA only performs forward propagation.

Second, the BNN’s natural training grounds is
the classification task, which allows us to use a
straightforward and efficient objective function.
The FFA being unsupervised, it can be optimized
on any task that can make direct use of its binary
embeddings. In practice, we found that optimizing
the FFA’s hyperparameters on Prec@k gave us bet-
ter performance than the classification task, so the
results we report are based on this choice.

Finally, we should note that the task of this
paper, learning binary representations at low-
dimensionality, is a natural setting for the BNN
but actually challenges the FFA. The strength of
the FFA is the massive expansion in dimension-
ality at the level of the KC layer. Through this
mechanism, an actual fruit fly transforms a per-
ceptual input in 50 dimensions into a conceptual
representation contained in 2000 neurons. That
40-fold expansion in dimensionality allows the fly
to capture many latent features of the perceptual
data, some of which, presumably, end up being
useful for classification.8 But our task requires in-
stead that the document features be compressed
in at most 128 dimensions (down from 10,000 in
input). As we will see later, this will necessitate
some adjustments to the original FFA.

5.1 Evaluation
Classification Classification is simply the pro-
cess of predicting a class for a given document.
The accuracy for multi-label and single-label docu-
ments is computed as the sum of all true positives
and negatives divided by the sum of all true and
false positives and negatives from the dataset.

Prec@k Precision at k is a typical information
retrieval task. Given some document representa-
tion v, the k nearest neighbours of v are computed.

8In that sense, one might argue that the natural fruit fly
implements the kind of ‘wastefulness’ we criticised in Large
Language Models – but only across two partially connected
layers, and without backpropagation.

Precision is then given as the number of nearest
neighbours that have the same class as v, divided
by k. All datasets are evaluated with a k value
of 100. In the case of multi-label documents, the
precision is counted as correct if at least one of the
labels is retrieved.

Carbon footprint Aside from task performance,
we also measure how the algorithms compare in
terms of energy use. For each system, and for each
dataset, we compute electricity use in kWh. Since
optimization happens differently in the BNN and
the FFA, and involves different numbers of hyper-
parameters, we report the average consumption of
a single run (one given set of hyperparameters) for
each architecture. In order to show the environmen-
tal advantage of the BNN and FFA algorithms, we
also report the consumption of a pretrained BERT
model for comparison. We use the CodeCarbon
library (Schmidt et al., 2021) to measure the elec-
tricity consumption.

6 Experimental Design

We implement a BNN and an FFA9 with the aim of
generating document hashes at 32, 64 and 128 bits.
To evaluate the respective strengths of the two sys-
tems, we compare the two architectures according
to the two methods described above: precision at k
(prec@k) and classification (acc).

Further, we divide our evaluation of the FFA into
three different settings, to investigate how the rela-
tion between the dimensionality of the input of the
size of the KC layer affects results. Recall that the
original FFA expects an expansion in dimension-
ality which is undesirable from the point of view
of the task at hand, where we seek to obtain 32-64-
128 bits hashes. To alleviate this issue, we attempt
to combine the original architecture with a dimen-
sionality reduction step implemented as Principle
Component Analysis (PCA). We apply this step
in two different conditions. In the first one (subse-
quently referred to as PCA+FFA), we apply PCA to
the input matrix and feed the first c principal com-
ponents to the FFA, where c is a hyperparameter to
optimize. In the second one (FFA+PCA), we apply
PCA ‘inside’ the FFA, just before the WTA step, in
effect reducing the size of the KC layer. As control
condition, we also show the results of the original
FFA without intervention (henceforth ‘Raw FFA’).

9Our code is freely available at https://github.
com/minimalparts/SemanticHashingFFA.

21

https://github.com/minimalparts/SemanticHashingFFA
https://github.com/minimalparts/SemanticHashingFFA


Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.31 0.08 0.25 0.30 0.25
acc 0.45 0.17 0.38 0.45 0.48

64
pre@k 0.31 0.09 0.25 0.35 0.29
acc 0.48 0.25 0.41 0.55 0.56

128
pre@k 0.32 0.11 0.27 0.39 0.29
acc 0.54 0.38 0.48 0.61 0.59

Table 2: Results for 20news dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.79 0.27 0.31 0.62 0.62
acc 0.75 0.33 0.42 0.73 0.78

64
pre@k 0.80 0.27 0.64 0.69 0.59
acc 0.81 0.37 0.43 0.80 0.80

128
pre@k 0.80 0.28 0.67 0.72 0.54
acc 0.86 0.41 0.45 0.84 0.80

Table 3: Results for Agnews dataset

To perform classification with the FFA represen-
tations, we feed a simple Logistic Regression10

model with the documents’ hashes, as generated by
the fly, and perform one-vs-rest classification.

For all settings, we tune the values of the two
hyperparameters of the pre-processing stage: the
log-probability exponent p and the number t of top
words considered for each document (see §3.1).
For the BNN, we also investigate the learning rate
of the network. For the FFA, we tune the projection
size and WTA rate, as well as the number of princi-
pal components retained from the PCA, wherever
applicable. For the LSH, there is no tuning.

Since the FFA generates random projections for
each fly it creates, we run it 10 times for each
combination of dataset and hyperparameters, and
select the instance with the best performance on
the train set. (Recall that the FFA is unsupervised,
so we simply compute Prec@k on the n documents
seen in training.) We also run 10 times for LSH and
average the results. All results reported in §7 are
for the best models obtained from the optimization
process.

7 Results

7.1 Task performance
Our results are reported in Tables 2 to 8. We pro-
vide the best hyperparameter sets in the appendix,

10Implementation from scikit-learn: https:
//scikit-learn.org/stable/modules/
generated/sklearn.linear_model.
LogisticRegression.html.

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.61 0.25 0.50 0.58 0.54
acc 0.99 0.45 0.49 0.62 0.56

64
pre@k 0.68 0.27 0.50 0.64 0.54
acc 0.99 0.58 0.48 0.66 0.59

128
pre@k 0.70 0.29 0.49 0.66 0.50
acc 0.99 0.74 0.50 0.68 0.61

Table 4: Results for Reuters dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.53 0.24 0.41 0.56 0.58
acc 0.89 0.42 0.06 0.19 0.20

64
pre@k 0.58 0.24 0.4 0.61 0.56
acc 0.91 0.43 0.11 0.22 0.20

128
pre@k 0.59 0.25 0.43 0.64 0.53
acc 0.91 0.46 0.14 0.25 0.21

Table 5: Results for TMC dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.67 0.14 0.19 0.55 0.43
acc 0.82 0.33 0.34 0.73 0.70

64
pre@k 0.70 0.18 0.21 0.63 0.45
acc 0.84 0.46 0.43 0.81 0.79

128
pre@k 0.69 0.24 0.27 0.68 0.40
acc 0.85 0.62 0.54 0.86 0.81

Table 6: Results for Wiki dataset

Bits
Eval
mode

BNN LSH
Raw
FFA

PCA +
FFA

FFA +
PCA

32
pre@k 0.20 0.07 0.27 0.35 0.15
acc 0.51 0.22 0.45 0.58 0.46

64
pre@k 0.22 0.09 0.28 0.37 0.14
acc 0.56 0.35 0.46 0.64 0.51

128
pre@k 0.22 0.10 0.26 0.40 0.13
acc 0.58 0.60 0.50 0.71 0.54

Table 7: Results for WoS dataset

for reproducibility purposes. It emerges that the
BNN and the FFA complement each other, with one
or the other algorithm taking the lead in particular
combinations of datasets and tasks. We summa-
rize the main trends in our results below, starting
with a description of each experimental setting in-
dividually and then highlighting their respective
strengths.

BNN baseline: The BNN performs generally
very well on the classification task, which is to be
expected since it is specifically optimized for that
task. It reaches accuracies over 90% on Reuters and

22

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


TMC, at all hash sizes. At 128 bits, it also achieves
over 85% for Agnews and Wiki. Its performance
is somewhat more disappointing on 20news and
WoS (54% and 58% respectively). The results on
prec@k are more variegated and, interestingly, do
not fully follow the classification patterns. The best
performance is on Agnews (around 0.8) followed
by Reuters and Wiki (around 0.7 at 64 and 128 bits).
TMC only reaches 0.59 while the performance on
20news and Wos is again lower (around 0.3 and
0.2 respectively).

Raw FFA: Results with the raw FFA are consis-
tently low, although this setting surprisingly out-
performs the BNN on WoS against the prec@k
measure. This result is not entirely surprising, as
the natural fly has a dramatic expansion factor of
40, projecting 50 PN neurons to 2000 KC cells. In
our setting, conversely, the PNs get projected onto
a lower number of KCs.

FFA with PCA postprocessing: Integrating a
PCA dimensionality reduction step within the FFA,
just before the WTA function, only occasionally
improves performance. In some cases, it actually
degrades the score of the Raw FFA.

FFA with PCA preprocessing: Out of all FFA
settings, this is the one with the best performance.
For classification, it does best on Wiki (86%)
and WoS (71%), followed by Reuters (68%) and
20news (61%). For prec@k, the best results are ob-
tained on Wiki, Reuters and TMC (0.68, 0.66 and
0.64 at 128 bits), followed by 20news and WoS
(around 0.40).

LSH: It gets lowest scores for all datasets be-
cause it is the simplest algorithm, which serves as
a good sanity check.

When comparing both algorithms, we see that
for classification, PCA+FFA clearly outperforms
the BNN on 20news and WoS, while very much fail-
ing to encode TMC and lagging behind on Reuters.
Performance is comparable on the Wiki dataset and
Agnews. As far as prec@k is concerned, PCA+FFA
outperforms the BNN again on 20news and WoS,
as well as TMC. The two algorithms have more
comparable results on Reuters and Wiki, especially
at higher hash sizes. The BNN obtains the highest
results on Agnews.

7.2 Energy consumption
Table 9 shows energy consumption for the BNN
and the PCA+FFA model, measured on a 32-core

Linux machine using CPUs only (model AMD
Opteron(TM) Processor 6272), with 32GB RAM.
For comparison purposes, we also report the con-
sumption of a fine-tuning procedure over a pre-
trained BERT model, for the classification task. It
is run parallel on a 4 x Nvidia GeForce GTX 1080
Ti, 12 GB. The table reports average figures for
single optimization steps with an intuitive measure
of electricity usage, by showing how many min-
utes one could run a single 40W light bulb for the
same consumption. The results concerning the ex-
act kWh consumption can be found in Table 1 of
appendix A.1. While for the FFA, we give results
for the overall consumption as well as a breakdown
showing the individual demands of the PCA and
the actual fruit fly, the results for BERT represent
the fine-tuning of the model run once with the same
hyperparameters across datasets 11. Note that the
values of consumption for BERT in the table only
consider the fine-tuning of the model for the classi-
fication task, refer to Strubell et al. (2019) for more
information about the pre-training consumption.

8 Discussion

8.1 Task performance

We first remark that as far as classification is con-
cerned, it is possible to obtain high accuracies on
nearly all datasets with at least one of our two
lightweight algorithms: results at 128 bits range
from 80% to 99% for Agnews, Reuters, TMC and
Wiki. The more ‘difficult’ datasets are 20news and
WoS, and interestingly, those are the ones where
the FFA outperforms the BNN. As far as prec@k is
concerned, a very similar picture emerges. Agnews,
Reuters, TMC and Wiki reach between 0.69 and
0.80 precision, while 20news and WoS lag behind.
Here again, the FFA outperforms the BNN by a
very substantial margin.

One notable aspect of our results is that perfor-
mance in classification does not necessarily trans-
fer to prec@k, and vice-versa. The BNN achieves
good classification accuracies on TMC but rather
low prec@k, while the FFA behaves in exactly the
opposite manner. Further, results vary widely de-
pending on datasets, with the BNN and the FFA
respectively leading the game on Reuters and WoS
for both performance metrics. This seems to in-
dicate that particular data distributions might be

11lr=3e-05, seed=42, number of training epochs=3, maxi-
mum sequence length=512, batch size for training and validat-
ing=8

23



Similarity search Classification
dataset prec@100 KC size proj size WTA Acc. KC size proj size WTA
20news 0.12 14896 10 45 0.69 14239 2 100
agnews 0.32 14885 10 80 0.91 9106 2 100
reuters 0.48 4462 10 62 0.73 14033 2 100
tmc 0.46 14866 10 94 0.22 8233 2 57
wiki 0.24 13848 10 35 0.92 14336 2 100
wos 0.15 2337 7 3 0.82 11236 2 100

Table 8: Bayesian Optimization on the raw FFA, with (nearly) unlimited KCs.

dataset LSH BNN PCA+Fly = FFA (Overall) BERT Diff. BERT
20news 19 13 2+18 = 20 548 31x
agnews 34 41 87+81 ≈ 169 20153 247x
reuters 8 27 1+7 = 8 288 7x
tmc 18 16 4+16 = 20 1076 25x
wiki 31 21 6+22 ≈ 27 1281 48x
wos 11 11 1+9 ≈ 11 320 12x

Table 9: Energy consumption of the models in minutes run in a 40W lightbulb (more info about the kWh consumption
in appendix A.1). Figures represent one complete run of the models with one pre-determined set of hyperparameters.
Values in red and green are the models spending the most and least energy respectively. Diff. BERT represents the
number of times BERT consumes more over the avg. of all tiny models.

better captured by one or the other algorithm.
Unlike the BNN, the FFA demonstrates a consis-

tent improvement as the hash size increases. This is
not surprising, as we mentioned earlier that the FFA
is in some sense designed to work at high dimen-
sionality. We investigated this effect further and
performed Bayesian Optimization12 on the FFA’s
hyperparameters, this time allowing the size of the
KC layer to grow up to 15,000 bits. Results are
shown in Table 8. Against expectation, a higher
KC size does not necessarily translate into better
prec@k. And while the higher size does make a
substantial difference to the classification task, we
note that this is obtained with very low projection
sizes, meaning that the algorithm reverts to looking
at single words in the output.

An inspection into the hashes shows that the rep-
resentation derived from the FFA is able to create
a distinctive semantic space between documents
from different labels. Fig. 2 shows a 2D represen-
tation of four randomly-chosen classes in WoS and
20news.

8.2 Energy efficiency

Both the BNN and FFA algorithms prove to be
very energy efficient. In table 9, we see that a
single run of the BNN is equivalent to running the
light bulb between 11 and 41 minutes, depending
on the size of the dataset being processed. The FFA
itself (without PCA pre-processing) has a wider
range, from 7 to 81 minutes, but still remains very

12Library from github.com/fmfn/BayesianOptimization

(a) neighbors=50, dist=0.1

(b) neighbors=15, dist=0.8

Figure 2: Dimensionality reduction of the 128 dimen-
sion vector from FFA with UMAP. Classes are randomly
selected.

24



affordable.
We note that the main cost of the FFA is of

course evaluation. We are optimizing the algorithm
on Prec@k, which is an expensive function to run,
as it involves a computationally-intensive nearest
neighbour computation. As we pointed out previ-
ously, optimizing on classification did not seem to
give the best possible results for the FFA. But this
aspect would require further investigation, since it
is the main efficiency bottleneck for the algorithm.

We also note that when including PCA pre-
processing, large datasets like agnews become
more expensive to run: the highest overall con-
sumption in the tiny models in the table comes
from to the PCA on agnews (81 minutes). This
is a substantial cost in getting the best out of the
FFA, and one that could potentially be reduced. In
particular, we are experimenting with computing
dimensionality reduction on a restricted subset of
our data and subsequently learning a regression
function from high- to low-dimensional space to
‘simulate’ the effect of the PCA. Preliminary results
are encouraging, with limited loss in task perfor-
mance.

Lastly, the discrepancy of energy consumption
is striking between our tiny models and BERT as
observed in columns BERT and Diff. BERT of
table 9. The latter requires a considerable larger
amount of resources because of the millions of pa-
rameters being updated during fine-tuning. Across
datasets, it consumes 61 times more than the aver-
age consumption of all our tiny models in a single
run. Note that the difference increases according
to the size of the dataset. For instance, the smallest
datasets Reuters and WoS consume 7 and 12 times
more than the tiny models respectively, while the
largest dataset (agnews) consumes 247 times more.
These results highlight the importance of putting
more effort in developing smaller models because
of the high energy costs of solely fine-tuning these
huge models.

9 Conclusion

This paper set out to compare the respective
strengths of two lightweight binary hashing algo-
rithms, the binary neural network (BNN) and the
fruit fly algorithm (FFA), on the task of generat-
ing highly-compressed document representations.
We adapted the original FFA to this new context
by prepending a dimensionality reduction step to
the architecture, implemented with PCA. We found

that the two methods display different strengths and
achieved their top performance on different tasks
and datasets. Both are energy-efficient, with the
FFA’s consumption being mostly taken by evalua-
tion at optimization stage.

Both BNNs and biologically-inspired algorithms
are relatively new in NLP, and therefore require a
lot of community efforts to fully understand their
respective behaviours. As immediate further work,
we would perform an in-depth analysis on our
datasets’ distributions to understand better why
some data seem more suited to one or the other
algorithm, and why discrepancies emerge in the
way that classification and precision at k are tack-
led. From an efficiency point of view, we will also
further investigate how to reduce the cost of the
dimensionality reduction step before applying the
FFA.

One of the main strengths of both models is their
low running costs. All steps can be run in a CPU or
even on a mobile phone – as in the case of the BNN.
This is a crucial point when it comes to providing
high quality systems based on artificial intelligence
models for low-resource communities. As an exam-
ple application, we have integrated the PCA+FFA
pipeline to the PeARS search engine.13 PeARS
implements local Internet search by allowing users
to index and search Web documents on their home
machine. It requires an indexing method that is as
lightweight as possible for users with limited hard-
ware resources. The FFA is a natural choice here,
with its good performance on the Prec@k metric.
We hope that the work presented in this paper will
inspire other researchers to invest effort in devel-
oping lightweight techniques to solve core NLP
problems, and share them with the communities
that benefit from them.

Acknowledgments

We gratefully acknowledge the funding provided
by the NLnet Foundation, with financial support
from the European Commission’s Next Generation
Internet programme, under the aegis of DG Com-
munications Networks, Content and Technology
(grant agreement No 825322).

13https://pearsproject.org/, code at https:
//github.com/PeARSearch/PeARS-orchard.

25

https://pearsproject.org/
https://github.com/PeARSearch/PeARS-orchard
https://github.com/PeARSearch/PeARS-orchard


References

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and
Jimmy Lin. 2019a. Docbert: Bert for document clas-
sification. arXiv preprint arXiv:1904.08398.

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and
Jimmy Lin. 2019b. Rethinking complex neural net-
work architectures for document classification. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4046–4051,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? . In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Suthee Chaidaroon and Yi Fang. 2017. Variational deep
semantic hashing for text documents. In Proceedings
of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 75–84.

Sanjoy Dasgupta, Charles F Stevens, and Saket
Navlakha. 2017. A neural algorithm for a funda-
mental computing problem. Science, 358(6364):793–
796.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Mar-
garet Mitchell, and Matt Gardner. 2021. Docu-
menting large webtext corpora: A case study on
the colossal clean crawled corpus. arXiv preprint
arXiv:2104.08758.

Casper Hansen, Christian Hansen, Jakob Grue Simon-
sen, Stephen Alstrup, and Christina Lioma. 2020.
Unsupervised semantic hashing with pairwise recon-
struction. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 2009–2012.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2016. Binarized neu-
ral networks. Advances in neural information pro-
cessing systems, 29.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S Gerber,
and Laura E Barnes. 2017. Hdltex: Hierarchical deep
learning for text classification. In 2017 16th IEEE
international conference on machine learning and
applications (ICMLA), pages 364–371. IEEE.

Ken Lang. 2008. The 20 news groups data set.
http://people. csail. mit. edu/jrennie/20Newsgroups/.

David D. Lewis. 1997. Reuters-21578 text categoriza-
tion collection data set.

Yuchen Liang, Chaitanya K. Ryali, Benjamin Hoover,
Leopold Grinberg, Saket Navlakha, Mohammed J.
Zaki, and Dmitry Krotov. 2021. Can a fruit fly learn
word embeddings?

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-
ing Yang. 2017. Deep learning for extreme multi-
label text classification. In Proceedings of the 40th
international ACM SIGIR conference on research
and development in information retrieval, pages 115–
124.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Nikunj Oza. 2010. Siam 2007 text mining competition
dataset.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Simon Preissner and Aurélie Herbelot. 2019. To be fair:
a case for cognitively-inspired models of meaning.
In Proceedings of the Sixth Italian Conference on
Computational Linguistics.

Simon Preissner and Aurélie Herbelot. 2020. Biodiver-
sity in nlp: modelling lexical meaning with the fruit
fly algorithm. IJCoL. Italian Journal of Computa-
tional Linguistics, 6(6-1):11–28.

26

https://doi.org/10.18653/v1/N19-1408
https://doi.org/10.18653/v1/N19-1408
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2101.06887
http://arxiv.org/abs/2101.06887


Gerard Salton and J Michael. 1986. Mcgill. Introduc-
tion to modern information retrieval, 1(4.1):4–1.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Schmidt, Kamal Goyal, Aditya Joshi, Boris
Feld, Liam Conell, Nikolas Laskaris, Doug Blank,
Jonathan Wilson, Sorelle Friedler, and Sasha Luc-
cioni. 2021. CodeCarbon: Estimate and Track Car-
bon Emissions from Machine Learning Computing.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Yifei Zhang and Hao Zhu. 2019. Doc2hash: Learn-
ing discrete latent variables for documents retrieval.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2235–2240.

27

https://doi.org/10.5281/zenodo.4658424
https://doi.org/10.5281/zenodo.4658424
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355


A Appendix

A.1 Energy consumption

dataset LSH BNN PCA+Fly = FFA (Overall) BERT
20news 0.013 0.009 0.001+0.012 = 0.14 0.365
agnews 0.022 0.028 0.058+0.054 = 0.112 13.435
reuters 0.005 0.018 0.001+0.005 = 0.006 0.192
tmc 0.012 0.011 0.003+0.011 = 0.014 0.717
wiki 0.021 0.014 0.004+0.015 = 0.018 0.854
wos 0.008 0.007 0.001+0.006 = 0.007 0.213

Table 1: Energy consumption of the models in minutes run in kWh. Figures are averages for single optimization
steps. Values in red and green are the models spending the most and least energy respectively.

A.2 Model hyperparameters
SentencePiece was run with default hyperparameters and a vocabulary size of 10, 000. For the BNN, the
best log-probability exponent p varied depending on the dataset: 3 for Reuters, Agnews and TMC, 4 for
20news and WoS, 5 for Wiki. For the FFA, p = 4 emerged as the best choice for all datasets. The number
of top words t gave optimal results at t = 300 for most datasets, apart from WoS (t = 500).

Tuning the learning rate for the BNN did not result in any statistically significant changes, so all results
are reported for lr = 0.01.

For the FFA, we tuned the projection size from 4 to 16 and the WTA rate from 10 to 70. The best
hyperparameter combinations for each pair of hash size and dataset are included in the table below. The
Logistic Regression classifier used the default sklearn hyperparameters, in multiclass mode.

32 bits 64 bits 128 bits
dataset WTA proj size WTA proj size WTA proj size
20news 16 70 16 50 16 50
agnews 8 50 8 30 4 50
reuters 4 50 4 50 4 50
tmc 4 50 8 50 12 30
wiki 8 50 8 30 8 30
wos 8 70 8 50 4 70

Table 2: Hyperparameters table.

28


