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Abstract

The success of large BERT models has raised
the demand for model compression methods
to reduce model size and computational cost.
Quantization can reduce the model size and
inference latency, making inference more ef-
ficient, without changing its stucture, but it
comes at the cost of performance degradation.
Due to the complex loss landscape of ternar-
ized/binarized BERT, we present an efficient
two-stage progressive quantization method in
which we fine tune the model with quantized
weights and progressively lower its bitwidth,
and then we fine tune the model with quantized
weights and activations. At the same time, we
strategically choose which bitwidth to fine-tune
on and to initialize from, and which bitwidth
to fine-tune under augmented data to outper-
form the existing BERT binarization methods
without adding an extra module, compressing
the binary model 18% more than previous bi-
narization methods or compressing BERT by
31x w.r.t. to the full-precision model. Without
data augmentation, we can outperform existing
BERT ternarization methods.

1 Introduction

BERT (Devlin et al., 2019) models have demon-
strated remarkable performance on NLP tasks.
However, their memory and high computational
cost make it difficult to fit them onto edge devices
with limited resources for inference.

Recently, a number of methods have been devel-
oped to reduce the number of trainable parameters
of BERT such as (Sun et al., 2020; Jiao et al., 2020).
However, some edge devices require low-precision
models for deployment due to the structure of
their arithmetic units (Cortex-M, 2020). There-
fore, quantization of BERT-based models is needed
to avoid/minimize costly floating-point operations.

Previous works have tried to quantize BERT
models. TernaryBERT (Zhang et al., 2020) used
knowledge distillation to transfer the knowledge

(a) Full-precision BERT (b) 8 Bit BERT

(c) 4 Bit BERT (d) Ternary BERT

Figure 1: Loss landscape of the BERT model on the
MRPC dataset with different weight bits.

of the full-precision BERT to a BERT model with
weights that are ternarized into {−1, 0, 1} using 2
bits. BinaryBERT (Bai et al., 2021) binarized the
weights into {−1, 1} using 1 bit by exploiting the
adaptive width property of DynaBERT (Hou et al.,
2020) using a method called ternary weight split-
ting. BiBERT (Qin et al., 2022) managed to outper-
form (Bai et al., 2021) when binarizing acitvations
and binarizing weights. However, there is always a
performance loss associated with all the aforemen-
tioned methods when using ternary weights and to
keep competitive performance, data augmentation
from (Jiao et al., 2020) is needed, requiring up to
60x more data as shown in Table 8. For binary
weights, the architecture is also modified and an
extra module is added and with BiBERT’s method
alone it cannot reach the full precision performance.
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More details will be explained on Appendix E on
the BiBERT on non binary activations and weights.

A binarized/ternarized BERT has a lot more com-
plex landscape than a full-precision BERT (Bai
et al., 2021) as shown in Figure 1, so training
ternary/binary model from scratch could cause the
model to get trapped in a poor local minima. There-
fore, we use a two-stage progressive quantization
method inspired by (Zhuang et al., 2018). In the
first stage, we progressively lower the bitwidth
of weights, and subsequently fine-tune the model.
More specifically, the model with a larger bitwidth
is used to initialize the model for fine-tuning on
a smaller bitwidth of weights. After reaching the
best performance with quantized weights (e.g., bi-
nary weights), the BERT model is then fine-tuned
with quantized activations as the second stage of
the quantization method. Activations are also pro-
gressively quantized until the desired quantization
bitwidth in a similar fashion.

However, for example, applying the method
from (Zhuang et al., 2018) to ternarize BERT,
naively, costs too much time (or up to 1.67x longer
than necessary) with data augmentation used for
every bitwidth of weights, with no performance
gain as shown in Table 3. We therefore propose
an efficient two-stage progressive quantization (ET-
SPQ) method in which we choose which bitwidth
to progressively fine-tune on and which bitwidth
to fine-tune under augmented data to save training
time and achieve the best possible performance.

We are the first to ternarize the weights of BERT,
compressing it by 14.9x while outperforming the
full-precision model performance across nearly all
GLUE datasets and without data augmentation it
can outperform existing BERT ternarization meth-
ods. Also, we outperform the state-of-the-art BERT
binarization in performance without adding an ex-
tra module, compressing the model 18% more than
(Bai et al., 2021).

2 Preliminaries

A quantized model has a set of full precision
weights, w. For the forward pass, a quantization
function from (Li et al., 2016) is used to ternarize
each element wi in the weight matrix w into ŵt

i by

ŵt
i =

{
α(sign(wi)), |wi| ≥ ∆

0, |wi| < ∆
(1)

where ∆ = 0.7
n ∥w∥1, α = 1

|I|
∑

i∈I |wi|, and I =

{i|wi ̸= 0}. α is a scaling factor that is multiplied
by ternary values.

For binarization, wi is binarized into ŵb
i dur-

ing inference using the binarization method from
(Rastegari et al., 2016) by

ŵb
i = α(sign(wi)) (2)

where α = 1
n∥w∥1. α is a scaling factor that is

multiplied by binary values. The activations x are
quantized into x̂ using the quantization function

x̂ = round((x− xmin)/s) · s+ xmin. (3)

where s = (xmax − xmin)/(2
bitwidth − 1)

For training, we calculate the gradient of the
distillation loss from Eq. 16 w.r.t the quantized
weights and update the full-precision weight of the
quantized model. Since the quantization function
in Eq 1, 2, and 3 are not differentiable, a straight-
through estimator adopted by (Courbariaux et al.,
2015) is used to back propagate through the quan-
tization function 1, 2, and/or 3. With this, the gra-
dient ∂x̂

∂x is approximated as an identity, so ∂L
∂x can

be calculated as

∂L

∂x
=

∂L

∂x̂

∂x̂

∂x
(4)

In our work, we use the knowledge distillation
method from (Zhang et al., 2020; Bai et al., 2021)
during fine-tuning as shown in Eq. 16. Which
parts of the BERT are quantized can be seen on
Appendix A.

3 Efficient Two Stage Progressive
Quantization Method

With the complex loss landscape of binary/ternary
models, training with binary/ternary weights and
with quantized activations directly could lead the
BERT model to converge to a poor local mini-
mum. Therefore, we use an efficient two-stage
progressive quantization (ETSPQ) method. The
details of the ETSPQ method are provided in Alg
1. In the first stage, we progressively lower the
bitwidth of weights down to binary (or to our de-
sired bitwidth) while fine-tuning it on the target
downstream task. The first stage allows us to have
a good starting point as we are going to use our bi-
narized/ternarized model weights to then fine-tune
the model with quantized activations. In the 2nd

stage, with our binarized/ternarized model weights,
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Model W-A Size (MB) FLOPs (G) CoLA SST2 MRPC STS-B QNLI QQP MNLI-m RTE avg
Full precision 32-32 417.6 22.5 59.9 93.6 87.3 89.6 91.8 91.4 84.7 72.9 83.9
TernaryBERT 2-8 28.0 6.4 55.7 92.8 87.5 87.7 91.5 90.1 83.5 72.2 82.6

ETSPQ w/o aug. 2-8 28.0 6.4 55.4 93.2 87.7 89.3 91.8 91.4 84.8 74.0 83.1
ETSPQ 2-8 28.0 6.4 58.8 93.9 88.0 89.8 92.0 91.4 84.8 76.9 84.5

BinaryBERT 1-8 16.5 3.1 55.5 93.2 86.0 89.2 91.6 91.2 84.2 74.0 83.1
ETSPQ 1-8 13.4 3.1 55.6 93.9 88.2 89.6 91.6 91.3 84.2 74.7 83.6

BinaryBERT 1-4 16.5 1.5 53.3 93.7 86.0 88.6 91.4 91.2 83.9 71.5 82.6
ETSPQ 1-4 13.4 1.5 56.2 93.0 88.2 88.9 90.6 91.0 83.6 74.7 83.2

Table 1: Quantization performance for GLUE dev dataset. W-A stands for the bit width of weights and activations.

we then progressively lower the activation bits.

However, to save training time at the same time
getting the best possible performance, we choose
which bitwidth to finetune on and to initialize from
and which bitwidth to fine-tune under augmented
data based on the performance of BERT under that
bitwidth, unlike (Zhuang et al., 2018).

Algorithm 1: Two-stage progressive quan-
tization

Input: Train/Dev data or Aug train data;
32-bit teacher model; Student model
initialized from the teacher model

Output: student model with k-bit weights
and p-bit activations

/* Progressively reduce
bitwidth of weights */

1 wbits = [32, 8, 2, 1]; abits = [32, 8, 4]
2 for k in range(1,4) do
3 -Initialize the student model weights

from a model with wbits[k-1] bit
weights

4 -Use augmented data if wbits[k] ≤ 2,
else use non-augmented data

5 for epoch=1,...,max epoch do
6 for t=1,...,data size do
7 train student and quantize

student with wbits[k] bit
weights and save the best
student model

/* Progressively reduce
bitwidth of activations */

8 for p in range(1,3) do
9 -Initialize the student model weights

from a model with wbits[k] bit weights
and abits[p-1] bit activations

10 for epoch=1,...,max epoch do
11 for t=1,...,data size do
12 train the quantized student

model with abits[p] bit
activations and wbits[k] bit
weights and save the best
student model

3.1 Selective Bitwidth Finetuning

Rather than progressively quantizing
weights/activations i.e., 32-bit→16-bit→8-
bit→4-bit→2-bit→1-bit as in (Zhuang et al.,
2018) for each stage, we progressively quantizes
the weights, i.e., 32-bit→8-bit →2-bit→1-bit,
in the first stage, and then the activations, i.e.,
32-bit→8-bit→4-bit, in the second stage, as we
found that for BERT, the performance doesn’t
change a lot if we fine-tune for more different
bit-widths as shown in Table 2. From (Bai et al.,
2021), the performance doesn’t drop until weights
are ternarized and there is no point in fine-tuning
a 16-bit BERT model since an 8-bit BERT model
could reach the same performance as the full
precision.

Also, the performance barely changes when us-
ing a 4-bit BERT model as a starting point versus
using a 8-bit BERT model as a starting point when
finetuning a 2-bit BERT model, so we just use an
8-bit BERT model as a starting point.

3.2 Selective Data Augmentation

Data augmentation was used on BERT with ≤ 2
bit weights. Applying data augmentation for ≥ 8
bit BERT model is not necessary since the perfor-
mance doesn’t drop w.r.t to the full-precision BERT
as shown in Table 5, meaning that it is able to find
the optimal point without data augmentation.

4 Experiments

We measure the performance of ETSPQ on GLUE
(Wang et al., 2018) and compare ETSPQ with the
latest ternarization/binarization methods.

Using the V100 GPU, we fine tune with a batch
size of 16 for CoLA, and 32 for other datasets and
we use AdamW (Loshchilov and Hutter, 2019) with
weight decay of 0.01 and learning rate of 5e-5 with
a linear learning rate scheduler for five epochs.
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4.1 Results
The GLUE benchmark consists of different natu-
ral language tasks. We evaluate the performance
on Table 1 on the dev set, using Matthews corre-
lation for CoLA (Warstadt et al., 2019); accuracy
for SST2 (Socher et al., 2013), QNLI (Rajpurkar
et al., 2016), MNLI (Williams et al., 2018), and
RTE (Bentivogli et al., 2009); accuracy for MRPC
(Dolan and Brockett, 2005) and QQP (Chen et al.);
and, Spearman correlation for STS-B (Cer et al.,
2017). Also, the average performance for all dev
datasets is reported in the last column of Table 1.

Table 1 shows using our method we can ternar-
ize BERT, compressing it by 14.9x and get a
performance greater than or equal to that of the
full-precision model on all GLUE development
datasets, except for CoLA while using data aug-
mentation and 8-bit activations. ETSPQ method
still achieves a better performance on average com-
pared to TernaryBERT even without data augmen-
tation.

With binary weights and 8-bit activations, we
outperform BinaryBERT (Bai et al., 2021) on all
GLUE development sets. With binary weights and
4-bit activations, our ETSPQ on average outper-
forms BinaryBERT. At the same time, we get a
reduction of 18% w.r.t (Bai et al., 2021) model size
because (Bai et al., 2021) has an embedding layer
twice the size as BERT embedding layer.

Ternarizing the weights and quantizing the acti-
vations to 8 bits allows us to reduce the inference
flops by at least 7x while binarizing the weights
and quantizing the activations to 4 bits allows us
to reduce the flops by 15x. Therefore, 7x and 15x
speedup will be gained for inference, respectively
on CPU.

4.2 Ablation Studies
In this section, we test the performance of data
augmentation under certain bitwidth settings and
test the performance of different bit reduction set-
tings. For all different cases, knowledge distillation
method from (Zhang et al., 2020) is applied during
fine-tuning.

4.2.1 Importance of bit reduction settings
In this section, we test out the performance of cer-
tain bit reduction settings, unlike (Zhuang et al.,
2018) without using data augmentation. We test
these settings on a BERT model with ternary
weights and full precision activations with the same
hyperparameters as before. For example, "32→2"

Setting CoLA SST2 MRPC STS-B QNLI
32→16→8→4→2 55.4 93.2 88.0 89.3 91.9

32→16→8→2 53.4 93.2 87.0 89.1 91.5
32→16→2 53.6 93.1 87.0 89.2 91.4

32→8→4→2 53.7 93.1 88.0 89.3 91.9
32→8→2 55.2 93.2 87.7 89.3 91.8
32→4→2 54.7 93.2 87.7 89.3 91.8

32→2 52.7 92.8 87.0 88.6 91.4

Table 2: Results of different progressive quantization
settings

Setting CoLA SST2 MRPC STS-B QNLI
32→16→8→4→2 50 205 21 36 510

32→16→8→2 40 168 16 29 403
32→16→2 30 125 12 20 303

32→8→4→2 39 170 15 28 405
32→8→2 29 123 12 21 301
32→4→2 30 124 12 20 302

32→2 20 80 8 14 203

Table 3: Runtime for different progressive quantization
settings in minutes.

means fine-tuning the ternary model with the ini-
tialization of the full-precision finetuned BERT.

From Table 2, we can see that fine-
tuning for more bitwidths doesn’t necessar-
ily get us more performance. For example,
"32→8→4→2" has almost the same performance
as "32→16→8→4→2" with "32→16→8→4→2"
outperforming only on CoLA and on SST-2.
"32→8→2" also has almost the same performance
as "32→16→8→4→2", but "32→8→2" only falls
behind on MRPC, CoLA, QNLI by at most 0.3
points.

Therefore, the full-precision model is a good
initialization point when fine-tuning an 8 bit model.
When the 8 bit model reaches the optimal point, the
8 bit model will also be a good intialization point
when fine-tuning a 2 bit model and the resulting
2 bit model will also have a good performance.
Therefore, to get the best tradeoff in terms of speed
and performance, it is better to use the bit reduction
setting, "32→8→2".

4.2.2 Progressively Quantize Weights First or
Activations First?

Setting CoLA SST2 MRPC STS-B QNLI
32→8→2→2+8 55.4 93.2 87.7 89.3 91.8

32→32+8→8+8→2+8 55.3 93.2 87.8 89.0 91.5

Table 4: Performance of progressively reducing weight
bitwidth first vs activation bitwidth first.

We also evaluate whether it is better to first pro-
gressively reduce the bitwidth of activations or to
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first progressively reduce the bitwidth of weights
while fine-tuning. As seen in Table 4, there is negli-
gible performance drop when trying to first progres-
sively reduce the bitwidth of activations. Results in
Table 4 are recorded using a ternary BERT with 8
bit activations, using weight bit reduction settings,
"32→8→2".

4.2.3 Importance of selective Data
Augmentation

CoLA MRPC SST2
Weight Bits -aug +aug -aug +aug -aug +aug

16 62.0 61.5 88.1 87.9 93.6 93.8
8 62.3 62.9 88.0 88.0 94.3 94.4
4 59.0 58.5 88.0 88.0 93.9 93.7
2 54.1 58.5 87.7 88.2 93.1 93.9
1 47.2 52.6 84.5 87.3 92.4 93.5

Table 5: Results of data augmentation on different
weight bitwidths.

In this section, we evaluate the importance of
applying data augmentation under certain bitwidths.
This helps us to determine which bitwidth to train
with data augmentation to get the best performance
which will then be used as initialization point when
fine tuning the lower bitwidth model. From Table
5, using data augmentation for an ≥ 8 bit BERT
does not improve the performance by a lot as we
can see that 8 and 16 bit BERT has almost the
same performance. Therefore, data augementation
is best when fine-tuning on a ≤ 2 bit BERT.

5 Conclusion

In this work, we introduced an efficient two-stage
progressive quantization method to solve the prob-
lem of irregular and complex landscape of BERT
incurred by the binarization/ternarization of its
weights and to reduce the training burden of pro-
gressive quantization. We are the first to out-
perform the state-of-the-art binarization method
of BERT model without adding an extra module.
Moreover, our ternary BERT can outperform the
performance of its full-precision counterpart. Also,
we can outperform the state-of-the-art BERT model
with ternary weights on almost all GLUE datasets
without the use of data augmentation.
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A Bert Quantization:

BERT contains N identical transformer encoder
layers with the same architecture but with different
parameters. A transformer layer usually contains a
Multi-Head Attention (MHA) module and a Feed-
Forward Network (FFN) module. Before the input
goes through the transformer layers, the input first
gets processed at the embedding layer as

H1 = EMWE (z) + EMWS (z) + EMWP (x) (5)

where EM is the embedding function that uses the
indices z to extract the word, segmentation and po-
sition embeddings from the WE , WS , WP lookup
tables, respectively. WE , WS , WP are learnable
parameters. Then the output of the embedding
layer H1 becomes the input for the first transformer
layer.

In the l-th Transformer layer, the input Hl ∈
Rn×d where n and d are the sequence length and
hidden state size, respectively, first goes through
the MHA module. In the MHA module with NH

attention heads, the head contains the parameters,
WQ

h , WK
h , WV

h ∈ Rd×dh where dh = d
NH

. Using
the dot product of queries and keys from the input,
the attention scores are calculated as:

Ah = QK⊤ = HlWQ
h (HlWK

h )⊤ (6)

The softmax function is then applied on the at-
tention scores to get the output of each head, headh
as

headh = Softmax(
Ah√
d
)HlWV

h (7)

The output of the multi-head attention is calculated
as:

MHA(Hl) = Concat(head1, ..., headNH
)WO

(8)
A layer normalization is then applied on the out-

put of MHA plus the input of the MHA as shown
below

Xl = LN(MHA(Hl) + H1) (9)

Then the output of that layer-normalization, Xl,
is then inputed into the FFN layer which has two
linear layers containing the parameters, WInt ∈
Rd×4d and WOut ∈ R4d×d. The output of FFN

can be calculated as

FFN(Xl) = GeLU(XlWInt + bInt)WOut + bOut

(10)
Then, a layer normalization is then applied on

the output of FFN plus the input of the FFN as
shown below

Hl+1 = LN(FFN(Xl) + X1) (11)

Following (Zafrir et al., 2019; Zhang et al., 2020;
Bai et al., 2021), we quantize the weights WE from
eq. 5, WQ, WK , WV from eq. 6 and 7, WO from
eq. 8, WInt and WOut from eq. 10 and also quan-
tize the inputs which will be multiplied by these
weights. WS , WP and the biases are not quantized
as told in (Zhang et al., 2020; Bai et al., 2021),
because these parameters’ sizes are negligible and
operations in the softmax, layer normalization and
the task specific layer are kept in full precision
because the parameters in these operations are neg-
ligible and quantizing them can significantly hurt
the performance.

(Zhang et al., 2020) proposed TernaryBERT to
ternarize the weights and quantized the activations
to 8 bits using layer wise knowledge distilation
from (Jiao et al., 2020) to transfer the knowledge
of a full precision model to a ternary model by min-
imizing the mean-squared error (MSE) between the
teacher embedding output HT

1 and the student em-
bedding output HS

1 as shown in Eq. 12; between the
teacher multi-head attention (MHA) scores AT and
the student MHA output AS as shown in Eq. 14;
and between teacher feed-forward network (FFN)
HT

l and the student FFN output HS
l as shown in Eq.

13. And by minimizing the soft cross-entropy loss
between the student’s logit yS and the teacher’s
logit yT as shown in Eq. 15.

Lemb = MSE(HS
1 ,HT

1 ) (12)

Ltrm =

L∑

l=1

MSE(HS
l ,HT

l ) (13)

Latt =
L∑

l=1

MSE(AS
l ,AT

l ) (14)

Lpred = SCE(yS , yT ) (15)

L = Lpred + Lemb + Ltrm + Latt (16)
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Model W-A Size (MB) CoLA SST2 MRPC STS-B QNLI QQP MNLI-m RTE avg
Full precision 32-32 417.6 51.1 92.8 88.1/83.3 87.0/85.8 90.8 71.2/89.2 84.5 70.2 81.6
TernaryBERT 2-8 28.0 47.8 92.9 87.5/82.6 84.3/82.7 90.0 70.4/88.4 83.0 68.4 80.1

ETSPQ 2-8 28.0 50.8 93.1 88.1/83.7 86.3/85.2 90.9 71.4/89.3 84.3 70.0 81.5
BinaryBERT 1-8 16.5 51.6 91.9 85.9 82.3 89.8 89.0 84.1 67.3 80.2

ETSPQ 1-8 13.4 50.0 93.0 87.6 84.8 90.1 89.1 83.9 67.5 80.8
BinaryBERT 1-4 16.5 47.9 93.1 86.6 82.9 89.7 89.0 83.6 65.8 79.8

ETSPQ 1-4 13.4 46.9 93.0 87.0 84.5 89.3 89.0 83.5 68.0 80.2

Table 6: Quantization performance for GLUE test dataset. For binary weights, we only compare accuracy for QQP,
F1 for MRPC, and Spearman Correlation for STS-B because in (Bai et al., 2021), results are only represented in
these metrics.

Model W-A SQuAD2.0
Full precision 32-32 75.2/77.9
TernaryBERT 2-8 73.3/76.6

ETSPQ 2-8 74.5/77.5
BinaryBERT 1-8 73.6/76.5

ETSPQ 1-8 73.9/76.8
BinaryBERT 1-4 72.5/75.4

ETSPQ 1-4 72.1/75.2

Table 7: Our performance vs state of the art methods for
SQuAD datasets.

B GLUE Test Results

On GLUE test set, we can also achieve a compara-
ble performance w.r.t. the full-precision baseline,
only losing around 0.1 % of the full precision aver-
age performance with ternary weights and 8-bit ac-
tivations according to Table 6. With binary weights
and 8-bit activations, we outperform BinaryBERT
(Bai et al., 2021) on all GLUE test set except for
MNLI and CoLA.

C SQuAD 2.0 Results

We also perform experiments to measure the perfor-
mance of ETSPQ on SQuAD 2.0 (Rajpurkar et al.,
2016) datasets and compare with state-of-the-art
quantized models. From Table 7, using ternary
weights we outperform the performance of (Zhang
et al., 2020). With binary weights, we can outper-
form the performance of (Bai et al., 2021) for 8 bit
activations, but for 4 bit activations we achieved a
comparable performance.

D Further Analysis

In this section, we study the real impact of data
augmentation and Two-Stage Progressive Quanti-
zation (TSPQ) on the performance of quantized
BERT with binary weights and 4-bit activations by
plotting the performance on the dev set over the
number of iterations for the case “Augmentation”

Task -aug +aug
CoLA 8.5k 220k
SST2 67k 1135k

MRPC 3.7k 226k
STS-B 5.7k 327k
QNLI 108k 4278k
RTE 2.5k 147k

Table 8: Size of the dataset for each task with and with-
out data augmentation from (Jiao et al., 2020)

Task -aug +aug
CoLA 2.2 52
SST2 8.0 129

MRPC 1.1 52
STS-B 1.4 75
QNLI 20 403
RTE 0.6 30

Table 9: Runtime in minutes for one epoch for each task
with and without data augmentation from (Jiao et al.,
2020)

where we use only data augmentation and use the
full precision fine-tuned model initialization; for
the case “TSPQ” where we use the slightly higher
precision quantized fine-tuned model initialization;
and for the case “Baseline” where we only use the
full precision fine-tuned model initialization.

Fine-tuning with data augmentation for one
epoch takes longer and takes more iterations than
fine-tuning without data augmentation for five
epochs on a GLUE task due to the larger size of
the augmented data.

Therefore, the model running with more epochs
has more opportunities to adjust its weights prop-
erly under the quantization constraint and it is un-
fair to just compare the effects of using data aug-
mentation for one epoch vs five epochs without
data augmentation as previous works did.

As a result of that, we made sure that the quan-
tized model is being fine-tuned for the same num-
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(a) CoLA (b) MRPC

(c) RTE (d) STS-B

Figure 2: Performance over training iterations on CoLA
(a), MRPC (b), RTE (c), and STS-B (d) on dev set for
binary weights and 4 bit activations.

ber of iterations and not necessarily the same num-
ber of epochs for all three cases as illustrated in
Figure 2. Knowledge distillation from (Zhang et al.,
2020) and activation quantization function from Eq.
3 is used in all 3 cases

Figure 2 shows that the use of data augmen-
tation is not beneficial across all datasets unless
fine-tuning the model for a large number of itera-
tions. For instance, the performance increase for
data augmentation is a lot more progressive for
RTE and CoLA datasets. In this case, fine-tuning
can be performed for the non-augmented datasets
with significantly fewer iterations to reach optimal
performance. On the other hand, the use of data
augmentation helps to improve the performance of
MRPC and STS-B datasets when fine-tuning the
model for a larger number of iterations.

Using ETSPQ, we get a good initial performance
for the target bit precision, whereas training it nor-
mally would need a few more iterations to approxi-
mately match the performance. Figure 2 shows that
the trajectory of fine-tuning the quantized BERT
using ETSPQ is similar to the Baseline at the later
iterations and the curve from ETSPQ is generally
above or at a equal height as the curve of the Base-
line.

E Comparing with BiBERT

Due to limited space, we do not include BiBERT’s
results into the main results section. Also BiB-

Task DMD MSE
CoLA 52.1 52.3
SST2 92.8 92.5

MRPC 86.5 87.0
STS-B 88.8 88.6
QNLI 91.4 91.4

Table 10: Performance of using Direction Mismatch
Distillation (DMD) versus using Mean Square Error
(MSE) Distillation.

ERT’s method deals with the problems of binariz-
ing activations and weights by replacing the soft-
max function with a boolean function and by re-
placing the mean square error (MSE) distillation
with the direction mismatch distillation (DMD) for
the distillation of the attention scores.

However, using a boolean function does not
work when the output of the softmax is supposed
to be ≥ 1 bit. Therefore, this is also one of the
reasons it wasn’t included in the main results and
we only compare the performance of using DMD
with the performance of using MSE distillation in
Table 10.

In Table 10, we can see that the performance
doesn’t change a lot when using DMD compared
to using MSE distillation. Results obtained in the
table is obtained using the full-precision BERT as
the starting point and finetuning a BERT model
with ternary weights and 8 bit activations.
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