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Introduction

We are excited to present the inaugural workshop on semiparametric methods on NLP.
The field of natural language processing (NLP) has undergone a paradigm shift with the dramatic success
of large pre-trained language models (LMs) on almost every downstream task. These large parametric
models are based on the transformer architecture and are trained on massive collections of data using
self-supervised learning, which are then fine-tuned on a relatively smaller set of task-specific supervised
examples. The success of this simple recipe of homogeneous architectures and transfer learning has led
to its widespread adoption.
Despite these successes, parametric models lack several desirable properties. For example, these models
use knowledge stored in their parameters to perform tasks without providing provenance or transparency
into the model mechanisms. This is further exacerbated when they make an erroneous prediction as it
is challenging to understand what went wrong and how to fix it. Moreover, as new information arrives,
existing knowledge becomes obsolete and should be updated. However, it is currently challenging to
update the knowledge stored in the parameters of LMs. Amongst other issues, this has implications on
personal privacy as we do not have a robust way to execute requests for deletion of personal information
which could be stored in the parameters of the model.
Nonparametric instance-based models, on the other hand, offer many of the properties described above
by design — a model capacity that naturally grows with data, easy addition and deletion of knowledge,
and provenance for predictions based on the nearest neighbors with respect to the input. However, these
models often suffer from weaker empirical performance compared to deep parametric models. Semi-
parametric models are statistical models that consist of a fixed parametric and a flexible nonparametric
component. Combining the advantages of both paradigms has the potential to remedy many of the short-
comings described previously. For example, the nonparametric component can provide vast amounts
of background knowledge and the parametric component can encode the logic required to solve the
problem.
Recently, many recent works have independently proposed approaches that combine a parametric model
with a nonparametric model in areas from question answering, language modeling, machine translation,
and even protein structure prediction. Given the increasingly promising results on various tasks of such
semiparametric models, we believe this area is ripe for targeted investigation on understanding efficiency,
generalization, limitations, and to widen its applicability.
This workshop invited previously unpublished work as archival submissions, in addition to a non-archival
track of previously-published work, recognising the fast-moving nature of this area, and the large amount
of recently introduced work. After withdrawals, We have accepted a total of 5 archival papers, and 21
non-archival papers. Our final program thus includes 26 papers, 5 of which will be included in the
proceedings.
We are excited to host six stellar invited speakers, who will each lend their perspective to this exciting
and rapidly-evolving area. In the morning session, we will host Anna Potapenko, and in the afternoon
session, we will host Danqi Chen, Jason Weston, Andrew McCallum and Hannaneh Hajishirzi. We shall
finish with a panel discussion. We thank these speakers, our program committee, the ACL workshop
chairs, and our sponsors, Google and Meta, for helping to make this workshop possible.
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Abstract

Zero-shot relation extraction (ZSRE) aims to
predict target relations that cannot be observed
during training. While most previous studies
have focused on fully supervised relation ex-
traction and achieved considerably high per-
formance, less effort has been made towards
ZSRE. This study proposes a new model incor-
porating discriminative embedding learning for
both sentences and semantic relations. In addi-
tion, a self-adaptive comparator network is used
to judge whether the relationship between a sen-
tence and a relation is consistent. Experimental
results on two benchmark datasets showed that
the proposed method significantly outperforms
the state-of-the-art methods.

1 Introduction

Relation extraction is a fundamental task in Nat-
ural Language Processing (NLP) that predicts the
semantic relation between two entities in a given
sentence. It has attracted considerable research
effort as it plays a vital role in many NLP applica-
tions such as Information Extraction (Tran et al.,
2021a,b) and Question Answering (Xu et al., 2016).

Most recent studies (Tran et al., 2019; Tian et al.,
2021) treated this task in a fully supervised manner
and achieved excellent performance. However, the
supervised models cannot extract relations that are
not predefined or observed during training, while
many new relations always exist in real-world sce-
narios. Thus, it is worth enabling models to predict
new relations that have never been seen before.
Such a task is considered as zero-shot learning
(Xian et al., 2019), where a key to achieving high
performance is how to generalize a model to unseen
classes by using a limited number of seen classes.

However, there are only a few existing studies
on zero-shot relation extraction (ZSRE). Levy et al.
(2017) tackled this task by using reading compre-
hension models with predefined question templates.

∗Corresponding author.

Obamuyide and Vlachos (2018) simply reduced
ZSRE to a text entailment task, utilizing existing
textual entailment models. Recently, Chen and
Li (2021) presented ZS-BERT, which projects sen-
tences and relations into a shared space and uses the
nearest neighbor search to predict unseen relations.

The previous studies overlooked the importance
of learning discriminative embeddings. In essence,
the discriminative learning helps models to better
distinguish relations, especially on similar relations.
Our study focuses on this aspect and demonstrates
its significance for improving ZSRE. Specifically,
we propose a new model that incorporates discrim-
inative embedding learning (Han et al., 2021) for
both sentences and semantic relations, which is in-
spired by contrastive learning (Chen et al., 2020)
commonly used in computer vision. In addition,
instead of using distance metrics to predict unseen
relations as done by Chen and Li (2021), we use a
self-adaptive comparator network to judge whether
the relationship between a sentence and a relation
is consistent. This verification process helps the
model to learn more discriminative embeddings.
Experimental results on two datasets showed that
our method significantly outperforms the existing
methods for ZSRE.

2 Related Work

To date, ZSRE has been under-investigated so far.
Levy et al. (2017) formulated ZSRE as a question-
answering task. They first manually created 10
question templates for each relation type and then
trained a reading comprehension model. Because
it requires the effort of hand-crafted labeling, this
method can be unfeasible and impractical to define
templates of new-coming unseen relations. Oba-
muyide and Vlachos (2018) converted ZSRE to a
textual entailment task, in which the input sentence
containing two entities is considered as the premise
P, whereas the relation description containing the
same entity pair is regarded as the hypothesis H.
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They then used existing textual entailment mod-
els (Rocktäschel et al., 2016; Chen et al., 2017)
as their base models, although these models may
not be entirely relevant for ZSRE. The closest to
our work is research by Chen and Li (2021). First,
they proposed the ZS-BERT model, which learns
two functions to project sentences and relation de-
scriptions into a shared embedding space. Then,
they used the nearest neighbor search to predict
unseen predictions; however, it is prone to suffer
the hubness problem (Radovanovic et al., 2010).
Unlike the previous studies, our work emphasizes
the necessity of discriminative embedding learning
that may play a vital role in solving the ZSRE.

3 Proposed Model

3.1 Task Definition

Let YS and YU denote the sets of seen and unseen
relation labels, respectively. They are disjoint, i.e.,
YS∩YU = ∅. Given a training set with nS samples,
the ith sample consists of the input sentence Xi, the
entities ei1 and ei2, and the description Di of the
corresponding seen relation label yis ∈ YS , hereby
denoted as

{
Si =

(
Xi, ei1, ei2, Di, y

i
s

)}nS

i=1
. Us-

ing the training set, we train a relation model M,
i.e., M (Si) → yis ∈ YS . In the test stage, given a
testing sentence S′ consisting of two entities and
the descriptions of all unseen relation labels in YU ,
M predicts the unseen relation yju ∈ YU for S′.

3.2 Framework

Sentence Encoder. From the input sentence, we
add four entity marker tokens ([E1], [/E1], [E2],
and [/E2]) to annotate two entities, ei1 and ei2.
Then, we tokenize and input them through a pre-
trained BERT encoder (Devlin et al., 2019). Finally,
we obtain the vector representing the relation be-
tween the two entities by concatenating the two
vectors of the start tokens ([E1] and [E2]).

Relation Encoder. Most relations are well de-
fined, and their descriptions are available from open
resources such as Wikidata (Chen and Li, 2021).
For each relation, e.g., “founded by”, we input its
description to the pre-trained Sentence-BERT en-
coder (Reimers and Gurevych, 2019) and obtain
the representation vector by using the mean pooling
operation on the outputs.

Overview of the Model. On the basis of the two
modules above, we present our full model in Fig-
ure 1. Given a training mini-batch of N sentences,

we feed them into the Sentence Encoder and a
subsequent nonlinear projector to obtain N final
sentence embeddings. Simultaneously, we acquire
K different relations from the N sentences. The
K corresponding descriptions of the K relations
are then fed into the Relation Encoder and a sub-
sequent nonlinear projector to acquire the final re-
lation embeddings. To obtain more discriminative
embeddings, we introduce the learning constraints
described in detail later. Finally, we concatenate
pairs from the two spaces and use a network F to
judge whether the relationship between a sentence
and a relation is consistent.

3.3 Model Training

To boost the learning of discriminative embeddings
for sentences and relations, we consider three main
goals in training: (1) discriminative sentence em-
beddings, (2) discriminative relation embeddings,
and (3) an effective comparator network F.

Discriminative Sentence Embeddings. In Fig-
ure 1, given a mini-batch of N sentences, we ob-
tain N corresponding sentence embeddings: [s1,
s2, . . ., sN ]. To learn the discriminative features,
we first use a softmax multi-class relation classifier
to predict the seen relation for each sentence:

LSoftmax = − 1

N

N∑

i

yis log(ŷs
i), (1)

where yis ∈ YS is the ground-truth seen relation
label of the ith sentence and ŷs

i is the predicted
probability of yis. However, such a softmax loss
only encourages the separability of the inter-class
features. Meanwhile, discriminative power char-
acterizes features in both the separable inter-class
differences and the compact intra-class variations
(Wen et al., 2016). Thus, we use another loss to
ensure the intra-class compactness. First, the simi-
larity distance between two sentences is given by

d (si, sj) = 1/(1 + exp(
si
∥si∥

· sj
∥sj∥

)). (2)

Clearly, this value should be small for any sentence
pair of the same relation (positive pair) and large for
a negative pair. We then apply such distance con-
straints on all T unordered sentence pairs, where

2



Figure 1: Overview of our proposed model with an input training mini-batch of size N .

T = N(N − 1)/2, and formulate the loss as

(3)
LS2S = − 1

T

N−1∑

i=1

N∑

j=i+1

(
Iij log d(si, sj)

+ (1− Iij) log(1− d(si, sj))

)
,

where Iij = 1 if the pair (si, sj) is positive or 0
otherwise. LS2S not only ensures the intra-relation
compactness but also encourages the inter-relation
separability further. Finally, the final loss of learn-
ing discriminative sentence embeddings in the sen-
tence embedding space is defined as follows:

Lsent = LSoftmax + γ · LS2S, (4)

where γ is a hyperparameter. With this joint super-
vision, it is expected that not only the inter-class
sentence embedding differences are enlarged, but
also the intra-class sentence embedding variations
are reduced. Thus, the discriminative power of the
learned sentence embeddings will be enhanced.

Discriminative Relation Embeddings. In Fig-
ure 1, we obtain K corresponding relation em-
beddings: [r1, r2, . . ., rK] for K different rela-
tions in the relation embedding space. From the
K relations, we have a total of Q pairs (Q =
K(K − 1)/2), where each pair includes two dif-
ferent unordered relations. Thus, we maximize
distance for each of these pairs and define the loss
of learning discriminative relation embeddings by

(5)Lrel = − 1

Q

K−1∑

i=1

K∑

j=i+1

log(1− d(ri, rj)),

where d(ri, rj) is the similarity distance between
two relations using Equation 2.

Comparator Network. After obtaining the dis-
criminative embeddings of sentences and relations,
we use a comparator network F to judge how well
a sentence is consistent with a specific relation.
This validation information will guide our model
to learn more discriminative embeddings. In Fig-
ure 1, we concatenate sentences and relations as
pairs and feed them into F. To enhance the train-
ing efficiency, we control the rate of positive and
negative pairs. Specifically, we keep all positive
pairs but randomly keep only a part of negative
pairs (e.g., positive:negative rate is 1:3). The F is
a two-layer nonlinear neural network that outputs a
scalar similarity score in the range of (0,1]. Finally,
the loss of training F is defined as

LF = −

Npos∑
i=1

log vi +
Nneg∑
j=1

log (1− vj)

Npos +Nneg
, (6)

where vi and vj are the similarity scores of the ith

positive pair and jth negative pair, respectively;
Npos and Nneg are the number of positive pairs
and negative pairs for training.

Total Loss. Based on the three aforementioned
losses, the full loss function for training our model
is as follows:

L = LF + αLsent + βLrel, (7)

where α and β are hyperparameters that control the
importance of Lsent and Lrel, respectively.

3.4 Zero-Shot Relation Prediction
In the testing stage, we conduct zero-shot relation
prediction by comparing the similarity score of a
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given sentence with all the unseen semantic relation
representations. We classify the sentence si to the
unseen relation that has the largest similarity score
among relations, which can be formulated as

Pzsre (si) = max
j

{vij}|YU |
j=1 . (8)

4 Experiments

4.1 Dataset

Following the previous work (Chen and Li, 2021),
we evaluate our model on two benchmark datasets:
Wiki-ZSL and FewRel (Han et al., 2018). FewRel
is a human-annotated balanced dataset consisting
of 80 relation types, each of which has 700 in-
stances. Wiki-ZSL is a subset of Wiki-KB dataset
(Sorokin and Gurevych, 2017), which filters out
both the “none” relation and relations that ap-
pear fewer than 300 times. The statistics of Wiki-
KB, Wiki-ZSL, and FewRel are shown in Table 1.
Note that descriptions of the relations in the above
datasets are available and accessible from the open
source Wikidata1.

#instances #relations avg. len.
Wiki-KB 1,518,444 354 23.82
Wiki-ZSL 94,383 113 24.85
FewRel 56,000 80 24.95

Table 1: The statistics of the datasets.

4.2 Experimental Settings

Following Chen and Li (2021), we randomly se-
lected m relations as unseen ones (m = |YU |) for
the testing set and split the entire dataset into the
training and testing datasets accordingly. This guar-
antees that the m relations in the testing dataset do
not appear in the training dataset. We used macro
precision (P), macro recall (R), and macro F1-score
(F1) as the evaluation metrics.

We implemented the neural networks using the
PyTorch library2. The tanh function is used with
each nonlinear projector in our model. The com-
parator network F is a two-layer nonlinear neu-
ral network in which the hidden layer is equipped
with the tanh function, and the output layer size is
outfitted with the sigmoid function. The dropout

1https://www.wikidata.org/wiki/
Wikidata:Main_Page

2PyTorch is an open-source software library for machine
intelligence: https://pytorch.org/

Wiki-ZSL FewRel
m = 5 P R F1 P R F1

ESIM⋆ 48.58 47.74 48.16 56.27 58.44 57.33
CIM⋆ 49.63 48.81 49.22 58.05 61.92 59.92
ZS-BERT⋆ 71.54 72.39 71.96 76.96 78.86 77.90
ZS-BERT† 74.32 71.72 72.97 80.96 78.00 79.44
Ours 87.48 77.50 82.19 87.11 86.29 86.69
m = 10 P R F1 P R F1

ESIM⋆ 44.12 45.46 44.78 42.89 44.17 43.52
CIM⋆ 46.54 47.90 45.57 47.39 49.11 48.23
ZS-BERT⋆ 60.51 60.98 60.74 56.92 57.59 57.25
ZS-BERT† 64.53 58.30 61.23 60.13 55.63 57.80
Ours 71.59 64.69 67.94 64.41 62.61 63.50
m = 15 P R F1 P R F1

ESIM⋆ 27.31 29.62 28.42 29.15 31.59 30.32
CIM⋆ 29.17 30.58 29.86 31.83 33.06 32.43
ZS-BERT⋆ 34.12 34.38 34.25 35.54 38.19 36.82
ZS-BERT† 35.42 33.47 34.42 39.09 36.70 37.84
Ours 38.37 36.05 37.17 43.96 39.11 41.36

Table 2: Results with different m values in percentage.
⋆ indicates the results reported by Chen and Li (2021);
† marks the results we reproduced using the official
source code of Chen and Li (2021).

technique was applied at a rate of 0.3 on the hid-
den layer and embeddings of sentences and re-
lations in the two embedding spaces. We used
Adam (Kingma and Ba, 2015) as the optimizer, in
which the initial learning rate was 5e−6; the batch
size was 16 on FewRel and 32 on Wiki-ZSL; and
α = 0.7, β = 0.3, and γ = 0.5.

4.3 Results and Analysis

Main Result. The experimental results obtained by
varying m unseen relations are shown in Table 2.
It can be observed that our model steadily outper-
forms the competing methods on the test datasets
when considering different values of m. In addi-
tion, the improvement in our model is smaller when
m is larger. An increase in m leads to a rise in the
possible choices for prediction, thereby making it
more difficult to predict the correct unseen relation.

Obamuyide and Vlachos (2018) simply used two
basic text entailment models (ESIM and CIM) that
may not be entirely relevant for ZSRE. Besides,
they ignored the importance of discriminative fea-
ture learning for sentences and relations. Chen and
Li (2021) also overlooked the necessity of learning
discriminative embeddings. In addition, the near-
est neighbor search method in ZS-BERT is prone
to cause the hubness problem (Radovanovic et al.,
2010). Thus, our model was designed to overcome
the existing limitations. Compared with ZS-BERT,
our model significantly improved its performance
when m = 5, by 9.22 and 7.25 F1-score on Wiki-
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m = 5 F1
Wiki-ZSL FewRel

Ours 82.19 86.69
Ours (α = 0) 74.42 81.05
Ours (β = 0) 78.92 84.27
Ours (γ = 0) 77.13 82.95

Table 3: Ablation study.

ZSL and FewRel, respectively.

Impact of Discriminative Learning. To gain
more insight into the improvement in our model,
we analyzed the importance of learning discrim-
inative features in both the sentence and relation
spaces. In Table 3, we consider three special cases
of Equation 7: (1) α = 0 means no Lsent; (2)
β = 0 means no Lrel; and (3) γ = 0 means no
LS2S , which is a part of Lsent. Clearly, all three
losses are important for training our model to ob-
tain the best performance. In particular, Lsent for
learning discriminative sentence features is more
important than Lrel for learning discriminative re-
lation embeddings, as the performance decreases
significantly after removing it. In addition, LS2S

plays a vital role in Lsent since it mainly ensures
the intra-relation compactness property of discrim-
inative sentence embeddings.

Feature Space Visualization. We visualized the
testing sentence embeddings produced by ZS-
BERT and our model in a case of m = 5 on the
FewRel3 dataset using t-SNE (Maaten and Hin-
ton, 2008). Figure 2 shows that the embeddings
generated by our model express not only a larger
inter-relation separability but also a better intra-
relation compactness, compared with the embed-
dings by ZS-BERT. Besides, we focus on two re-
lations: “country” and “location”. According to
their descriptions (country4 and location5), we can
see that they are somewhat similar but different in
some details. Specifically, an ordered entity pair
(e1, e2) in a sentence expresses the relation “coun-
try” if and only if e2 must be a country and e2 has
sovereignty over e1. Meanwhile, if the entity pair
(e1, e2) does not hold the relation “country”, it may
appear the relation “location” when e2 is a place
that e1 happens or exists. Thus, the two similar re-

3The FewRel dataset is annotated by crowdworkers,
thereby ensuring high quality.

4https://www.wikidata.org/wiki/
Property:P17

5https://www.wikidata.org/wiki/
Property:P27

Figure 2: Visualization of the sentence embeddings by
ZS-BERT and our model when m = 5 on the FewRel.

lations make it difficult for ZS-BERT to distinguish
them. Meanwhile, our model can discriminate be-
tween them. These observations again prove the
necessity of learning discriminative features for
ZSRE.

5 Conclusion

In this work, we present a new model to solve the
ZSRE task. Our model aims to enhance the discrim-
inative embedding learning for both sentences and
relations. It boosts inter-relation separability and
intra-relation compactness of sentence embeddings
and maximizes distances between different relation
embeddings. In addition, a comparator network is
used to validate the consistency between a sentence
and a relation. Experimental results on two bench-
mark datasets demonstrated the superiority of the
proposed model for ZSRE.
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Abstract

While both extractive and generative readers
have been successfully applied to the Ques-
tion Answering (QA) task, little attention has
been paid toward the systematic comparison of
them. Characterizing the strengths and weak-
nesses of the two readers is crucial not only
for making a more informed reader selection in
practice but also for developing a deeper under-
standing to foster further research on improv-
ing readers in a principled manner. Motivated
by this goal, we make the first attempt to sys-
tematically study the comparison of extractive
and generative readers for question answering.
To be aligned with the state-of-the-art, we ex-
plore nine transformer-based large pre-trained
language models (PrLMs) as backbone archi-
tectures. Furthermore, we organize our find-
ings under two main categories: (1) keeping
the architecture invariant, and (2) varying the
underlying PrLMs. Among several interesting
findings, it is important to highlight that (1)
the generative readers perform better in long
context QA, (2) the extractive readers perform
better in short context while also showing bet-
ter out-of-domain generalization, and (3) the
encoder of encoder-decoder PrLMs (e.g., T5)
turns out to be a strong extractive reader and
outperforms the standard choice of encoder-
only PrLMs (e.g., RoBERTa). We also study
the effect of multi-task learning on the two
types of readers varying the underlying PrLMs
and perform qualitative and quantitative diag-
nosis to provide further insights into future di-
rections in modeling better readers.

1 Introduction

Question Answering (QA) is an important task
to evaluate the reading comprehension capac-
ity of an intelligent system and can be directly
applied to real applications such as search en-
gines (Kwiatkowski et al., 2019) and dialogue sys-
tems (Reddy et al., 2019; Choi et al., 2018). This

∗Work done during internship at Salesforce Research.

paper studies extractive QA which is a specific
type of QA; i.e., answering the question using a
span from the context (Rajpurkar et al., 2016; Fisch
et al., 2019). Extractive readers (Seo et al., 2017;
Devlin et al., 2019) are widely used to tackle such
a task, where the goal is to classify start and end
positions of the answer in the context. Generative
readers (Raffel et al., 2020; Lewis et al., 2020c;
Izacard and Grave, 2021) have also shown remark-
able performance, where the goal is to generate
answers by autoregressively predicting tokens.

Both the state-of-the-art extractive and genera-
tive readers are based on large pretrained language
models (PrLMs) and show good performance on
different datasets. However, a systematic compar-
ison between them has been largely unexplored.
Such a comparison reveals the strengths and weak-
nesses of each reader, which in turn can provide
more principled guidance on which reader and
PrLM should be applied in which cases, and also
open up future research opportunities grounded on
identified concrete challenges to improve reader
models. However fair comparisons between these
have been difficult to perform mainly because 1)
the PrLMs for extractive and generative are dif-
ferent, i.e., extractive readers are usually built on
top of encoder-only PrLM while generative ones
are based on encoder-decoder PrLMs, and 2) the
size of generative and extractive readers are not
the same, which can greatly affect the performance.
We design two main set of controlled experiments
to address such challenges in comparing extractive
and generative readers in a principled manner.

In the first set of experiments, we compare ex-
tractive and generative readers using the same
PrLMs. Specifically, T5 (Raffel et al., 2020) gener-
ative reader is compared with T5 extractive reader
and similarly for BART (Lewis et al., 2020a). This
allows a fair comparison of different answer predic-
tion approaches without being affected by different
architecture or prior knowledge of PrLMs. More-
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over, we challenge the conventional formulation
of extractive readers, which are often built upon
encoder-only PrLMs, by leveraging the encoder of
encoder-decoder PrLMs as a variable alternative.
More concretely, we use the encoders of T5 and
BART models to explore their capacity as an ex-
tractive reader to better understand the effect of
different pre-training strategies on the final QA per-
formance.

While the aforementioned comparison strategy
adopts the same PrLMs, it remains unclear how
generative readers compare with the conventional
extractive readers that are built upon encoder-only
PrLMs. Thus, in the second experiment, we
compare different architecture PrLMs, including
T5, BART, ELECTRA (Clark et al., 2020) and
RoBERTa (Liu et al., 2019), to draw more gener-
alizable and grounded conclusions. All models in
this suite of experiments have similar sizes, thus
reducing the impact of model size on performance.

With these two experiments, we present a
systematic comparison of extractive and gener-
ative readers using nine readers on the MRQA
task (Fisch et al., 2019), a collection of multiple
extractive QA datasets. This evaluation results in
five insightful findings:

1. The first experiment reveals that the choice of
PrLM affects the performance. Specifically, for
T5, the generative reader is better than the ex-
tractive one, but for BART, extractive readers
are better than the generative ones.

2. The second experiment shows that on average,
extractive readers performs better than the gen-
erative ones, with the extractive reader built on
the encoder of T5 performing the best among
the different types of PrLMs.

3. Extractive readers perform better in short con-
text and have better generalization on out-of-
domain datasets and rare answers, but the gener-
ative readers perform better in the long context.

4. The encoder of encoder-decoder PrLMs are also
good extractive readers. Extractive readers built
on top of the encoder of BART or T5 are better
than encoder-only PrLMs, like RoBERTa.

5. While the inference length is usually chosen to
be the same as in the training time, we find that
longer inference length has a positive effect for
all PrLMs. Using longer lengths for long con-
texts leads to greater gains than short contexts.

Our work presents an in-depth study of extractive
and generative readers for QA task, an important

NLP task toward building intelligent systems. Our
findings shed light on key considerations behind
reader selection and would be helpful for formulat-
ing future research on advancing reader models.

2 Related Work

Pretrained Language Models Here, we mainly
discuss two types of pre-trained models based on
transformers architecture (Vaswani et al., 2017),
autoencoder and encoder-decoder models, which
are widely used for QA tasks. Autoencoder only re-
lies on the encoder part in the original transformer,
and in the pretraining time, the input is a cor-
rupted sentence, for example, a sentence with mask
tokens, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) and ELECTRA (Clark
et al., 2020). Both RoBERTa and ELECTRA has
the same architecture as BERT but perform bet-
ter than BERT on many tasks. RoBERTa mainly
benefits from larger training corpus consisting of
news, books, stories, and web text. ELECTRA
adapts GAN-style training (Mirza and Osindero,
2014) and aims to detect if a token is replaced
or is from the original text. Large ELECTRA is
trained on similar data as RoBERTa. BART (Lewis
et al., 2020b) and T5 (Raffel et al., 2020) belong to
encoder-decoder architecture. BART is pretrained
on the same data as RoBERTa, while T5 is pre-
trained on Colossal Clean Common Crawl Corpus
as well as the multiple downstream tasks.

Question Answering Systems We focus on QA
systems that are built upon PrLMs. Extractive QA
readers assume that answers can be found in the
context and aim to predict the corresponding start
and end tokens from the context (Fisch et al., 2019;
Li et al., 2019; Clark et al., 2020; Karpukhin et al.,
2020). Differently, generative QA readers are not
restricted to the input context, where they can freely
generate answers token by token using the entire vo-
cabulary in an autoregressive manner (Raffel et al.,
2020). Generative readers are more often used in
open domain (Lewis et al., 2020c; Izacard and
Grave, 2021; Xiong et al., 2021) and unified set-
tings (Khashabi et al., 2020; Tafjord and Clark,
2021). Fajcik et al. (2021) combines extractive
and generative readers by adding a classification
module to decide which reader predicts answers.
Cheng et al. (2021) proposes a unified system of ex-
tractive and generative readers, but different from
(Fajcik et al., 2021), the output is computed by both
extractive and generative readers.
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3 Model

We mainly study the QA models based on PrLMs
with extractive and generative approaches.

3.1 Extractive Reader
In extractive reader, an encoder firstly receives the
concatenation of a question q :{q1, . . . , qt} and a
context c :{c1, . . . , cm}, where qi and cj are to-
kens in question and context, respectively. Then,
it produces h : [h1| · · · |hm] ∈ Rd×m, where hj
corresponds to the d-dimensional contextual repre-
sentation of context token cj . We then stack two
linear layers on top of the contextual representa-
tions to independently predict the probability of
each context token being start and end positions
of the correct answer. More formally, given a tu-
ple (q, c,a), where a is an answer, the training
objective is to minimize the following loss function

LExt = − log(Pstart,s)− log(Pend,e) (1)

where Pstart,Pend ∈ Rm are defined by

Pstart = softmax(wstarth) (2)

Pend = softmax(wendh) (3)

where wstart and wend denote for the linear lay-
ers to predict start and end tokens, Pstart,s and
Pend,e denote the probability of the ground truth
start and end tokens of answer a, respectively.
In testing time, the answer span is decoded by
argmaxi,j{Pstart,i ×Pend,j}.

In this work, we have two variants of extrac-
tive readers. One is encoder-only models to get
the contextual representation of each token. We
call such kind of reader as E-Extractive reader.
Apart from taking the conventional PrLMs such
as RoBERTa and ELECTRA, we also apply the
encoder part in T5 and BART to be E-Extractive
reader. The other one is using the encoder-decoder
models where the decoder is to obtained the con-
textual representation of each token in the context
in an autoregressive way (see §3.2). We use both
BART and T5 PrLMs and term this kind of reader
as ED-Extractive reader.

3.2 Generative Reader
We consider a generative reader consisting of an
encoder and a decoder where the decoder is used
to generate answers in an autoregressive way. Spe-
cially, the encoder takes a question q and a context
c as input and outputs contextual representation

Dataset Training size Avg. tokens in Q Avg. tokens in C
In-domain datasets
SQuAD 86,588 11.53 144.15
NewsQA 74,160 7.60 581.61
TriviaQA 61,688 15.81 782.59
SearchQA 117,384 17.46 744.44
HotpotQA 72,928 18.89 237.67
NQ 104,071 9.18 158.80

Out-of-domain datasets
DROP - 11.18 215.16
RACE - 11.82 347.90
BioASQ - 11.53 252.83
TextbookQA - 11.07 663.36
RE - 9.26 30.02
DuoRC - 8.63 732.92

Table 1: Statistics of In-domain (IID) and out-of-
domain (OOD) datasets of MRQA benchmark.

h. Then, the decoder takes the previously gener-
ated answer tokens as input and performs attention
over h and then generates the next token. Formally,
given a tuple (q, c,a), the training objective is to
minimize the following loss function

LGen =
K∑

i=1

logP(ai | h, a:i) (4)

where K is the number of tokens in answer a, ai
is the ith token in a, and a0 corresponds to a spe-
cial beginning of sequence (BOS) token. In the
inference time, we use the greedy search method
to autoregressively generate the answer.

4 Experiments

4.1 Dataset
We conduct experiments on MRQA benchmark
which provides six in-domain (IID) datasets, and
six out-of-domain (OOD) datasets for generaliza-
tion evaluation. MRQA covers different domains
(e.g. News and biomedical) and different types of
questions, (e.g. single hop and multi-hop). Table
1 shows the statistic of each IID and OOD dataset.
Some datasets have long context and others are
short context. More details about MRQA are pre-
sented in Appendix A.

4.2 Learning Strategy
Single Task Learning: we use each IID datasets
to train extractive and generative readers. Multi-
Task Learning: we consider training with all (six)
IID datasets as multi-task learning for two rea-
sons. As (Su et al., 2019) showed that different
IID datasets share a low similarity, therefore, they
may require different reasoning skills. In addition,
Table 1 shows that different datasets have different
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question and context lengths, which may lead to
different difficulties between datasets.

4.3 Experimental Setup

We use Huggingface (Wolf et al., 2020) and Py-
torch (Paszke et al., 2019) implementation for train-
ing each model. All models are trained using
maximum input length of 512 and other details
is provided in Appendix B1. In Table 2, we summa-
rize the size of each evaluated model and the size
of PrLMs are chosen based on a comparable way
and the best computation power. For example, we
choose T5 base model for generative reader since
the large T5 is too larger (737M).
Input Format: Given a question Q and a context
C, the input to extractive readers is {Q [SEP] C}
and the input to generative readers is {question:
Q [SEP] context: C}. We also considered other
input formats, which are reported in Appendix C.
Answer Length of Generative Reader: We set
the maximum generated answer length as 16 for
generative reader. Using longer generation lengths
(32 and 64) do not yield noticeable improvement
as reported in Appendix D.

5 Results and Analysis

We first present the study of using different infer-
ence length for each model since it guides us to
choose the best performance of each model. Then,
we compare the generative and extractive readers
using the same PrLMs and the different PrLMs.
Last, we present a detail analysis to diagnose the
difference among extractive and generative reader.
F1 is used to measure performance. Note that since
we test each model on 12 datasets, the observation
and conclusion we draw are mostly based on the
average across all datasets.

5.1 The Effect of Context Length

While all models are trained with 512 maximum
length, the inference length can be longer than this.
We experiment with three lengths, 512, 1024, and
the full length of input question and context. Due to
the tokenization and pretraining maximum length
of each PrLM, ELECTRA only allows 512 maxi-
mum inference length, RoBERTa and BART allows
1024, and T5 allows the full length of input.

1While we fix the training hyperparameters for all the mod-
els for the sake of experimental efficiency, the performance of
our setting is close to the original results.

We present the average performance of each
model on both IID and OOD in Table 32, from
which three trends are observed. (1) When using
512 inference length, ELECTRA is the best model
in single-task learning on IID datasets and multi-
task in both IID and OOD datasets. (2) Increasing
the inference length actually improves all models’
performance. (3) The length affects the T5 mod-
els more significantly than others, for example, in
single-task learning, the largest improvement of
length 1024 for T5 model on IID and OOD datasets
are 2.77% and 5.49%, while for other models, the
largest improvement of length 1024 compared to
512 are 1.32% and 1.65%. The performance of
using 512 and 1024 are given in Appendix E, and
we present the performance of each dataset using
the best input length in the following sections.

5.2 Comparison within Same PrLMs

We compare different readers when using the same
PrLMs. Two PrLMs, T5 and BART, are considered,
where T5-base model is applied to each T5 reader,
and BART-large model is applied to each BART
reader. We have three comparison as there are
two types of extractive and one type of generative
readers (§3). We present the average performance
in each comparison and the detail performance on
each datasets are given in Appendix F.

ED-Extractive and E-Extractive Since the E-
Extractive reader is only use the encoder part of the
PrML without the decoder, the size of E-Extractive
reader is less than the ED-Extractive. But even
under this disadvantage, surprisingly, we find that
the encoder part actually perform well on QA tasks.
In Figure 1 , the red and green bars compare the
ED-Extractive and E-Extractive reader. For BART
model, the E-Extractive reader outperforms ED-
Extractive reader on average on IID and OOD
datasets in single task learning as well as multi-
task learning. This indicates that the decoder in
BART is not crucial for the extractive reader. On
the other hand, for T5, the ED-Extractive reader
outperforms E-Extractive reader on average on both
IID and OOD datasets. This suggests that the de-
coder in T5 still plays a role to yield better perfor-
mance. But the performances are similar even that
the E-Extractive reader has less parameters.

2Note that in single-task learning, the performance on
OOD are extracted from the best performance of each single-
task model on every dataset and this applies to all other tables
in this paper.
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T5 E-Ext T5 E-Ext T5 ED-Ext T5 ED-Gen Bart E-Ext Bart ED-Ext Bart ED-Gen ELECTRA RoBERTa
Size base large base base large large large large large

# Params (M) 110 335 223 223 204 406 406 334 354

Table 2: Size and parameters of readers. ED: encoder-decoder, Ext for extractive, Gen for generative approach.

Model
In-domain Avg. Out-of-domain Avg.

512 1024 Full 512 1024 Full

Single Task Learning

T5 E-Ext (B) 74.42 75.80 77.93 55.89 58.06 58.65
T5 E-Ext (L) 76.46 78.67 80.85 60.74 63.67 64.49

T5 ED-Ext (B) 74.75 77.06 79.11 57.11 59.19 59.99
T5 ED-Gen (B) 77.91 80.68 81.02 56.26 61.75 61.82
BART E-Ext (L) 77.78 79.10 - 59.67 61.32 -

BART ED-Ext (L) 77.10 77.34 - 59.29 59.21 -
BART ED-Gen (L) 69.89 70.24 - 49.65 53.51 -

RoBERTa (L) 77.59 77.89 - 60.32 60.47 -
ELECTRA (L) 78.71 - - 60.19 - -

Multi-Task Learning

T5 E-Ext (B) 75.74 76.65 78.99 58.94 61.55 61.98
T5 E-Ext (L) 77.10 79.30 81.55 63.04 66.10 66.78

T5 ED-Ext (B) 75.92 77.38 79.93 59.23 61.86 62.64
T5 ED-Gen (B) 78.06 80.89 81.16 57.82 63.56 63.68
BART E-Ext (L) 77.75 79.13 - 63.27 64.06 -

BART ED-Ext (L) 77.26 77.55 - 62.14 62.68 -
BART ED-Gen (L) 78.11 78.55 - 57.41 60.54 -

RoBERTa (L) 77.86 78.02 - 63.70 63.58 -
ELECTRA (L) 78.52 - - 63.83 - -

Table 3: Result of each model using three inference
length. Bold number means the highest value of each
model with three inference length for IID and OOD
datasets. L: large PrLMs, B: base PrLMs

Figure 1: Left for single-task and right for multi-tasks
settings. For T5, ED-Ext performs better than E-Ext
reader; for BART, E-Ext is better than ED-Ext reader
even though the former has less parameters.

ED-Extractive and ED-Generative Reader
Here, the model size of extractive reader and
generative reader are almost the same (see Table 2)
and also the pre-owned knowledge of two readers
are the same since both readers use the encoder and
decoder parts. In Figure 2, the red and blue bars
compare the ED-Extractive and ED-Generative
reader. For T5, generative models performs better
than the extractive one on four cases, IID and OOD
datasets and single- and multi-tasks learning. For

BART PrLM, in single-task learning, the extractive
model is much better than the generative model.
This probably explains why in most of the previous
work, when BART is applied to extractive QA
tasks, it is used as extractive reader even though it
belongs to encoder-decoder model family3. The
story for multi-task learning is different, and we
find that the BART generative reader benefits
significantly from multi-task learning and even
outperforms the BART ED-extractive reader on
IID datasets. It indicates that the decoder in BART
requires larger and more diversified datasets to
learn the QA task.

Figure 2: Left for single-task and right for multi-tasks
settings. For T5, ED-Gen performs better than ED-Ext;
For BART, ED-Ext is better than ED-Gen in single task
learning, but worse in multi-task learning on IID.

E-Extractive and Generative Reader In this
comparison, the extractive reader has less advan-
tage than the generative ones since the decoder has
been removed in E-Extractive reader. In Figure 3,
the green and blue bars compare the E-Extractive
and ED-Generative reader. For T5 model, the gen-
erative reader are better than the extractive ones
in both single- and multi-tasks and IID and OOD
datasets. But again, this disadvantages of extractive
readers might come from the smaller model size as
we discussed in previous comparison. For BART
model, E-Extractive reader outperforms generative
reader significantly on both IID and OOD datasets
and the advantage of E-Extractive reader are much
more significantly in single-task learning scenario.
To summarize,
1. The encoder part itself in both T5 and BART

can perform well as an extractive reader.
3The original BART paper takes BART as an extractive

and also the implementation of using BART for QA in Hug-
gingface library do the same.
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Figure 3: Left for single-task and right for multi-tasks
settings. For T5, ED-Gen is better than E-Ext reader;
for BART, E-Ext is better than ED-Gen reader even
though the former has less parameters.

2. The comparison among three types of reader
using BART and T5 suggests that although
both PrLMs are of encoder-decoder architecture,
three types of readers behave quite differently.
This might caused by different pre-training ob-
jectives and knowledge.

3. For BART model, the E-Extractive reader out-
performs ED-Extractive reader and generative
reader regardless of less parameters, thus should
be used as an extractive reader.

4. The BART generative reader requires large and
diversified datasets to learn the QA task and thus
benefits significantly from multi-task learning.

5. For T5, the performance of generative reader
consistently outperforms two types of extractive
reader. The deficiency of T5-Extractive reader
might be caused by less parameters.

5.3 Comparison within Different PrLMs

The previous section compares the generative and
extractive readers using the same PrLMs and both
PrLMs are encoder-decoder models. On one hand,
such comparison reduces the impacts of PrLMs
architecture and pre-owned knowledge. On the
other hand, it raises two concerns. First, whether
extractive readers using an encoder-decoder PrLMs
are good for representatives of extractive readers?
After all, encoder-only PrLMs are more standard
choice for extractive readers in most previous work.
Second, whether the smaller size of the extractive
reader cause its deficiency compared to the gen-
erative one, particularly that the T5 E-Extractive
reader is half size of the T5 generative reader in
previous comparison.

To clear out the first concern, here, we present
the comparison cross different PrLMs including
standard encoder-only models for extractive read-
ers. To address the second concern, we carefully
select the model size so that each model is of rela-
tive comparable size.

The Selection of Each Model’s size We use the
encoder in T5 large model for the T5 E-Extractive
reader so that it is of similar size as RoBERTa and
ELECTRA extractive readers (∼330M)4. When us-
ing BART PrLMs for extractive reader, we only use
BART E-Extractive reader but not ED-Extractive
reader because the former performs better even
though it has less parameters (204M) than the later
one has larger size. T5 generative reader is also
smaller (223M), but this is better than using T5
large generative reader to compare with others,
which is way too larger than other readers (737M).
For BART generative reader, it is larger than other
readers (406M). One potential issue for the above-
mentioned setting is that even though we choose
the best comparison setting, still each model size
are different, and thus if a model perform inferior
than others, it might due to the smaller model size.
However, the following conclusion we draw does
not effect by this issue.

Are Encoder-decoder PrLMs Good for Extrac-
tive Readers? Based on Table 4, we find that
encoder-decoder PrLMs outperform encoder-only
PrLMs as extractive readers on average. Both
T5 and BART E-Extractive readers perform better
than RoBERTa and ELECTRA on IID and OOD
datasets under single- as well as multi-task learn-
ing regardless of less parameters of T5 and BART.
This observation is exciting since instead of using
standard encoder-only PrLMs for extractive reader,
encoder-decoder PrLMs are actually better choice.

Which reader generalize better on OOD? The
extractive reader generalize better on OOD datasets.
In both single- and multi-task learning, T5 E-
Extractive reader shows the best performance, es-
pecially beating the BART generative reader even
though the latter one has more parameters. BART
E-Extractive reader also generalize well on OOD,
and it also beats the BART generative reader even
though the former has less parameters than the later.

Which PrLM is the best? Based on Table 4, we
see that T5 is the best among four PrLMs in both
single- and multi-tasks learning scenario on IID as
well as OOD datasets. We observe two advantages
of T5 over other PrLMs. First, T5 is much better
than ELECTRA and RoBERTa on NewsQA data.
In both single- and multi- task learning, RoBERTa

4Note that the T5 PrLM is already trained on SQuAD,
while others do not. However, based on the results on SQuAD,
T5 does not have advantage over other models on this dataset.
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Model
In-domain Datasets Out-of-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 ED-Gen 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART ED-Gen 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

T5 E-Ext 92.47 72.63 76.09 83.24 80.67 80.00 80.85 53.14 52.06 71.26 61.92 85.78 62.80 64.49
BART E-Ext 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
ELECTRA 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning

T5 ED-Gen 91.41+0.66 71.29−0.36 80.01+0.40 86.46+0.25 79.70−0.19 78.09+0.05 81.16+0.14 51.20+3.12 49.66+0.77 68.72+1.36 62.90+2.60 85.84+0.90 63.76+2.41 63.68+1.86

BART ED-Gen 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

T5 E-Ext 92.84+0.37 73.51+0.88 77.37+1.28 82.89−0.35 81.92+1.25 80.74+0.74 81.55+0.70 59.10+5.96 54.01+1.95 71.13−0.13 64.90+2.98 86.53+0.75 65.01+2.21 66.78+2.29

BART E-Ext 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

ELECTRA 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa 93.41+0.77 59.56−0.39 72.23−0.74 80.98−0.64 82.37+1.16 79.55+0.60 78.02+0.13 64.47+8.59 51.81+4.09 69.15+4.68 53.68+1.37 86.31−0.38 56.06+0.31 63.58+3.11

Table 4: Comparison of readers based on the different PrLMs by F1 Score. Inference length of T5 is full
length of context, 512 for ELECTRA, and 1024 for BART and RoBERTa. TQA: TriviaQA; SQA:SearchQA;
HQA:HotpotQA; NQ: NaturalQuestions; TbQA:TextbookQA; RE:RelationExtraction. Bold numbers denote for
the best result and underline numbers for the second best.

and ELECTRA achieve around 60% F1 score on
NewsQA, while both T5 extractive and generative
reader achieved higher than 70% F1 score, yielding
more than 10% improvements. Second, T5 is better
at long context dataset. In IID, TQA and SQA, T5
ED-Generative reader outperforms other readers at
least 3.30% and 3.67% in single-task, 7.05% and
4.43% in multi-task learning. On OOD datasets,
TbQA and DuoRC, T5 E-Extractive reader is better
than others at least by 9.61% and 1.45% in single-
task, 8.61% and 3.06% in multi-task. We would
like to mention that this advantage of T5 is condi-
tioned on using full inference length, when using
short input length such as 512, this advantage does
not exhibit as we shown in §5.1.

Which PrLM benefits more from Multi-task
Learning? While multi-task learning is in gen-
eral beneficial for all PrLMs, we find BART ben-
efits the most from multi-task learning, especially
for the generative reader. For example, on IID
datasets. BART generative reader improves more
than 8% on average while all other readers im-
proves less than 1%. Similarly for OOD datasets,
the improvement of multi-task learning on BART
generative reader are more significant than other
readers. To summarize,
1. Encoder-decoder PrLMs can be in fact used as

extractive readers, they are even better than the
conventional choice (encoder-only PrLMs) of
extractive readers on average.

2. Extractive readers perform better than the gen-
erative readers on OOD datasets, especially for
the ones based on the encoder-decoder PrLMs.

3. T5 is the best among four PrLMs since it per-
forms better on the news domain and the long

context. And the advantage of T5 is conditioned
on using full inference length.

4. While in general multi-task learning turns out to
be useful for all PrLMs, BART PrLM benefits
the most.

5.4 In-Depth Diagnosis
We investigate the behavior of extractive and gener-
ative models in long and short context and predict-
ing answers which include rare characters. Multi-
task models in §5.3 are chosen for comparison.

5.4.1 Long and Short Context
As we discussed in previous section that genera-
tive readers have advantage over extractive coun-
terparts. To further support this trend, we divide
the testing sets into five subsets, where we count
the total words in question and context, and choose
five thresholds, 2/4/6/8/10 hundreds. It is worth
to mention that since all extractive readers use the
window-stride strategy (i.e. if the input length is
longer than the maximum length, then the input is
segmented into multiple inputs), so that the entire
context is observable for extractive readers.

From Figure 4, we have two observations. First,
on IID datasets, for questions and contexts with less
than 600 words, the extractive ones always perform
better than the generative ones (the dash lines are
higher than the solid ones), but when the length are
more than 600 words, the generative ones consis-
tently outperform the extractive ones. This suggests
that the extractive readers performs better in the
short context while the generative readers perform
better in long context. Second, on OOD datasets,
T5 generative reader still presents advantage in the
long context (more than 600 words), while BART
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Figure 4: Comparison among generative and extractive readers on different length of the question and context.
Left part for IID and right part for OOD datasets. Dash line for extractive and solid line for generative readers.

generative reader performs worse than the extrac-
tive one in both short and long context. But the
gap between the BART generative and extractive
readers is less on the long context compared to the
short context. It might suggest that the extractive
reader has better generalization capacity than the
generative one thus the advantage of generative
reader in long context is weakened.

5.4.2 Rare Characters in Answer
We find that some answers of testing sets include
rare characters such as ń and ł (119 are found), thus
we divide the testing sets into two subsets, one is
the normal answer set where the answer does not
have rare characters5, the other one is with rare
characters. The percentage of rare cases for IID
and OOD datasets is 1.4% and 2%, respectively.

From Table 5, we have two observations. First,
in normal case, the performance of extractive and
generative readers are relatively comparable on
both IID and OOD datasets, but in rare case, the ex-
tractive readers are better than the generative ones
This suggests that the extractive reader has better
generalization than the generative ones. Second,
we see that the rare tokens has worse impact on
T5 than BART generative readers in both in- and
out-of-domain datasets. Further investigation finds
that 94 out of 119 rare characters can not be rep-
resented by T5 tokenizer (i.e. T5 tokenizer uses
‘<unk>’ special tokens to represent these charac-
ters), and tends to ignore these special characters
in the generation time as the two examples shown
in Table 6. Differently, BART tokenizer can rep-
resent all rare characters. Improving generative
readers performance in predicting rare answers is

5Rare characters are any characters which are not belongs
to the printable characters in the string library of Python. The
printable characters include lower and upper case alphabets,
digits, punctuation, and white-space.

Answer type Domain Gen Ext

T5 BART T5 BART Ro EL

Rare
IID 68.97 73.64 77.79 78.54 78.64 78.18

OOD 59.25 79.84 85.22 84.95 80.73 86.94

Normal
IID 82.71 80.02 79.98 79.95 80.35 78.18

OOD 68.28 64.19 69.9 66.91 67.75 68.12

Table 5: Compare extractive and generative readers in
terms of rare and normal answers. Ro for RoBERTa
and EL for ELECTRA.

Question Answer Prediction
Who was one of the
most famous people
born in Warsaw?

Maria
Skłodowskacurie

Maria
Skodowska-
Curie

What museum pre-
serves the memory of
the crime?

Katyń Museum Katy Museum

Table 6: Examples of questions with answers contain-
ing rare characters and the prediction of T5-Gen.

an important future work. To summarize,
1. Extractive readers performs better than the gen-

erative reader on short context, but generative
one performs better on long context.

2. Generative readers performs worse in predicting
answers with rare characters, and T5 performs
worse than BART.

6 Conclusion and Future Work

We systematically compare the extractive and gen-
erative readers for QA tasks. Two sets of experi-
ments are designed to control the effects of differ-
ent PrLMs and the size of models. By conducting
experiments on 12 QA datasets, our findings pro-
vide guidelines on how to choose extractive or gen-
erative readers given their strength and weakness.

While current work investigates the pros and
cons of extractive and generative models systemat-
ically, there are some hyperparameters that might
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affect the model performance. For example, it is
known that different prompts in the input effect gen-
erative model performance (Mishra et al., 2021b,a).
Also, it is worth studying the OOD performance
of models deeply. Gokhale et al. (2022) compares
multiple ways to improve the OOD performance
of an extractive model on QA task, and how these
methods affect generative models have not been
well-studied yet. Meanwhile, most of the work in-
cluding this work evaluate OOD performance by
averaging the performance across multiple dataset,
but as mentioned in (Mishra et al., 2020), the eval-
uation should be more carefully designed. Also,
Diagnosing the performance on each OOD dataset
can provide more insights. For example, why mod-
els perform better on BioASQ dataset than most
other datasets (see Table 4), while previous work
have shown that it is hard to transfer general model
to biomedical domain (Luo et al., 2022). Inves-
tigating the reason behind the observations and
improving the generative and extractive models are
interesting research questions for future.
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A More Details of MRQA Datasets

MRQA provides six datasets for training and six
for out-of-domain evaluations. In Table 7, we
present the source of each datasets, and we can see
that the domains are diversified. Figure 5 and 6
show the histogram of the context length of IID and
OOD dataset. The distribution shows that some
datasets are mainly short, some are mainly long,
and others are the combination of short and long.
We use short annotation for some datasets, TQA:
TriviaQA; SQA:SearchQA; HQA:HotpotQA;
NQ: NaturalQuestions; TbQA:TextbookQA;
RE:RelationExtraction.

Dataset Source
SQuAD Wikipedia
NewsQA News article
TQA Trivia and quiz-league websites
SQA Jeopardy! TV show
HQA Wikipedia
NQ Wikipedia
DROP Wikipedia
RACE English reading comprehension exams for mid-

dle and high school
BioASQ Science (PubMed) articles
TbQA Lessons from middle school Life Science,

Earth Science, and Physical Science textbooks
RE Wikiread
DuoRC wikipedia

Table 7: The source of each dataset

B Training Setup

We use Huggingface (Wolf et al., 2020) implemen-
tation and Pytorch (Paszke et al., 2019) to train each
model. All model are trained on 4 GTX1080 GPUs
in 4 epochs with a learning rate of 1e-4, batch size
of 128, random seed 1234. While we fix these hy-
perparameters for all models, we get similar results
as the original paper (i.e. the difference in terms
of F1 are mostly within 2 percent.) In details, on
SQuAD dataset, RoBERTa in (Liu et al., 2019)
and in ours achieves 94.6 and 92.64 F1 scores,
respectively; BART in (Lewis et al., 2020a) and
in ours achieves 94.6 and 92.51 F1 scores, respec-
tively; ELECTRA in (Clark et al., 2020) and in ours
achieves 94.2 and 93.39 F1 scores, respectively; T5
in (Raffel et al., 2020) and in ours achieves 80.88
and 82.56 EM scores, respectively.

C Two Input Format

When fine-tuning generative reader on question an-
swering task, some special words are added before

the real input to denote the type of task. In an ex-
tractive reader, usually, there are no special words
added. Here, we evaluate these two formats for T5
and BART generative reader. Particularly, given
a question Q and a context C, format 1 is to add
the “question:” and “context:” in front of the real
question and context such that the input is {ques-
tion: Q [SEP] context: C}; and format 2 is without
these special words such that the input is {Q [SEP]
C}. To keep the training process be efficient, we
evaluate on two datasets SearchQA and HotpotQA,
instead of all datasets. Table 8 shows that format 1
yields slightly better performance for T5 and much
better performance for BART on SQA datasets, and
thus we use this format for all generative reader.

Model Format
SQA HQA

EM F1 EM F1

T5
1 81.07 86.21 64.04 79.89
2 80.65 85.76 63.23 79.42

BART
1 72.86 78.89 55.77 73.22
2 49.28 58.00 55.72 73.20

Table 8: Comparison between different input format
on two datasets. Format1 means input with “question:”
and “context:” as format1, and format2 means without.

D Answer Length of Generative Reader

For the generative reader, we tried different maxi-
mum lengths of the generated answer: 16, 32, and
64. Table 9 shows that increasing the length of the
target does not make improvement, this might be
because the answer in the testing data is usually
short and thus length of 16 is sufficient.

E Inference Length

We present the results of using 512 and 1024 length
and full length in Table 10, 11, 12 separately. Note
that due the tokenization approach adapted by each
model, for Electra using 1024 or full length is same
as using 512, for RoBERTa and BART, using full
length is the same as length 1024. Furthermore, the
detailed performance of each single task model is
given in Table 14, using the best inference of each
model, i.e. full length for T5, 1024 for RoBERTa
and BART, and 512 for ELECTRA.
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Figure 5: Context Length Histogram of In-domain dataset

F Detailed Comparison Results for Using
Same PrLMs

Table 13 presents the F1 score of each readers when
using the same PrLMs as we discussed in §5.2.
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Figure 6: Context Length Histogram of out-domain dataset

Length
IID Datasets OOD Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

16 91.41 71.29 80.01 86.46 79.7 78.09 81.16 51.2 49.66 68.72 62.9 85.84 63.76 63.68
32 91.41 71.29 80.01 86.46 79.7 78.09 81.16 51.2 49.66 68.72 62.9 85.84 63.76 63.68
64 91.41 71.29 80.01 86.46 79.7 78.09 81.16 51.2 49.66 68.72 62.9 85.84 63.76 63.68

16 88.63 68.91 74.91 82.52 80.53 75.78 78.55 55.2 50.04 63.78 54.81 80.94 58.47 60.54
32 88.72 69.05 74.91 82.52 80.56 75.93 78.61 55.21 50.05 63.74 54.82 80.92 58.49 60.54
64 88.72 69.05 74.91 82.52 80.56 75.93 78.61 55.21 50.05 63.74 54.82 80.92 58.49 60.54

Table 9: Performance of using different Answer length for generative reader. First block is the result for T5 model
and the second block for BART model.
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Model
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.12 59.38 67.39 77.14 76.95 75.56 74.42 41.17 45.46 64.92 46.69 84.48 52.61 55.89
T5 E-Ext (L) 92.39 59.62 70.22 78.52 80.06 77.93 76.46 52.73 51.38 69.99 49.76 85.78 54.82 60.74

T5 ED-Ext (B) 90.57 58.00 66.87 77.66 78.68 76.69 74.75 45.49 45.56 66.99 48.66 84.91 51.03 57.11
T5 ED-Gen (B) 90.63 66.74 73.45 82.75 78.81 75.10 77.91 48.07 47.54 67.33 46.19 84.94 43.49 56.26
BART E-Ext (L) 92.15 62.31 72.84 79.99 80.52 78.86 77.78 50.91 48.83 68.18 47.19 86.04 56.89 59.67

BART ED-Ext (L) 92.50 58.81 72.11 80.33 80.30 78.57 77.10 54.74 47.13 66.05 47.00 86.15 54.66 59.29
BART ED-Gen (L) 78.72 63.18 69.22 79.39 72.72 56.09 69.89 44.04 43.64 53.79 38.44 72.17 45.84 49.65

ELECTRA (L) 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.67 59.32 72.52 81.34 80.88 78.82 77.59 55.02 48.18 64.66 52.42 86.65 54.98 60.32

Multi-Task Learning

T5 E-Ext (B) 90.76+0.64 61.69+2.31 68.95+1.56 77.58+0.44 78.63+1.68 76.84+1.28 75.74+1.32 47.25+6.08 48.93+3.47 66.70+1.78 52.23+5.54 85.09+0.61 53.42+0.81 58.94+3.05

T5 E-Ext (L) 92.74+0.35 60.50+0.88 70.50+0.28 79.14+0.62 81.28+1.22 78.44+0.51 77.10+0.64 58.68+5.95 53.07+1.69 69.66−0.33 55.04+5.28 86.53+0.75 55.28+0.46 63.04+2.30

T5 ED-Ext (B) 91.03+0.46 60.73+2.73 68.80+1.93 78.10+0.44 79.66+0.98 77.19+0.50 75.92+1.17 48.67+3.18 49.06+3.50 67.46+0.47 50.66+2.00 85.49+0.58 54.05+3.02 59.23+2.12

T5 ED-Gen (B) 91.29+0.66 66.37−0.37 73.99+0.54 82.750.00 78.58−0.23 75.41+0.31 78.06+0.15 51.13+3.06 48.99+1.45 68.65+1.32 47.09+0.90 85.84+0.90 45.23+1.74 57.82+1.56

BART E-Ext (L) 92.42+0.27 61.83−0.48 70.98−1.86 80.12+0.13 82.02+1.50 79.13+0.27 77.75−0.03 58.32+7.41 50.06+1.23 69.62+1.44 55.02+7.83 86.79+0.75 59.83+2.94 63.27+3.60

BART ED-Ext (L) 93.06+0.56 58.72−0.09 70.80−1.31 80.11−0.22 81.78+1.48 79.11+0.54 77.26+0.16 60.19+5.45 48.97+1.84 67.47+1.42 53.24+6.24 86.75+0.60 56.22+1.56 62.14+2.85

BART ED-Gen (L) 88.58+9.86 66.18+3.00 75.21+5.99 83.38+3.99 79.88+7.16 75.41+19.32 78.11+8.22 55.07+11.03 49.91+6.27 63.69+9.90 46.75+8.31 80.94+8.77 48.11+2.27 57.41+7.76

ELECTRA (L) 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa (L) 93.36+0.69 60.15+0.83 71.40−1.12 80.56−0.78 82.21+1.33 79.50+0.68 77.86+0.27 64.79+9.77 51.49+3.31 68.69+4.03 53.68+1.26 86.31−0.34 57.22+2.24 63.70+3.38

Table 10: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for all readers is 512.

Model
In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.20 69.93 66.26 74.56 77.38 76.44 75.80 41.36 45.63 66.64 54.34 84.48 55.93 58.06
T5 E-Ext (L) 92.47 72.22 70.43 77.10 80.69 79.08 78.67 53.14 52.06 71.26 61.07 85.78 58.72 63.67

T5 ED-Ext (B) 90.71 70.43 68.48 76.01 78.94 77.80 77.06 45.86 46.18 67.93 55.07 84.91 55.19 59.19
T5 ED-Gen (B) 90.75 71.64 79.02 86.09 79.87 76.72 80.68 48.08 48.89 67.36 60.42 84.94 60.83 61.75
BART E-Ext (L) 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32

BART ED-Ext (L) 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21
BART ED-Gen (L) 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

ELECTRA (L) 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning

T5 E-Ext (B) 90.81+0.61 70.73+0.80 66.73+0.47 74.96+0.40 79.02+1.64 77.64+1.20 76.65+0.85 47.99+6.63 49.22+3.59 67.59+0.95 60.18+5.84 85.09+0.61 59.24+3.31 61.55+3.49

T5 E-Ext (L) 92.84+0.37 73.15+0.93 70.86+0.43 77.30+0.20 81.88+1.19 79.77+0.69 79.30+0.63 59.10+5.96 54.01+1.95 71.13−0.13 64.63+3.56 86.53+0.75 61.21+2.49 66.10+2.43

T5 ED-Ext (B) 91.12+0.41 71.78+1.35 66.93−1.55 76.13+0.12 80.23+1.29 78.11+0.31 77.38+0.32 49.69+3.83 49.64+3.46 68.45+0.52 60.50+5.43 85.49+0.58 57.41+2.22 61.86+2.67

T5 ED-Gen (B) 91.41+0.66 71.27−0.37 79.65+0.63 86.21+0.12 79.70−0.17 77.10+0.38 80.89+0.21 51.20+3.12 49.66+0.77 68.72+1.36 63.02+2.60 85.84+0.90 62.94+2.11 63.56+1.81

BART E-Ext (L) 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

BART ED-Ext (L) 93.07+0.56 58.67−0.01 71.47−1.08 80.66−0.28 82.14+1.43 79.32+0.69 77.55+0.21 60.40+5.67 51.32+3.68 67.48+1.33 53.34+7.16 86.75+0.60 56.79+2.40 62.68+3.47

BART ED-Gen (L) - 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

ELECTRA (L) 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa (L) 93.41+0.77 59.56−0.39 72.23−0.74 80.98−0.64 82.37+1.16 79.55+0.60 78.02+0.13 64.47+8.59 51.81+4.09 69.15+4.68 53.68+1.37 86.31−0.38 56.06+0.31 63.58+3.11

Table 11: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for all readers is 1024, except for ELECTRA is 512.

Model
In-domain Datasets Out-of-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.20 70.14 72.67 79.89 77.37 77.31 77.93 41.36 45.63 66.64 55.17 84.48 58.62 58.65
T5 E-Ext (L) 92.47 72.63 76.09 83.24 80.67 80.00 80.85 53.14 52.06 71.26 61.92 85.78 62.80 64.49

T5 ED-Ext (B) 90.71 70.80 74.16 81.32 78.98 78.68 79.11 45.86 46.18 67.93 55.74 84.91 59.33 59.99
T5 ED-Gen (B) 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART E-Ext (L) 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32

BART ED-Ext (L) 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21
BART ED-Gen (L) 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

ELECTRA (L) 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning

T5 E-Ext (B) 90.81+0.61 70.92+0.78 74.22+1.55 80.42+0.53 79.03+1.66 78.57+1.26 78.99+1.06 47.99+6.63 49.22+3.59 67.59+0.95 60.52+5.35 85.09+0.61 61.44+2.82 61.98+3.33

T5 E-Ext (L) 92.84+0.37 73.51+0.88 77.37+1.28 82.89−0.35 81.92+1.25 80.74+0.74 81.55+0.70 59.10+5.96 54.01+1.95 71.13−0.13 64.90+2.98 86.53+0.75 65.01+2.21 66.78+2.29

T5 ED-Ext (B) 91.12+0.41 71.95+1.15 75.50+1.34 81.82+0.50 80.25+1.27 78.93+0.25 79.93+0.82 49.69+3.83 49.64+3.46 68.45+0.52 61.33+5.59 85.49+0.58 61.22+1.89 62.64+2.65

T5 ED-Gen (L) 91.41+0.66 71.29−0.36 80.01+0.40 86.46+0.25 79.70−0.19 78.09+0.05 81.16+0.14 51.20+3.12 49.66+0.77 68.72+1.36 62.90+2.60 85.84+0.90 63.76+2.41 63.68+1.86

BART E-Ext (L) 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

BART ED-Ext (L) 93.07+0.56 58.67−0.01 71.47−1.08 80.66−0.28 82.14+1.43 79.32+0.69 77.55+0.21 60.40+5.67 51.32+3.68 67.48+1.33 53.34+7.16 86.75+0.60 56.79+2.40 62.68+3.47

BART ED-Gen (L) 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

ELECTRA (L) 93.27−0.12 60.59+0.36 72.96−3.35 82.03−0.51 83.10+2.11 79.16+0.38 78.52−0.19 62.56+7.13 50.29+0.49 71.50+4.54 54.60+6.80 87.14+0.91 56.88+1.98 63.83+3.64

RoBERTa (L) 93.41+0.77 59.56−0.39 72.23−0.74 80.98−0.64 82.37+1.16 79.55+0.60 78.02+0.13 64.47+8.59 51.81+4.09 69.15+4.68 53.68+1.37 86.31−0.38 56.06+0.31 63.58+3.11

Table 12: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for T5 readers is full length, for BART is 1024, and for ELECTRA is 512.
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Model
In-domain Datasets Out-of-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ Avg. DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning

T5 E-Ext (B) 90.20 70.14 72.67 79.89 77.37 77.31 77.93 41.36 45.63 66.64 55.17 84.48 58.62 58.65
T5 ED-Ext (B) 90.71 70.80 74.16 81.32 78.98 78.68 79.11 45.86 46.18 67.93 55.74 84.91 59.33 59.99
T5 ED-Gen (B) 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART E-Ext (L) 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
BART ED-Ext 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21

BART ED-Gen (L) 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51

Multi-Task Learning

T5 E-Ext (B) 90.81+0.61 70.92+0.78 74.22+1.55 80.42+0.53 79.03+1.66 78.57+1.26 78.99+1.06 47.99+6.63 49.22+3.59 67.59+0.95 60.52+5.35 85.09+0.61 61.44+2.82 61.98+3.33

T5 ED-Ext (B) 91.12+0.41 71.95+1.15 75.50+1.34 81.82+0.50 80.25+1.27 78.93+0.25 79.93+0.82 49.69+3.83 49.64+3.46 68.45+0.52 61.33+5.59 85.49+0.58 61.22+1.89 62.64+2.65

T5 ED-Gen (L) 91.41+0.66 71.29−0.36 80.01+0.40 86.46+0.25 79.70−0.19 78.09+0.05 81.16+0.14 51.20+3.12 49.66+0.77 68.72+1.36 62.90+2.60 85.84+0.90 63.76+2.41 63.68+1.86

BART E-Ext (L) 92.46+0.27 72.11−0.09 72.24−0.88 76.53−0.66 82.04+1.43 79.40+0.11 79.13+0.03 58.22+6.65 50.40+1.58 70.72+1.89 56.29+5.00 86.79+0.75 61.95+0.60 64.06+2.74

BART ED-Ext (L) 93.07+0.56 58.67−0.01 71.47−1.08 80.66−0.28 82.14+1.43 79.32+0.69 77.55+0.21 60.40+5.67 51.32+3.68 67.48+1.33 53.34+7.16 86.75+0.60 56.79+2.40 62.68+3.47

BART ED-Gen (L) 88.63+9.88 68.91+2.71 74.91+7.10 82.52+3.63 80.53+7.31 75.78+19.20 78.55+8.31 55.20+10.98 50.04+6.34 63.78+8.19 54.81+9.70 80.94+4.11 58.47+2.84 60.54+7.03

Table 13: Comparison of readers based on the same PrLMs by F1 Score. For three T5 readers, we use the T5-base
model, for three BART readers, we use the BART-large model. Avg. means the Macro Average of in/out-domain
datasets. Inference length for T5 is full length of context, for ELECTRA is 512 and for BART and RoBERTa is
1024.
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Model
Train

Test In-domain Datasets Out-domain Datasets

SQuAD NewsQA TQA SQA HQA NQ DROP RACE BioASQ TbQA RE DuoRC

Single Task Learning

T5 E-Ext (B)

SQuAD 90.20 63.37 63.75 30.97 67.53 62.28 36.03 45.63 66.38 54.77 84.48 57.08
NewsQA 84.54 70.14 63.99 42.32 61.55 63.50 23.48 44.07 62.13 50.25 77.59 58.62
TQA 69.68 46.83 72.67 60.40 54.33 54.49 24.28 37.15 60.07 42.61 75.83 47.72
SQA 60.75 40.49 68.37 79.89 44.21 49.84 23.68 30.02 55.93 39.28 75.26 43.36
HQA 83.30 59.19 61.67 48.18 77.37 62.35 39.04 40.51 63.68 40.15 84.07 55.31
NQ 83.87 60.81 65.64 52.24 64.60 77.31 41.36 43.99 66.64 55.17 82.58 52.88

T5 E-Ext (L)

SQuAD 92.47 65.33 67.97 32.73 71.00 64.97 52.01 50.13 68.66 53.03 85.78 61.41
NewsQA 87.38 72.63 69.34 43.83 66.56 69.02 31.72 49.72 65.97 55.51 78.75 62.80
TQA 74.97 50.27 76.09 63.26 57.26 58.68 40.09 38.55 65.95 52.34 81.01 55.21
SQA 72.47 48.12 73.57 83.24 53.50 57.17 41.57 35.53 66.07 52.64 81.63 52.05
HQA 86.88 62.42 66.16 46.47 80.67 67.13 47.43 45.10 68.27 51.37 84.89 56.80
NQ 86.73 64.62 70.32 54.09 68.54 80.00 53.14 52.06 71.26 61.92 84.35 60.43

T5 ED-Ext (B)

SQuAD 92.47 65.33 67.97 32.73 71.00 64.97 52.01 50.13 68.66 53.03 85.78 61.41
NewsQA 87.38 72.63 69.34 43.83 66.56 69.02 31.72 49.72 65.97 55.51 78.75 62.80
TQA 74.97 50.27 76.09 63.26 57.26 58.68 40.09 38.55 65.95 52.34 81.01 55.21
SQA 72.47 48.12 73.57 83.24 53.50 57.17 41.57 35.53 66.07 52.64 81.63 52.05
HQA 86.88 62.42 66.16 46.47 80.67 67.13 47.43 45.10 68.27 51.37 84.89 56.80
NQ 86.73 64.62 70.32 54.09 68.54 80.00 53.14 52.06 71.26 61.92 84.35 60.43

T5 ED-Gen (B)

SQuAD 90.75 60.51 69.56 24.11 68.57 57.19 43.31 48.89 65.96 46.75 84.94 60.31
NewsQA 85.75 71.65 69.70 43.16 63.61 62.96 25.37 45.97 62.80 53.82 77.37 61.35
TQA 74.33 49.26 79.61 57.14 58.75 55.18 33.84 42.38 56.94 51.16 80.52 52.69
SQA 70.62 44.66 78.03 86.21 57.19 52.92 35.32 35.33 59.76 53.66 79.54 49.23
HQA 86.24 60.25 70.57 51.23 79.89 62.33 44.94 46.38 66.93 42.65 84.56 59.60
NQ 85.46 61.80 72.08 57.55 67.71 78.04 48.08 45.85 67.36 60.30 84.06 58.42

BART E-Ext (L)

SQuAD 92.19 62.30 60.86 35.52 69.60 62.94 51.31 48.82 68.83 49.39 86.04 58.31
NewsQA 85.04 72.20 62.86 41.17 61.81 65.84 31.99 48.82 61.98 49.29 77.30 61.35
TQA 68.36 43.38 73.12 55.53 59.27 55.11 37.79 36.16 53.90 37.98 80.07 49.51
SQA 50.74 31.48 66.74 77.19 40.65 43.53 22.15 23.90 53.76 36.38 66.48 37.12
HQA 82.21 52.46 56.53 34.95 80.61 62.58 44.30 39.60 59.40 33.74 85.46 52.60
NQ 83.12 59.44 62.12 49.19 62.73 79.29 51.57 43.23 64.77 51.29 83.13 54.63

BART ED-Ext (L)

SQuAD 92.51 53.70 62.64 41.85 67.69 60.82 54.73 47.64 66.15 46.18 86.15 54.39
NewsQA 86.15 58.68 62.29 46.98 64.09 66.00 31.91 45.52 60.70 44.82 78.72 54.09
TQA 69.82 38.40 72.55 61.02 61.05 54.10 34.63 36.36 54.34 39.35 81.28 46.43
SQA 57.26 32.09 69.35 80.94 41.82 45.62 28.54 25.18 51.50 41.09 70.98 38.88
HQA 83.29 49.66 63.18 40.46 80.71 63.52 47.91 38.56 59.78 34.60 84.32 52.04
NQ 83.86 50.35 64.06 56.34 62.53 78.63 52.41 44.25 65.59 45.93 84.43 49.44

BART ED-Gen (L)

SQuAD 78.75 54.02 48.69 22.33 57.19 57.90 44.09 41.33 47.04 35.42 70.68 45.79
NewsQA 78.65 66.20 58.02 36.31 57.91 61.10 28.36 43.70 53.71 45.11 72.17 55.63
TQA 58.98 39.22 67.81 53.90 54.81 46.73 32.85 33.74 46.62 39.97 64.89 45.47
SQA 40.51 28.33 65.42 78.89 37.05 36.12 23.45 22.42 46.71 39.43 52.23 38.24
HQA 74.75 50.41 56.56 40.90 73.22 57.83 44.22 37.31 55.59 29.96 76.83 50.62
NQ 61.09 39.05 38.21 33.48 43.59 56.58 40.27 32.01 51.24 36.63 59.46 33.69

RoBERTa (L)

SQuAD 92.64 54.76 65.90 45.76 71.35 59.43 52.51 47.13 64.47 52.31 86.69 55.75
NewsQA 86.50 59.95 63.01 48.02 66.99 67.29 33.52 47.26 60.05 45.10 78.08 54.27
TQA 73.63 41.05 72.97 51.16 62.44 55.76 44.40 39.27 54.92 42.72 82.32 49.89
SQA 53.59 29.57 70.35 81.62 42.03 47.06 23.04 23.70 54.18 39.69 71.13 36.06
HQA 85.10 50.55 65.06 44.31 81.21 63.88 51.74 36.86 62.44 37.49 85.07 54.02
NQ 85.25 49.49 64.48 57.23 67.47 78.95 55.88 47.72 63.77 44.67 84.10 50.00

ELECTRA (L)

SQuAD 93.39 55.42 65.92 46.56 68.69 68.92 55.11 49.80 66.96 46.57 86.23 54.90
NewsQA 86.33 60.23 65.13 49.39 63.97 68.03 30.74 46.45 64.86 46.79 78.21 53.78
TQA 69.75 40.20 76.31 65.27 58.87 55.95 42.21 37.46 59.94 41.54 80.56 49.24
SQA 52.17 28.21 71.39 82.54 44.81 43.28 36.68 22.47 58.35 42.76 69.54 39.16
HQA 84.43 51.23 65.83 50.25 80.99 64.89 48.91 38.24 65.77 36.53 83.86 50.50
NQ 85.45 50.81 66.65 62.88 64.00 78.78 55.43 47.29 66.39 47.80 83.43 51.15

Multi-Task Learning

T5 E-Ext (B) Multi 90.81 70.92 74.22 80.42 79.03 78.57 47.99 49.22 67.59 60.52 85.09 61.44
T5 E-Ext (L) Multi 92.84 73.51 77.37 82.89 81.92 80.74 59.10 54.01 71.13 64.90 86.53 65.01

T5 ED-Ext (B) Multi 91.12 71.95 75.50 81.82 80.25 78.93 49.69 49.64 68.45 61.33 85.49 61.22
T5 ED-Gen (B) Multi 91.41 71.29 80.01 86.46 79.70 78.09 51.20 49.66 68.72 62.90 85.84 63.76
BART E-Ext (L) Multi 92.46 72.11 72.24 76.53 82.04 79.40 58.22 50.40 70.72 56.29 86.79 61.95

BART ED-Ext (L) Multi 93.07 58.67 71.47 80.66 82.14 79.32 60.40 51.32 67.48 53.34 86.75 56.79
BART ED-Gen (L) Multi 88.63 68.91 74.91 82.52 80.53 75.78 55.20 50.04 63.78 54.81 80.94 58.47

RoBERTa (L) 93.41 59.56 72.23 80.98 82.37 79.55 64.47 51.81 69.15 53.68 86.31 56.06
ELECTRA (L) Multi 93.27 60.59 72.96 82.03 83.10 79.16 62.56 50.29 71.50 54.60 87.14 56.88

Table 14: Evaluation by F1 score. TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;
TbQA:TextbookQA; RE:RelationExtraction. For inference length, T5 use Full length, BART and RoBERTa use
1024 and ELECTRA use 512.
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Abstract

Machine translation models struggle when
translating out-of-domain text, which makes do-
main adaptation a topic of critical importance.
However, most domain adaptation methods fo-
cus on fine-tuning or training the entire or part
of the model on every new domain, which can
be costly. On the other hand, semi-parametric
models have been shown to successfully per-
form domain adaptation by retrieving exam-
ples from an in-domain datastore (Khandelwal
et al., 2021). A drawback of these retrieval-
augmented models, however, is that they tend
to be substantially slower. In this paper, we
explore several approaches to speed up nearest
neighbor machine translation. We adapt the
methods recently proposed by He et al. (2021)
for language modeling, and introduce a simple
but effective caching strategy that avoids per-
forming retrieval when similar contexts have
been seen before. Translation quality and run-
times for several domains show the effective-
ness of the proposed solutions.1

1 Introduction

Modern neural machine translation models are
mostly parametric (Bahdanau et al., 2015; Vaswani
et al., 2017), meaning that, for each input, the out-
put depends only on a fixed number of model pa-
rameters, obtained using some training data, hope-
fully in the same domain. However, when running
machine translation systems in the wild, it is often
the case that the model is given input sentences
or documents from domains that were not part of
the training data, which frequently leads to subpar
translations. One solution is training or fine-tuning
the entire model or just part of it for each domain,
but this can be expensive and may lead to catas-
trophic forgetting (Saunders, 2021).

Recently, an approach that has achieved promis-
ing results is augmenting parametric models with

1The code is available at https://github.com/
deep-spin/efficient_kNN_MT.

a retrieval component, leading to semi-parametric
models (Gu et al., 2018; Zhang et al., 2018; Bapna
and Firat, 2019; Khandelwal et al., 2021; Meng
et al., 2021; Zheng et al., 2021; Jiang et al., 2021).
These models construct a datastore based on a set
of source / target sentences or word-level contexts
(translation memories) and retrieve similar exam-
ples from this datastore, using this information in
the generation process. This allows having only
one model that can be used for every domain. How-
ever, the model’s runtime increases with the size
of the domain’s datastore and searching for related
examples on large datastores can be computation-
ally very expensive: for example, when retrieving
64 neighbors from the datastore, the model may
become two orders of magnitude slower (Khandel-
wal et al., 2021). Due to this, some recent works
have proposed methods that aim to make this pro-
cess more efficient. Meng et al. (2021) proposed
constructing a different datastore for each source
sentence, by first searching for the neighbors of
the source tokens; and He et al. (2021) proposed
several techniques – datastore pruning, adaptive re-
trieval, dimension reduction – for nearest neighbor
language modeling.

In this paper, we adapt several methods proposed
by He et al. (2021) to machine translation, and we
further propose a new approach that increases the
model’s efficiency: the use of a retrieval distri-
butions cache. By caching the kNN probability
distributions, together with the corresponding de-
coder representations, for the previous steps of the
generation of the current translation(s), the model
can quickly retrieve the retrieval distribution when
the current representation is similar to a cached
one, instead of having to search for neighbors in
the datastore at every single step.

We perform a thorough analysis of the model’s
efficiency on a controlled setting, which shows that
the combination of our proposed techniques results
in a model, the efficient kNN-MT, which is approx-
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imately twice as fast as the vanilla kNN-MT. This
comes without harming translation performance,
which is, on average, more than 8 BLEU points and
5 COMET points better than the base MT model.

In sum, this paper presents the following contri-
butions:

• We adapt the methods proposed by He et al.
(2021) for efficient nearest neighbor language
modeling to machine translation.

• We propose a caching strategy to store the
retrieval probability distributions, improving
the translation speed.

• We compare the efficiency and translation
quality of the different methods, which show
the benefits of the proposed and adapted tech-
niques.

2 Background

When performing machine translation, the model
is given a source sentence or document, x =
[x1, . . . , xL], on one language, and the goal is to
output a translation of the sentence in the desired
language, y = [y1, . . . , yN ]. This is usually done
using a parametric sequence-to-sequence model
(Bahdanau et al., 2015; Vaswani et al., 2017), in
which the encoder receives the source sentence as
input and outputs a set of hidden states. Then,
at each step t, the decoder attends to these hid-
den states and outputs a probability distribution
pNMT(yt|y<t,x) over the vocabulary. Finally,
these probability distributions are used to predict
the output tokens, typically with beam search.

2.1 Nearest Neighbor Machine Translation

Khandelwal et al. (2021) introduced a nearest
neighbor machine translation model, kNN-MT,
which is a semi-parametric model. This means
that besides having a parametric component that
outputs a probability distribution over the vocabu-
lary, pNMT(yt|y<t,x), the model also has a nearest
neighbor retrieval mechanism, which allows direct
access to a datastore of examples.

More specifically, we build a datastore D which
consists of a key-value memory, where each en-
try key is the decoder’s output representation,
f(x,y<t), and the value is the target token yt:

D={(f(x,y<t) , yt) ∀yt∈ y | (x,y)∈(X ,Y)},
(1)

where (X ,Y) corresponds to a set of parallel
source and target sequences. Then, at inference
time, the model searches the datastore to retrieve
the set of k nearest neighbors N . Using their dis-
tances d(·) to the current decoder’s output repre-
sentation, we can compute the retrieval distribution
pkNN(yt|y<t,x) as:

pkNN(yt|y<t,x) = (2)∑
(kj ,vj)∈N 1yt=vj exp (−d (kj ,f(x,y<t)) /T )∑

(kj ,vj)∈N exp (−d (kj ,f(x,y<t)) /T )
,

where T is the softmax temperature, kj denotes
the key of the jth neighbor and vj its value. Fi-
nally, pNMT(yt|y<t,x) and pkNN(yt|y<t,x) are
combined to obtain the final distribution, which
is used to generate the translation through beam
search, by performing interpolation:

p(yt|y<t,x) =(1− λ) pNMT(yt|y<t,x) (3)

+ λ pkNN(yt|y<t,x),

where λ is a hyper-parameter that controls the
weights given to the two distributions.

3 Efficient kNN-MT

In this section, we describe the approaches intro-
duced by He et al. (2021) to speed-up the infer-
ence time for nearest neighbor language modeling,
such as pruning the datastore (§3.1) and reducing
the representations dimension (§3.2), which we
adapt to machine translation. We further describe
a novel method that allows the model to have ac-
cess to examples without having to search them in
the datastore at every step, by maintaining a cache
of the past retrieval distributions, for the current
translation(s) (§3.3).

3.1 Datastore Pruning
The goal of datastore pruning is to reduce the size
of the datastore, so that the model is able to search
for the nearest neighbors faster, without severely
compromising the translation performance. To do
so, we follow He et al. (2021), and use greedy
merging. In greedy merging, we aim to merge
datastore entries that share the same value (target
token) while their keys are close to each other in
vector space. To do this, we first need to find the
k nearest neighbors of every entry of the datastore,
where k is a hyper-parameter. Then, if in the set
of neighbors, retrieved for a given entry, there is
an entry which has not been merged before and
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has the same value, we merge the two entries, by
simply removing the neighboring one.

3.2 Dimension Reduction

The decoder’s output representations, f(x,y<t)
are, usually, high-dimensional (1024, in our case).
This leads to a high computational cost when com-
puting vector distances, which are needed for re-
trieving neighbors from the datastore. To alleviate
this, we follow He et al. (2021), and use principal
component analysis (PCA), an efficient dimension
reduction method, to reduce the dimension of the
decoder’s output representation to a pre-defined
dimension, d, and generate a compressed datastore.

3.3 Cache

The model does not need to search the datastore
at every step of the translation generation in order
to do it correctly. Here, we aim to predict when it
needs to retrieve neighbors from the datastore, so
that, by only searching the datastore in the neces-
sary steps, we can increase the generation speed.

Adaptive retrieval. To do so, first we follow He
et al. (2021), and use a simple MLP to predict
the value of the interpolation coefficient λ at each
step. Then, we define a threshold, α, so that the
model only performs retrieval when λ > α. How-
ever, we observed that this leads to results (§A.3)
similar to randomly selecting when to search the
datastore. We posit that this occurs because it is
difficult to predict when the model should perform
retrieval, for domain adaptation (He et al., 2021),
and because in machine translation error propa-
gation occurs more prominently than in language
modeling.

Cache. Because it is common to have similar
contexts along the generation process, when us-
ing beam search, the model can be often retrieving
similar neighbors at different steps, which is not
efficient. To avoid repeating searches on the data-
store for similar context vectors, f(x,y<t), we
propose keeping a cache of the previous retrieval
distributions, of the current translation(s). More
specifically, at each step of the generation of y,
we add the decoder’s representation vector along
with the retrieval distribution pkNN(yt|y<t,x), cor-
responding to all beams, B, to the cache C:

C={(f(x,y<t), pkNN(yt|y<t,x))∀yt∈ y |y∈B}.
(4)

Then, at each step of the generation, we com-
pute the Euclidean distance between the current
decoder’s representation and the keys on the cache.
If all distances are bigger than a threshold τ , the
model searches the datastore to find the nearest
neighbors. Otherwise, the model retrieves, from
the cache, the retrieval distribution that corresponds
to the closest key.

4 Experiments

Dataset and metrics. We perform experiments
on the Medical, Law, IT, and Koran domain data
of the multi-domains dataset (Koehn and Knowles,
2017) re-splitted by Aharoni and Goldberg (2020).
To build the datastores we use the in-domain train-
ing sets which have from 17,982 to 467,309 sen-
tences. The validation and test sets have 2,000
sentences.

To evaluate the models we use BLEU (Papineni
et al., 2002; Post, 2018) and COMET (Rei et al.,
2020).

Settings. We use the WMT’19 German-English
news translation task winner (Ng et al., 2019) (with
269 M parameters), available on the Fairseq library
(Ott et al., 2019), as the base MT model.

As baselines, we consider the base MT model,
the vanilla kNN-MT model (Khandelwal et al.,
2021), and the Fast kNN-MT model (Meng et al.,
2021). For all models, which perform retrieval,
we select the hyper-parameters, for each method
and each domain, by performing grid search on
k ∈ {8, 16, 32, 64} and λ ∈ {0.5, 0.6, 0.7, 0.8}.
The selected values are stated in Table 9 of App. B.

For the vanilla kNN-MT model and the efficient
kNN-MT we follow Khandelwal et al. (2021) and
use the Euclidean distance to perform retrieval and
the proposed softmax temperature. For the Fast
kNN-MT, we use the cosine distance and the soft-
max temperature proposed by Meng et al. (2021).
For the efficient kNN-MT we selected parameters
that ensure a good speed/quality trade-off: k = 2
for datastore pruning, d = 256 for PCA, and τ = 6
as the cache threshold. Results for each methods
using different parameters are reported in App. A.

4.1 Results
The translation scores are reported on Table 1. We
can clearly see that both Fast kNN-MT and the
efficient kNN-MT (combining the different meth-
ods) do not hurt the translation performance sub-
stantially, still leading to, on average, 8 BLEU
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BLEU COMET
Medical Law IT Koran Average Medical Law IT Koran Average

Baselines
Base MT 40.01 45.64 37.91 16.35 34.98 .4702 .5770 .3942 -.0097 .3579
kNN-MT 54.47 61.23 45.96 21.02 45.67 .5760 .6781 .5163 .0480 .4546
Fast kNN-MT 52.90 55.71 44.73 21.29 43.66 .5293 .5944 .5445 -.0455 .4057

Efficient kNN-MT
cache 53.30 59.12 45.39 20.67 44.62 .5625 .6403 .5085 .0346 .4365
PCA + cache 53.58 58.57 46.29 20.67 44.78 .5457 .6379 .5311 -.0021 .4282
PCA + pruning 53.23 60.38 45.16 20.52 44.82 .5658 .6639 .4981 .0298 .4394
PCA + cache + pruning 51.90 57.82 44.44 20.11 43.57 .5513 .6260 .4909 -.0052 .4158

Table 1: BLEU and COMET scores on the multi-domains test set, for a batch size of 8.
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Figure 1: Plots of the generation speed (tokens/s) for the different models on the medical, law, IT, and Koran
domains, for different batch sizes (1,8,16). The generation speed (y-axis) is in log scale. When using the Fast
kNN-MT model, the maximum batch size that we are able to use is 2, due to out of memory errors.

points and 5 COMET points more than the base
MT model.

4.2 Generation speed

Computational infrastructure. All experiments
were performed on a server with 3 RTX 2080 Ti
(11 GB), 12 AMD Ryzen 2920X CPUs (24 cores),
and 128 Gb of RAM. For the generation speed
measurements, we ran each model on a single GPU
while no other process was running on the server, to
have a controlled environment. To search the data-
store, we used the FAISS library (Johnson et al.,
2019). When using the vanilla kNN-MT and ef-
ficient kNN-MT, the nearest neighbor search is
performed on the CPUs, since not all datastores fit
into memory, while when using the Fast kNN-MT
this is done on the GPU.

Analysis. As can be seen on the plots of Fig-
ure 1, for a batch size of 1 Fast kNN-MT leads
to a generation speed higher than our proposed
method and vanilla kNN-MT. However, because of
its high memory requirements, we are not able to
run Fast kNN-MT for batch sizes larger than 2, on
the computational infrastructure stated above. On
the contrary, when using the proposed methods (ef-
ficient kNN-MT) we are able to run the model with
higher batch sizes, achieving superior generation

speeds to Fast kNN-MT and vanilla kNN-MT, and
reducing the gap to the base MT model.
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Figure 2: Plot of the generation speed (tokens/s), aver-
aged across domains, for different combinations of the
proposed methods.

Ablation. We plot the generation speed for dif-
ferent combinations of the proposed methods (av-
eraged across domains), for several batch sizes, on
Figure 2. On this plot, we can clearly see that every
method contributes to the speed-up achieved by
the model that combines all approaches. Moreover,
we can observe that the method which leads to the
largest speed-up is the use of a cache of retrieval
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distributions, by saving, on average 57% of the
retrieval searches.

5 Conclusion

In this paper we propose the efficient kNN-MT, in
which we combine several methods to improve the
kNN-MT generation speed. First, we adapted to
machine translation methods that improve retrieval
efficiency in language modeling (He et al., 2021).
Then we proposed a new method which consists
on keeping in cache the previous retrieval distribu-
tions so that the model does not need to search for
neighbors in the datastore at every step. Through
experiments on domain adaptation, we show that
the combination of the proposed methods leads to a
considerable speed-up (up to 2x) without harming
the translation performance substantially.
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A Additional results

In this section we report the BLEU scores as well
as additional statistics for the different methods,
when varying their hyper-parameters.

A.1 Datastore pruning
We report on Table 2 the BLEU scores for datastore
pruning, when varying the number of neighbors
used for greedy merging, k. The resulting datastore
sizes are presented on Table 3.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

k = 1 53.60 60.23 45.03 20.81 44.92
k = 2 52.95 59.40 44.76 20.12 44.31
k = 5 51.63 57.55 44.07 19.29 43.14

Table 2: BLEU scores on the multi-domains test set
when performing datastore pruning with several values
of k, for a batch size of 8.

Medical Law IT Koran

kNN-MT 6,903,141 19,061,382 3,602,862 524,374

k = 1 4,780,514 13,130,326 2,641,709 400,385
k = 2 4,039,432 11,103,775 2,303,808 353,007
k = 5 3,084,106 8,486,551 1,852,191 290,192

Table 3: Sizes of the in-domain datastores when per-
forming datastore pruning with several values of k, for
a batch size of 8.

A.2 Dimension reduction
We report on Table 4 the BLEU scores for dimen-
sion reduction, when varying the output dimension
d.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

d = 512 55.06 62.04 46.98 21.24 46.33
d = 256 54.52 61.84 46.68 21.57 46.15
d = 128 53.94 61.17 45.46 21.35 45.48

Table 4: BLEU scores on the multi-domains test set
when performing PCA with different dimension, d, val-
ues, for a batch size of 8.

A.3 Adaptive retrieval
We report on Table 5 the BLEU scores for adap-
tive retrieval, when varying the threshold α. The
percentage of times the model performs retrieval is
stated on Table 6.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

α = 0.25 45.52 49.91 37.97 16.36 37.44
α = 0.5 52.84 59.36 38.58 18.08 42.22
α = 0.75 53.90 60.87 43.05 19.91 44.43

Table 5: BLEU scores on the multi-domains test set
when performing adaptive retrieval for different values
of the threshold α, for a batch size of 8.

Medical Law IT Koran

kNN-MT 100% 100% 100% 100%

α = 0.25 78% 73% 38% 4%
α = 0.5 96% 96% 60% 61%
α = 0.75 98% 99% 92% 91%

Table 6: Percentage of times the model searches for
neighbors on the datastore when performing adaptive
retrieval for different values of the threshold α, for a
batch size of 8.

A.4 Cache
We report on Table 7 the BLEU scores for a model
using a cache of the retrieval distributions, when
varying the threshold τ . The percentage of times
the model performs retrieval is stated on Table 8.

Medical Law IT Koran Average

kNN-MT 54.47 61.23 45.96 21.02 45.67

τ = 2 54.47 61.23 45.93 20.98 45.65
τ = 4 54.17 61.10 46.07 21.00 45.58
τ = 6 53.30 59.12 45.39 20.67 44.62
τ = 8 30.06 23.01 25.53 16.08 23.67

Table 7: BLEU scores on the multi-domains test set
when using a retrieval distributions’ cache for different
values of the threshold τ , for a batch size of 8.

Medical Law IT Koran

kNN-MT 100% 100% 100% 100%

τ = 2 59% 51% 67% 64%
τ = 4 50% 42% 57% 53%
τ = 6 43% 35% 49% 45%
τ = 8 26% 16% 29% 31%

Table 8: Percentage of times the model searches for
neighbors on the datastore when using a retrieval dis-
tributions’ cache for different values of the threshold τ ,
for a batch size of 8.

B Hyper-parameters

On Table 9 we report the values for the hyper-
parameters: number of neighbors to be retrieved
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Medical Law IT Koran
k λ T k λ T k λ T k λ T

kNN-MT 8 0.7 10 8 0.8 10 8 0.7 10 8 0.6 100
Fast kNN-MT 16 0.7 .015 32 0.6 .015 8 0.6 .02 16 0.6 .05

cache 8 0.7 10 8 0.8 10 8 0.7 10 8 0.6 100
PCA + cache 8 0.8 10 8 0.8 10 8 0.7 10 8 0.7 100
PCA + pruning 8 0.7 10 8 0.8 10 8 0.7 10 8 0.7 100
PCA + cache + pruning 8 0.7 10 8 0.8 10 8 0.7 10 8 0.7 100

Table 9: Values of the hyper-parameters: number of neighbors to be retrieved k, interpolation coefficient λ, and
retrieval softmax temperature T .

k ∈ {8, 16, 32, 64}, the interpolation coefficient
λ ∈ {0.5, 0.6, 0.7, 0.8}, and retrieval softmax tem-
perature T . For decoding we use beam search with
a beam size of 5.
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Abstract

We propose a novel framework to conduct
field extraction from forms with unlabeled
data. To bootstrap the training process, we de-
velop a rule-based method for mining noisy
pseudo-labels from unlabeled forms. Using
the supervisory signal from the pseudo-labels,
we extract a discriminative token representa-
tion from a transformer-based model by mod-
eling the interaction between text in the form.
To prevent the model from overfitting to la-
bel noise, we introduce a refinement module
based on a progressive pseudo-label ensemble.
Experimental results demonstrate the effective-
ness of our framework.

1 Introduction

Form-like documents, such as invoices, paystubs
and patient referral forms, are very common in
daily business workflows. A large amount of hu-
man effort is required to extract information from
forms every day. In form processing, a worker is
usually given a list of expected form fields (e.g.,
purchase_order, invoice_number and total_amount
in Figure 1), and the goal is to extract their corre-
sponding values based on the understanding of the
form, where keys are generally the most important
features for value localization. A field extraction
system aims to automatically extract field values
from redundant information in forms, which is cru-
cial for improving processing efficiency and reduc-
ing human labor.

Field extraction from forms is a challenging task.
Document layouts and text representations can be
very different even for the same form type, if they
are from different vendors. For example, invoices
from different companies may have significantly
different designs (see Figure 3). Paystubs from
different systems (e.g., ADP and Workday) have
different representations for similar information.

Recent methods formulate this problem as field-
value pairing or field tagging. Majumder et al.

INVOICE #: 1234

PO Number:

Company LOGO

Field (purchase_order): [PO Number, PO #]

Total:   100.00
value00000001

localized key

Figure 1: Field extraction from forms is to ex-
tract the value for each field, e.g., invoice_number,
purchase_order and total_amount, in a given list. A
key, e.g., INVOICE#, PO Number and Total, refers to
a concrete text representation of a field in a form and it
is an important indicator for value localization.

(2020) propose a representation learning method
that takes field and value candidates as inputs and
utilizes metric learning techniques to enforce high
pairing score for positive field-value pairs and low
score for negative ones. LayoutLM (Xu et al.,
2020) is a pretrained transformer that takes both
text and their locations as inputs. It can be used
as a field-tagger which predicts field tags for in-
put texts. These methods show promising results,
but they require large amount of field-level annota-
tions for training. Acquiring field-level annotations
of forms is challenging and sometimes even im-
possible since (1) forms usually contain sensitive
information, so there is limited public data avail-
able; (2) working with external annotators is also
infeasible, due to the risk of exposing private in-
formation and (3) annotating field-level labels is
time-consuming and hard to scale.

Motivated by these reasons, we propose a field
extraction system that does not require field-level
annotations for training (see Figure 2). First, we
bootstrap the training process by mining pseudo-
labels from unlabeled forms using simple rules.
Then, a transformer-based architecture is used to
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model interactions between text tokens in the form
and predict a field tag for each token accordingly.
The pseudo-labels are used to supervise the trans-
former training. Since the pseudo-labels are noisy,
we propose a refinement module to improve the
learning process. Specifically, the refinement mod-
ule contains a sequence of branches, each of which
conducts field tagging and generates refined labels.
At each stage, a branch is optimized by the labels
ensembled from all previous branches to reduce
label noise. Our method shows strong performance
on real invoice datasets. Each designed module is
validated via comprehensive ablation experiments.

Our contribution is summarized as follows: (1)
to the best of our knowledge, this is the first work
that addresses the problem of field extraction from
forms without using field-level labels; (2) we pro-
pose a novel training framework where simple rules
are first used to bootstrap the training process and
a transformer-based model is used to improve per-
formance; (3) our proposed refinement module is
demonstrated as effective to improve model per-
formance when trained with noisy labels and (4)
to facilitate future research, we introduce the INV-
CDIP dataset as a public benchmark. The dataset is
available at https://github.com/salesforce/inv-cdip.

2 Related Work

2.1 Form understanding

Form understanding is a widely researched area.
Earlier work formulated the problem as an instance
segmentation task. Chargrid (Katti et al., 2018)
encodes each page of form as a two-dimensional
grid of characters, and extracts header and line
items from forms using fully convolutional net-
works. Based on Chargrid, Denk and Reisswig
(2019) propose BERTgrid which uses a grid of con-
textualized word embedding vectors to represent
documents. These methods are limited in scenar-
ios where the image resolution is not high enough
leading to sub-optimal representation of ambiguous
structures in dense regions. To mitigate the issue,
later methods work on structure modeling. Aggar-
wal et al. (2020) introduce Form2Seq to leverage
relative spatial arrangement of structures via first
conducting low-level element classification and
then high-order grouping. DocStruct (Wang et al.,
2020) encodes the form structure as a graph-like
hierarchy of text fragments and designs a hybrid
fusion method to provide joint representation from
multiple modalities. Benefiting from the recent

advances of transformers (Vaswani et al., 2017),
LayoutLM (Xu et al., 2020) learns text represen-
tation via modeling the interaction between text
tokens and their locations in documents.

There are dedicated methods focusing on field
extraction. Some methods (Chiticariu et al., 2013;
Schuster et al., 2013) extract information from doc-
ument via registering templates in the system. Palm
et al. (2019) propose an Attend, Copy, Parse ar-
chitecture to extract field values of invoices. Ma-
jumder et al. (2020) present a metric learning frame-
work that learns the representation of the value can-
didate based on its nearby words and matches the
field-value pairs using a learned scoring function.
Gao et al. (2021) propose a general value extraction
system for arbitrary queries and introduce a simple
pretraining strategy to improve document under-
standing. Although existing approaches demon-
strate promising results in different settings, they
rely on large-scale annotated data for training. For
example, Majumder et al. (2020) used more than
11,000 invoices in distinct templates for training.

2.2 Form datasets

Form datasets for field extraction tasks are typically
private, since these documents generally contain
sensitive information. There are existing public
datasets for general form understanding. RVL-
CDIP (Harley et al., 2015) and DocVQA (Mathew
et al., 2021) are introduced for document classifica-
tion and question answering tasks. FUNSD (Jaume
et al., 2019) dataset is organized as a list of in-
terlinked semantic entities, i.e., question, answer,
header and other. CORD (Park et al., 2019) is
a public receipt dataset focusing on line items.
SROIE (Huang et al., 2019) is the most related
dataset which aims to extract information for four
receipt-related fields. However, their layouts across
different receipts are very fixed, which makes it less
challenging, thus not suitable for our task. For ex-
ample, the values of fields, company and address,
are always on the very top in all the receipts. The
lack of appropriate public datasets makes it diffi-
cult to compare existing field extraction methods
on realistic forms. Xue et al. (2021) introduce a
framework to augment diverse forms from a small
set of annotated forms for robust evaluation. In this
work, we introduce a challenging and real invoice
dataset that is made publicly available to future
research.

31



PLEPLEPLE

Transformer

𝑠!

𝑙#!

𝑠"

𝑙#"

…

𝑠#

𝑙##𝑙#$

𝑙#$ 𝑙#$, 𝑙#! 𝑙#$, 𝑙#!,…, 𝑙##%!

INVOICE
INV#: 1234
INV Date: 01/01/2020

background words

LOGO

bootstrap

Progressive Label Ensemble

𝑤!+ 𝑏! 𝑤"+ 𝑏" 𝑤#+ 𝑏#

…

…

Figure 2: Our method takes words,wi, and their locations, bi, in a form into a transformer. The transformer extracts
representative features for each token via the self-attention mechanism. Since our method is trained using forms
with no field labels, we design progressive label ensemble module to enable the training process. We bootstrap the
initial pseudo-labels, l̂0, using simple rules. Then, token representations go through several branches and do the
field prediction as well as label refinement. Each branch, j, is optimized with labels ensembled from all previous
branches, l̂0, l̂1, ..., l̂j−1.

3 Field Extraction from Forms

3.1 Problem Formulation

We are interested in information of fields in a pre-
defined list, {fd1, fd2, ..., fdN}. Given a form
as input, a general OCR detection and recogni-
tion module is applied to obtain a set of words,
{w1, w2, ..., wM}, with their locations represented
as bounding boxes, {b1, b2, ..., bM}. The goal of a
field extraction method is to automatically extract
the target value, vi, of field, fdi, from the mas-
sive word candidates if the information of the field
exists in the input form.

Unlike previous methods that have access to
large-scale labeled forms, the proposed method can
be trained using unlabeled documents with known
form types. To achieve this goal, we propose a
simple rule-based method to mine noisy pseudo-
labels from unlabeled data (Sec. 3.2) and introduce
a data-driven method with a refinement module to
improve training with noisy labels (Sec. 3.3).

3.2 Bootstrap: Pseudo-Labels Inference from
Unlabeled Data

To bootstrap the training process, given unlabeled
forms, we first mine pseudo-labels using a simple
rule-based algorithm. The algorithm is motivated
by the following observations: (1) a field value usu-
ally shows together with some key and the key is
a concrete text representation of the field (see Fig-
ure 1); (2) the keys and their corresponding values
have strong geometric relations. As shown in Fig-
ure 1, the keys are mostly next to their values verti-
cally or horizontally; (3) although the form’s layout

is very diverse, there are usually some key-texts
that frequently used in different form instances. For
example, the key-texts of the field purchase_order
can be “PO Number", “PO #" etc. and (4) inspired
by Majumder et al. (2020), the field values are al-
ways associated with some data type. For example,
the data type of values of "invoice_date" is date
and that of "total_amount" is money or number.

Based on the above observations, we design a
simple rule-based method that can efficiently get
useful pseudo-labels for each field of interest from
large-scale forms. As shown in Figure 1, key local-
ization is first conducted based on string-matching
between text in a form and possible key strings of
a field. Then, values are estimated based on data
types of the text and their geometric relationship
with the localized key.
Key Localization. Since keys and values may
contain multiple words, we obtain phrase can-
didates, [ph1i , ph

2
i , ..., ph

T
i ], and their locations

[B1
i , B

2
i , ..., B

T
i ] in the form by grouping nearby

recognized words based on their locations using
DBSCAN algorithm (Ester et al., 1996). For each
field of interest, fdi, we design a list of frequently
used keys, [k1i , k

2
i , ..., k

L
i ], based on domain knowl-

edge. In practice, we can also use the field name
as the only key in the list. Then, we measure the
string distance1 between a phrase candidate, phji ,
and each designed key, kri , as d(phji , k

r
i ). We cal-

culate the key score for each phrase candidate indi-
cating how likely this candidate is to be a key for
the field using Eq. 1. Finally, the key is localized

1Without loss of generality, Jaro–Winkler distance (Win-
kler, 1990) is used in this work.
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by finding the candidate with the largest key score
as in Eq. 2.

key_score(phji ) = 1− min
r∈{1,2,...,L}

d(phji , k
r
i ).

(1)

k̂i = argmax
j∈{1,2,...,T}

key_score(phji ). (2)

Value Estimation. Values are estimated following
two criteria. First, their data type should be in line
with their fields. Second, their locations should
accord well with the localized keys. For each field,
we design a list of eligible data type (see Table A1
in the appendix, Sec. A). A pretrained BERT-based
NER model (Devlin et al., 2019) is used to predict
the data type of each phrase candidate and we only
keep the candidates, phji , with the correct data type.

Next, we assign a value score for each eligible
candidate, phji as in Eq. 3, where key_score(k̂i)
indicates the key score of the localized key and
g(phji , k̂i) denotes the geometric relation score be-
tween the candidate and the localized key. Intu-
itively, the key and its value are generally close
to each other and the values are likely to just
beneath the key or reside on their right side as
shown in Figure 1. So, we use distance and an-
gles to measure key-value relation as shown in
Eq. 4, where distj→ri indicates the distance of two
phrases, anglej→ri indicates the angle from phji
to phri and Φ(.|µ, σ) indicates Gaussian function
with µ as mean and σ as standard deviation. Here,
we set µd to 0. σd and σa are fixed to 0.5. We want
to reward the candidates whose angle with respect
to the key is close either to 0 or π/2, so we take the
maximum angle score of these two options.

value_score(phji ) = key_score(k̂i) ∗ g(k̂i, ph
j
i ).
(3)

g(phji , ph
r
i ) = Φ(distj→ri |µd, σd)

+ α max
µa∈{0,π/2}

Φ(anglej→ri |µa, σa).

(4)

v̂i = argmax
j∈{1,2,...,T},phji 6=k̂i

value_score(phji ). (5)

We determine a candidate as the predicted value
for a field if its value score is the largest among
all candidates as in Eq. 5 and the score exceeds a
threshold, θv = 0.1.

3.3 Refinement with Progressive
Pseudo-Labels Ensemble (PLE)

The above rule can be used directly as a simple
field extraction method. To further improve perfor-
mance, we can learn a data-driven model using the
estimated values of fields as pseudo-labels during
training. We formulate this as a token classification
task, where the input is a set of tokens extracted
from a form and the output is the predicted field
including background for each token.
Feature Backbone. To predict the target label of
a word, we need to understand the meaning of this
word as well as its interaction with the surrounding
context. Transformer-based architecture is a good
fit to learn the word’s representation for its great
capability of modeling contextual information. Ex-
cept for the semantic representation, the word’s
location and the general layout of the input form
are also important and could be used to capture dis-
criminative features of words. In practice, we used
the recently proposed LayoutLM (Xu et al., 2020)
as the default backbone and also experimented with
other transformer-based structures in Sec. 4.
Field Classification. Field prediction scores,
sk, are obtained by projecting the features to
the field space ({background, fd1, fd2, ..., fdN})
via fully connected (FC) layers.
Progressive Pseudo-Labels Ensemble. Initial
word-level field labels (also referred to as Boot-
strap Labels), l̂0, are obtained by the estimated
pseudo-labels from Sec. 3.2 and the network can be
optimized using cross entropy loss, L(sk, l̂0). How-
ever, naively using the noisy labels can degrade the
model performance. We introduce a refinement
module to tackle this issue. As shown in Figure 2,
we use a sequence of classification branches, where
each branch, j, conducts field classification inde-
pendently and refines pseudo-labels, l̂j , based on
their predictions. A later-stage branch is optimized
using the refined labels obtained from previous
branches. The final loss, Ltotal, aggregates all the
losses as

L(s1, l̂0) +

K∑

k=2

k−1∑

j=1

(L(sk, l̂j) + βL(sk, l̂0)), (6)

where β is a hyper parameter controlling the con-
tribution of the initial pseudo-labels.

At branch k, we generate refined labels accord-
ing to the following steps: (1) find the predicted
field label, f̂d, for each word by argmax

c∈{0,1,...,N}
skc and
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(2) for each positive field, only keep the word if its
prediction score is the highest among all the words
and larger than a threshold (fixed to 0.1).

Intuitively, each branch can be improved by us-
ing more accurate labels and its generated labels
are further refined. This progressive refinement of
labels reduces label noise. Similar idea has been
used in weakly supervised object detection (Tang
et al., 2017). However, we find that using only the
refined labels in each stage is limited in our setting,
because although the labels become more precise
after refinement, some low-confident values are fil-
tered out which results in lower recall. To alleviate
this issue, we optimize a branch with the ensem-
bled labels from all previous stages. We believe
that the ensembeled labels can not only keep a bet-
ter balance between precision and recall, but also
are more diverse and can serve as a regularization
for model optimization. During inference, we use
the average score predicted from all branches. We
follow the same procedure to get final field values
as we generate refine labels.

4 Experiments and Results

4.1 Datasets
IN-Invoice Dataset. We internally collect real in-
voices from different vendors. These invoice im-
ages are converted from real PDFs, so they are
in high resolution with clean background. The
train set contains 7,664 unlabeled invoice forms
of 2,711 vendors. The validation set contains
348 labeled invoices of 222 vendors. The test
set contains 339 labeled invoices of 222 vendors.
We manually ensure that at most 5 images are
from the same vendor in each set. Following Ma-
jumder et al. (2020), we consider 7 frequently used
fields including invoice_number, purchase_order,
invoice_date, due_date, amount_due, total_amount
and total_tax.
INV-CDIP. This dataset is from the Tobacco Col-
lections of Industry Documents Library 2, a pub-
licly accessible resource. The dataset contains 200k
noisy documents. We only keep the first page of
each document, since the invoice information is
most likely to show in page one. To reduce the
number of noisy samples, we only train on docu-
ments if they have 50-300 words (detected by our
OCR engine) and more than 3 invoice fields are
found by our rule-based method in Sec. 3.2. As a
result, we have 129k unlabeled training samples.

2https://www.industrydocuments.ucsf.edu/.

For model evaluation, we manually select 350
real invoices as the test set and annotate the 7 fields
mentioned above. We note that images of this
dataset have lower quality and more clutter back-
ground (see Figure 3) which make them more chal-
lenging than the IN-Invoice dataset.

More information of the datasets is illustrated in
the appendix (Sec. A).

4.2 Evaluation Metric

We use the macro-average of end-to-end F1 score
over fields as a metric to evaluate models. Specifi-
cally, exact string matching between our predicted
values and the ground-truth ones is used to count
true positive, false positive and false negative. Pre-
cision, recall and F1 score is obtained accordingly
for each field. The reported scores are averaged
over 5 runs to reduce the effect of randomness.

4.3 Baselines

It is challenging to compare our method with exist-
ing field extraction systems, since they have been
evaluated using different datasets in different set-
tings. To the best of our knowledge, there are no
existing methods that perform field extraction us-
ing only unlabeled data. So, we build the following
baselines to validate our method.
Bootstrap Labels (B-Labels): the proposed sim-
ple rules in Sec. 3.2 can be used to do field ex-
traction directly without training data. So, we first
show the effectiveness of this method and set up a
baseline for later comparison.
Transformers train with B-Labels: since we use
transformers as the backbone to extract features
of words, we train transformer models using the
B-Labels as baselines to evaluate the performance
gain from (1) the data-driven models in the pipeline
and (2) the refinement module. Both the content
of the text and its location are important for field
prediction. So, our default transformer backbone
is LayoutLM (Xu et al., 2020) which takes both
text and location as input. Further, we also exper-
iment with two popular transformer models, i.e.,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), which take only text as input.

4.4 Implementation Details

. Our framework is implemented using Pytorch and
the experiments are conducted with Tesla V100
GPUs. We use a commercial OCR engine3 to de-

3https://api.einstein.ai/signup
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tect words and their locations and use Tesseract4

to rank the words in reading order. The key list
and data type used in Sec. 3.2 for each dataset are
shown in Table A1 in Sec. A. As we can see, the
key lists and data types are quite broad. We set α
in Eq. 4 to 4.0. To further remove false positives,
we remove the value candidates if the localized
key is not within its neighboring zone. Specifically,
we define the neighboring zone around the value
candidate extending all the way to the left of the
image, four candidate heights above it and one can-
didate height below it. We keep the refine branch
number k = 3 for all experiments. We add one hid-
den FC layer with 768 units before classification
when stage number is > 1. We fix β in Eq. 6 to be
1.0 for all invoice experiments, except that we use
β = 5.0 for BERT-base refinement in Table 3 due
to its better performance in the validation set. For
both our model and baselines, we train models for
2 epochs and pick the model with the best F1 score
in validation set. To prevent overfitting, we adopt a
two-step training strategy, where the pseudo-labels
are used to train the first branch of our model and
then we fix the first branch along with the feature
extractor during the refinement. We set batch size
to 8 and use the Adam optimizer with learning rate
of 5e−5.

4.5 Comparison with Baselines

Main Comparison. We primarily validate our de-
sign using our IN-Invoice dateset, since it contains
large-scale clean, unlabeled training data and suffi-
cient amount of valid/test data. We first validate our
method using LayoutLM (our default choice) as the
backbone. The comparison results are shown in Ta-
ble 1 and Table 2. The Bootstrap Labels (B-Labels)
baseline achieves 43.8% and 44.1% F1 score in
valid and test sets, which indicates that our B-
Labels have reasonable accuracy, but are still noisy.
When we use the B-Labels to train a LayoutLM
transformer, we obtain a significant performance
improvement, ∼15% increase in valid set and
∼17% in test set. We tried both LayoutLM-base
(113M parameters) and LayoutLM-large (343M
parameters) models as backbones and we did not
see performance improvement when using a larger
model. Adding our refinement module significantly
improves model precision, ∼6% in valid set and
∼7% in test set, while slightly decreasing the recall,
∼2.5% in valid set and ∼3% in test set. This is

4https://github.com/tesseract-ocr/tesseract

because the refine labels become more and more
confident in later stages leading to higher model
precision. However, the refinement stage also re-
moves some low confidence false negatives which
results in lower recall. Overall, our refinement
module further improves performance, resulting in
a gain of ∼ 3% in F1 score.

Results with Different Transformers. We use
LayoutLM as the default feature backbone, since
both the text and its location is important for
our task. To understand the impact of different
transformer models as backbone, we experiment
with two additional models, BERT and RoBERTa,
where only text is used as input. The comparison
results are shown in Table 3 and Table 4. We have
the following observations: (1) we still obtain large
improvement when training BERT and RoBERTa
directly using our B-Labels and (2) our refine-
ment module consistently improves the baseline
results for different transformer choices with differ-
ent amount of parameters (base or large). Moreover,
LayoutLM yields much higher results compared to
the other two backbones, which indicates that the
text location is indeed very important for obtaining
good performance in our task.

Evaluation on INV-CDIP Test Set. We evaluate
our models trained using IN-Invoice data directly
on the introduced INV-CDIP test set in Table 5. Our
simple rule-based method obtains 25.1% F1 score
which is reasonable, but much lower compared to
the results on our internal IN-Invoice dataset. The
reason is that the INV-CDIP test set is visually
noisy which results in more OCR recognition er-
rors. The LayoutLM baselines still obtain large
improvements over the B-Labels baseline. Also,
our refinement module further improves more than
2% in F1 score. The results suggest that our method
adapts well to the new dataset. We show some visu-
alizations in Figure 3. We can see that our method
obtains good performance, although the invoices
are very diverse across different templates, have
cluttered background and are in low resolution.

Learning from Noisy INV-CDIP Data. Although
web data is noisy, it can be freely obtained from
the internet. We train our model and the baseline
model using the unlabeled train set of the noisy
INV-CDIP dataset. The comparison results are
shown in Table 6 (all models are base models). As
we can see, our method performs well and our PLE
module can still improves the baseline by about
2-3%, although the training set is very noisy.
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Figure 3: Visualization of our method on the INV-CDIP test set. Correct predictions are marked in red font.
Incorrect predictions are marked in blue (due to field extractor error) and purple (due to OCR recognition error).

Model Labels Prec. Rec. F1
Bootstrap Labels – 40.5 50.7 43.8
LayoutLM-base

B-Labels

54.8 66.6 59.2
+ PLE 60.9 64.0 61.9
LayoutLM-large 55.2 65.6 58.8
+ PLE 61.3 63.2 61.8

Table 1: Comparison with baselines on IN-Invoice
valid set. Models are trained using the unlabeled IN-
Invoice train set.

Model Labels Prec. Rec. F1
Bootstrap Labels – 41.0 50.9 44.1
LayoutLM-base

B-Labels

57.5 67.6 61.2
+ PLE 64.7 64.5 63.8
LayoutLM-large 58.2 67.1 61.0
+ PLE 65.6 64.0 64.1

Table 2: Comparison with baselines on IN-Invoice test
set. Models are trained using the unlabeled IN-Invoice
train set.

4.6 Ablation Study

We conduct ablation study on the IN-Invoice
dataset with LayoutLM-base as the backbone.
Effect of Stage Numbers. Our model is refined
in k stages, where k = 3 in all experiments. We
evaluate our method with varying stage numbers.
As we can see in Figure 4, when we increase the
stage number, k, the model generally performs
better on both valid and test sets. The perfor-
mance with more than one stage is always higher
than the single-stage model (our transformer base-
line). Model performance reaches the highest when
k = 3. As shown in Figure 5, precision improves
while recall drops during model refinement. When
k = 3, we obtain the best balance between preci-

Model Labels Prec. Rec. F1
Bootstrap Labels – 40.5 50.7 43.8
BERT-base

B-Labels

48.8 59.6 52.8
+ PLE 49.9 59.3 53.4
BERT-large 53.7 60.9 56.5
+ PLE 58.0 59.4 58.1
RoBERTa-base 55.1 60.5 57.2
+ PLE 59.9 58.0 58.5
RoBERTa-large 55.3 61.8 57.8
+ PLE 60.5 60.1 59.1

Table 3: Comparison using different transformers on
IN-Invoice valid set. Models are trained using the unla-
beled IN-Invoice train set.

Figure 4: Comparison results with varying stage num-
bers. When stage number is 1, the model becomes the
LayoutLM baseline.

sion and recall. When k > 3 recall drops more than
precision improves, leading to a lower F1 score.
Effect of Refined Labels (R-Labels). As shown
in Figure 2, the R-Labels obtained in each stage
are used in later stages. To analyze the effect of
this design, we remove the refined labels in the
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Model Labels Prec. Rec. F1
Bootstrap Labels – 41.0 50.9 44.1
BERT-base

B-Labels

51.3 61.4 54.9
+ PLE 52.6 61.0 55.6
BERT-large 55.7 61.7 57.7
+ PLE 60.2 58.8 58.6
RoBERTa-base 57.2 61.4 58.7
+ PLE 62.7 58.6 59.8
RoBERTa-large 56.3 61.4 57.8
+ PLE 62.5 59.6 59.2

Table 4: Comparison using different transformers on
IN-Invoice test set. Models are trained using the unla-
beled IN-Invoice train set.

Model Labels Prec. Rec. F1
Bootstrap Labels – 21.8 36 25.1
LayoutLM-base

B-Labels

31.6 44.6 35.2
+ PLE 37.3 40.9 37.3
LayoutLM-large 33.8 46.5 36.9
+ PLE 40.2 42.2 39.4

Table 5: Comparison with baselines on INV-CDIP test
set. Models are trained using the unlabeled IN-Invoice
train set.

Figure 5: In general, our model has higher precision,
but lower recall with larger number of branches.

final loss and only use the B-Labels to train the
three branches independently and ensemble the
predictions during inference. As shown in Table 7,
removing refined labels results in 2.2% and 2.6%
decrease in F1 scores in valid and test sets.
Effect of Regularization with B-Labels. At each
stage, we use B-Labels as a type of regularization
to prevent the model from overfitting to the over-
confident refined labels. We disable the utiliza-
tion of B-Labels in the refinement stage by setting
β = 0 in Eq. 6. As we can see in Table 7, model

Model Eval Set Prec. Rec. F1
LayoutLM

IN-Inv Val
46.3 60.6 51.4

+ PLE 51.7 58.6 54.2
LayoutLM

IN-Inv Test
47.8 62.3 52.9

+ PLE 53.0 59.2 55.1
LayoutLM

INV-CDIP Test
28.0 47.5 32.8

+ PLE 31.0 46.4 35.4

Table 6: Comparison with baselines when methods are
trained using the noisy INV-CDIP train set.

Set R-Labels 2-step train B-Labels F1

Valid

X X 59.7
X X 60.1
X X 60.0
X X X 61.9

Test

X X 61.2
X X 62.4
X X 61.6
X X X 63.8

Table 7: Results of ablation study.

performance drops ∼2% in F1 score without this
regularization.
Effect of Two-step Training Strategy. To avoid
overfitting to noisy labels, we adopt two-step train-
ing strategy, where the transformer backbone with
the first branch is trained using B-Labels and then
fixed during the refinement. We analyze this effect
by training our model in a single step. As shown
in Table 7, single-step training leads to 1.8% and
1.4% F1 score decrease in valid and test sets.

4.7 Limitations and Future Work

Our work focuses on training models using unla-
beled forms. An interesting future avenue would
be to utilize additional labeled data in a semi-
supervised setting. Moreover, validating our meth-
ods with more form types would also be valuable.
We will consider these topics in future work.

5 Conclusion

We proposed a field extraction system that can be
trained using forms without field-level annotations.
We first introduced a rule-based method to get ini-
tial pseudo-labels of forms. Then, we proposed a
transformer-based method and improved the model
using progressively ensembled labels. We demon-
strated that our method outperforms the baselines
on invoice datasets and each component of our
method makes considerable contribution.
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6 Broader Impact

This work is potentially useful for improving infor-
mation extraction systems from forms. So, it has
positive impacts including improving document
processing efficiency, thus reducing human labor.
Reducing human labor may also cause negative
consequences such as job loss or displacement, par-
ticularly amongst low-skilled labor who may be
most in need of gainful employment. The negative
impact is not specific to this work and should be
addressed broadly in the field of AI research.

We are securely using the IN-Invoice dataset
internally. For the public data in the INV-CDIP
dataset, we made certain to consider their prove-
nance and there are no restrictions on the use of the
public data. All the annotations were conducted
and carefully reviewed by the authors. As a result,
and given the fact that the datasets contain forms
without any personally identifiable data, we have
relative confidence that the datasets are ethically
sourced.
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A Appendix

Figure A1: Field statistics of the datasets.

A.1 More Information about Datasets
The field statistics of both IN-Invoice and INV-
CDIP datasets are shown in Figure A1. As we can
see, the validation and test sets of our internal IN-
Invoice dataset have a similar statistical distribution
of fields, while the public INV-CDIP test set is
different.

Moreover, the number of words per image in
each dataset is shown in Figure A2. As shown,
most images have 50-300 words and images with
100-150 words are typical in all the sets. We com-
pute the number of fields per image in Figure A3.
As we can see, there are averagely more fields an-
notated per image in IN-Invoice valid/test sets than
those annotated in the INV-CDIP test set. Note that
there are no field annotations in the train sets. We
show the matched pseudo-labels in the train sets in
Figure A3. As we can see, the number of matched
pseudo-labels per image in the IN-Invoice train set
is similar to that in the INV-CDIP train set.

Note that all data described was collected ex-
clusively for the academic purpose of conducting
research. The purpose of using the invoices and
data was only for training and evaluating the model.
No data is stored upon completion of the research
process.

39



Field Data Type Key List
inv_number number ["invoice number", "invoice #", "invoice", "invoice no.", "invoice no"]

po_number number ["po #", "po number", "p.o. #", "p.o. number", "po", "purchase order number"]

inv_date date ["date", "invoice date:", "invoice date"]

due_date date ["due date"]

total_amount number/money ["total", "invoice total"]

due_amount number/money ["amount due", "balance due"]

total_tax number/money ["tax"]

Table A1: Key list and data type used in our experiments.

Figure A2: Number of words per image of the datasets.

Figure A3: Number of fields per image of the datasets.
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Abstract

Recently neural network based approaches to
knowledge-intensive NLP tasks, such as ques-
tion answering, started to rely heavily on the
combination of neural retrievers and readers.
Retrieval is typically performed over a large
textual knowledge base (KB) which requires
significant memory and compute resources, es-
pecially when scaled up. On HotpotQA we sys-
tematically investigate reducing the size of the
KB index by means of dimensionality (sparse
random projections, PCA, autoencoders) and
numerical precision reduction.

Our results show that PCA is an easy solu-
tion that requires very little data and is only
slightly worse than autoencoders, which are
less stable. All methods are sensitive to pre-
and post-processing and data should always be
centered and normalized both before and after
dimension reduction. Finally, we show that it
is possible to combine PCA with using 1bit per
dimension. Overall we achieve (1) 100× com-
pression with 75%, and (2) 24× compression
with 92% original retrieval performance.

1 Introduction

Recent approaches to knowledge-intensive NLP
tasks combine neural network based models with a
retrieval component that leverages dense vector rep-
resentations (Guu et al., 2020; Lewis et al., 2020;
Petroni et al., 2021). The most straightforward ex-
ample is question answering, where the retriever
receives as input a question and returns relevant
documents to be used by the reader (both encoder
and decoder), which outputs the answer (Chen,
2020). The same approach can also be applied in
other contexts, such as fact-checking (Tchechmed-
jiev et al., 2019) or knowledgable dialogue (Dinan
et al., 2018). Moreover, this paradigm can also
be applied to systems that utilize e.g. caching of
contexts from the training corpus to provide better
output, such as the k-nearest neighbours language
model proposed by Khandelwal et al. (2019) or

the dynamic gating language model mechanism by
Yogatama et al. (2021). All these pipelines are gen-
eralized as retrieving an artefact from a knowledge
base (Zouhar et al., 2021) on which the reader is
conditioned together with the query.

Crucially, all of the previous examples rely on
the quality of the retrieval component and the
knowledge base. The knowledge base is usually
indexed by dense vector representations1 and the
retrieval component performs maximum similar-
ity search, commonly using the inner product or
the L2 distance, to retrieve documents2 from the
knowledge base. Only the index alone takes up a
large amount of size of the knowledge base, mak-
ing deployment and experimentation very difficult.
The retrieval speed is also dependent on the di-
mensionality of the index vector. An example of a
large knowledge base is the work of Borgeaud et al.
(2021) which performs retrieval over a database of
1.8 billion documents.

This paper focuses on the issue of compressing
the index through dimensionality and precision re-
duction and makes the following contributions:

• Comparison of various unsupervised index
compression methods for retrieval, including
random projections, PCA, autoencoder, preci-
sion reduction and their combination.

• Examination of effective pre- and post-
processing transformations, showing that cen-
tering and normalization are necessary for
boosting the performance.

• Analysis on the impact of adding irrelevant
documents and retrieval errors. Recommenda-
tions for use by practicioners.

In Section 3, we describe the problem scenario
and the experimental setup. We discuss the results

1Sparse representations via BM25 (Robertson et al., 1995)
are also commonly used but not the focus of this work.

2We refer to the retrieved objects as documents though
they commonly range from spans of text (e.g. 100 tokens) to
the full documents.
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of different compression methods in Section 4. We
provide further analysis in Section 5 and conclude
with usage recommendations in Section 6. The
repository for this project is available open-source.3

2 Related Work

Reducing index size. A thorough overview of
the issue of dimensionality reduction in informa-
tion retrieval in the context of dual encoders has
been done by Luan et al. (2021). Though in-depth
and grounded in formal arguments, their study is
focused on the limits and properties of dimension
reduction in general (even with sparse representa-
tions) and the effect of document length on perfor-
mance. In contrast to their work, this paper aims to
compare more methods and give practical advice
with experimental evidence.

A baseline for dimensionality reduction has been
recently proposed by Izacard et al. (2020) in which
they perform the reduction while training the docu-
ment (and query) encoder by adding a low dimen-
sional linear projection layer as the final output
layer. Compared to our work, their approach is
supervised.

In the concurrent work of Ma et al. (2021), PCA
is also used to reduce the size of the document
index. Compared to our work, they perform PCA
using the combination of all question and document
vectors. We show in Figures 4 and 6 that this is not
needed and the PCA transformation matrix can be
estimated much more efficiently. Moreover, we use
different unsupervised compression approaches for
comparison and perform additional analysis of our
findings.

An orthogonal approach to the issue of memory
cost has been proposed by Yamada et al. (2021).
Instead of moving to another continuous vector
representation, their proposed method maps orig-
inal vectors to vectors of binary values which are
trained using the signal from the downstream task.
The pipeline, however, still relies on re-ranking
using the uncompressed vectors. This method is
different from ours and in Section 4.4 we show that
they can be combined.

Finally, He et al. (2021) investigate filtering and
k-means pruning for the task of kNN language
modelling. This work also circumvents the issue
of having to always perform an expensive retrieval
of a large data store by determining whether the
retrieval is actually needed for a given input.

3Link will be available in the camera-ready version.

Effect of normalization. Timkey and van Schijn-
del (2021) examine how dominating embedding di-
mensions can worsen retrieval performance. They
study the contribution of individual dimensions find
that normalization is key for document retrieval
based on dense vector representation when BERT-
based embeddings are used. Compared to our work,
they study pre-trained BERT directly, while we fo-
cus on DPR.

3 Setup

3.1 Problem Statement and Evaluation

Given a query q, the following set of equations sum-
marizes the conceptual progression from retrieving
top k relevant documents Z = {d1, d2, . . . , dk}
from a large collection of documents D so that
the relevance of d with q is maximized. For this,
the query and the document embedding functions
fQ : Q → Rd and fD : D → Rd are used to map
the query and all documents to a shared embedding
space and a similarity function sim : Rd×Rd → R
approximates the relevance between query and doc-
uments. Here, we consider either the inner product
or the L2 distance as sim.4 Finally, to speed up
the similarity computation over a large set of doc-
uments and to decrease memory usage (fD is usu-
ally precomputed), we apply dimension reduction
functions rQ : Rd → Rd′ and rD : Rd → Rd′ for
the query and document embeddings respectively.
Formally, we are solving the following problem:

Z = arg top-k
d∈D

rel.(q, d) ,with (1)

rel.(q, d) ≈ sim(fQ(q), fD(d)) (2)

≈ sim(rQ(fQ(q)), rD(fD(d))) (3)

The approximation in (2) was shown to work
well in practice for inner product and L2 distance
(Lin, 2021). In this case, fQ is commonly fine-
tuned for a specific downstream task. For this rea-
son, it is desirable in (3) for the functions rQ and
rD to be differentiable so that they can propagate
the signal. These dimension-reducing functions
need not be the same because even though they
project to a shared vector space, the input distribu-
tion may still be different. Similarly to the query
and document embedding functions, they can be
fine-tuned.

4Cosine similarity could also be used but for computation
reasons we skip it. Results are the same as for inner product
and L2 distance when the vectors are normalized.

42



Task Agnostic Representation. When dealing
with multiple downstream tasks that share a single
(large) knowledge base, typically only fQ is fine-
tuned for a specific task while fD remains fixed
(Lewis et al., 2020; Petroni et al., 2021). This as-
sumes that the organization of the document vector
space is sufficient across tasks and that only the
mapping of the queries to this space needs to be
trained.5 Hence, this work is motivated primarily
by finding a good rD (because of the dominant size
of the document index), though we note that rQ is
equally important and necessary because even with-
out any vector semantics, the key and the document
embeddings must have the same dimensionality.

R-Precision. To evaluate retrieval performance
we compute R-Precision averaged over queries:
(relevant documents among top k passages in Z)/r,
k = number of passages in relevant documents, in
the same way as Petroni et al. (2021). Following
previous work, we consider the inner product (IP)
and the L2 distance as the similarity function.

3.2 Data
As knowledge base we use documents from En-
glish Wikipedia and follow the setup described by
Petroni et al. (2021). We mark spans (original arti-
cles split into 100 token pieces, 50 million in total)
as relevant for a query if they come from the same
Wikipedia article as one of the provenances.6 In
order to make our experiments computationally fea-
sible and easy to reproduce we experiment with a
modified version of this knowledge base where we
keep only spans of documents that are relevant to
at least one query from the training or validation
set of our downstream tasks. As downstream tasks,
we use HotpotQA (Yang et al., 2018) for all main
experiments and Natural Questions (Kwiatkowski
et al., 2019) to verify that the results transfer to
other datasets as well. This leads to over 2 mil-
lion encoded spans for HotpotQA (see Table 6 for
dataset sizes). The 768-dimensional embeddings
(32-bit floats) of this dataset (both queries and doc-
uments) add up to 7GB (146GB for the whole un-
pruned dataset).

3.3 Uncompressed Retrieval Peformance
To establish baselines for uncompressed perfor-
mance we use models based on BERT (Devlin et al.,

5Guu et al. (2020) provide evidence that this assumption
can lead to worse results in some cases.

6Spans of the original text which help in answering the
query.
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Figure 1: Comparison of different BERT-based embed-
ding models and versions when using faster but slightly
inaccurate nearest neighbour search. [CLS] is the spe-
cific token embedding from the last layer while (Avg) is
all token average.

2019). We consider (1) vanilla BERT, (2) Sentence-
BERT (Reimers and Gurevych, 2019) and (3) DPR
(Karpukhin et al., 2020), which was specifically
trained for document retrieval. To obtain document
embeddings, we use either the last hidden state rep-
resentation at [CLS] or the average across tokens
of the last layer.

Our first experiment compares the retrieval per-
formance of the different models on HotpotQA.
The result is shown in Figure 1. In alignment with
previous works (Reimers and Gurevych, 2019) an
immediately noticeable conclusion is that vanilla
BERT has a poor performance, especially when tak-
ing the hidden state representation for the [CLS]
token. Next, to make computation tractable, we
repeat the experiment using FAISS (Johnson et al.,
2019).7 We find that the performance loss across
models is systematic, which warrants the use of
this approximate nearest neighbour search for com-
parisons and all our following experiments will use
FAISS on the DPR-CLS model.

Pre-processing Transformations. Figure 1 also
shows that model performance, especially for DPR,
depends heavily on what similarity metric is used
for retrieval. This is because none of the models
produces normalized vectors by default.

Figure 2 shows that performing only normaliza-
tion ( x

||x|| ) sometimes hurts the performance but
when joined with centering beforehand ( x−x̄

||x−x̄|| ),
it improves the results (compared to no pre-

7IndexIVFFlat, nlist=200, nprobe=100.
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Figure 2: Effect of data centering and normalization on
performance (evaluated with FAISS).

processing) in all cases. The normalization and
centering is done for queries and documents sep-
aratedly. Moreover, if the vectors are normalized,
then the retrieved documents are the same for L2

and inner product. 8

Nevertheless, we argue it still makes sense to
study the compression capabilities of L2 and the
inner product separately, since the output of the
compression of normalized vectors need not be
normalized.

4 Compression Methods

Having established the retrieval performance of the
uncompressed baseline, we now turn to methods
for compressing the dense document index and the
queries.

Note that we consider unsupervised methods on
already trained index, for maximum ease of use and
applicability. This is in contrast to supervised meth-
ods, which have access to the query-doc relevancy
mapping, or to in-training dimension reduction (i.e.
lower final layer dimension).

4.1 Random Projection

The simplest way to perform dimension reduction
for a given index x ∈ Rd is to randomly preserve
only certain d′ dimensions and drop all other di-
mensions:

fdrop.(x) = (xm1 , xm2 , . . . , xmd′ )

8argmaxk −||a−b||2 = argmaxk −⟨a,a⟩2−⟨b, b⟩2+
2 · ⟨a, b⟩ = argmaxk 2 · ⟨a, b⟩ − 2 = argmaxk ⟨a, b⟩

Another approach is to greedily search which di-
mensions to drop (those that, when omitted, either
improve the performance or lessen it the least):

pi(x) = (x0, x1, . . ., xi−1, xi+1, . . ., x768)

Li = R-Prec(pi(Q), pi(D))

m = sortdesc.
L ([1 . . . 768])

fgreedy drop.(x) = (xm1 , xm2 , . . . , xmd′ )

The advantage of these two approaches is that
they can be represented easily by a single R768×d

matrix. We consider two other standard random
projection methods: Gaussian random projection
and Sparse random projection (Fodor, 2002). Such
random projections are suitable mostly for inner
product (Kaski, 1998) though the differences are
removed by normalizing the vectors (which also
improves the performance).
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Figure 3: Dimension reduction using different random
projections methods. Presented values are the max of
3 runs (except for greedy dimension dropping, which
is deterministic), semi-transparent lines correspond to
the minimum. Embeddings are provided by centered
and normalized DPR-CLS. Final vectors are also post-
processed by centering and normalization.

Results. The results of all random projection
methods are shown in Figure 3. Gaussian ran-
dom projection seems to perform equally to sparse
random projection. The performance is not fully
recovered for the two methods. Interestingly, sim-
ply dropping random dimensions led to better per-
formance than that of sparse or Gaussian random
projection. The greedy dimension dropping even
improves the performance slightly over random
dimension dropping in some cases before saturat-
ing and is deterministic. As shown in Table 2, the
greedy dimension dropping with post-processing
achieves the best performance among all random
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projection methods. Without post-processing, L2

distance works better compared to inner product.

4.2 Principal Component Analysis

Another natural candidate for dimensionality reduc-
tion is principal component analysis (PCA) (F.R.S.,
1901). PCA considers the dimensions with the
highest variance and omits the rest. This leads
to a projection matrix that projects the original
data onto the principal components using an or-
thonormal basis T . The following loss is mini-
mized L = MSE(T′Tx,x). Note that we fit PCA
on the covariance matrix of either the document
index, query embeddings or both and the trained
dimension-reducing projection is then applied to
both the document and query embeddings.

Results. The results of performing PCA are
shown in Figure 4. First, we find that the un-
compressed performance, as well as the effect
of compression, is highly dependent on the data
pre-processing. This should not be surprising
as the PCA algorithm assumes centered and pre-
processed data. Nevertheless, we stress and demon-
strate the importance of this step. This is given by
the normalization of the input vectors and also that
the column vectors of PCA are orthonormal.

Second, when the data is not centered, the PCA
is sensitive to what it is trained on. Figure 4 show
systematically that training on the set of available
queries provides better performance than training
on the documents or a combination of both. Subse-
quently, after centering the data, it does not matter
anymore what is used for fitting: both the queries
and the documents provide good estimates of the
data variance and the dependency on training data
size for PCA is explored explicitly in Section 5.1.
The reason why queries provide better results with-
out centering is that they are more centered in the
first place, as shown in Table 1.

Avg. L1 (std) Avg. L2 (std)

Documents 243.0 (20.1) 12.3 (0.6)
Queries 137.0 (7.5) 9.3 (0.2)

Table 1: Average L1 and L2 norms of document
and query embeddings from DPR-CLS without pre-
processing.

In all cases, the PCA performance starts to
plateau around 128 dimensions and is within 95%
of the uncompressed performance. Finally, we note
that while PCA is concerned with minimizing re-

construction loss, Figure 4 shows that even after
vastly decreasing the reconstruction loss, no sig-
nificant improvements in retrieval performance are
achieved. We further discuss this finding in Sec-
tion 5.4.

Component Scaling. One potential issue of PCA
is that there may be dimensions that dominate the
vector space. Mu et al. (2017) suggest to simply
remove the dimension corresponding to the high-
est eigenvalue though we find that simply scaling
down the top k eigenvectors systematically outper-
forms standard PCA. For simplicity, we focused
on the top 5 eigenvectors and performed a small-
scale grid-search of the scaling factors. The best
performing one was (0.5, 0.8, 0.8, 0.9, 0.8) and Ta-
ble 2 shows that it provides a small additional boost
in retrieval performance.

4.3 Autoencoder
A straightforward extension of PCA for dimen-
sionality reducing is to use autoencoders, which
has been widely explored (Hu et al., 2014; Wang
et al., 2016). Usually, the model is described by
an encoder e : Rd → Rb, a function from a higher
dimension to the target (bottleneck) dimension and
a decoder r : Rb → Rd, which maps back from
the target dimension to the original vector space.
The final (reconstruction) loss is then commonly
computed as L = MSE((r ◦ e)(x),x). To reduce
the dimensionality of a dataset, only the function
e is applied to both the query and the document
embedding. We consider three models with the
bottleneck:

1. A linear projection similar to PCA but without
the restriction of orthonormal columns:

e1(x) = L768
128

r1(x) = L128
768

2. A multi-layer feed forward neural network
with tanh activation:
e2(x) = L768

512 ◦ tanh ◦L512
256 ◦ tanh ◦L256

128

r2(x) = L128
256 ◦ tanh ◦L256

512 ◦ tanh ◦L512
768

3. The same encoder as in the previous model
but with a shallow decoder:
e3(x) = L768

512 ◦ tanh ◦L512
256 ◦ tanh ◦L256

128

r3(x) = L128
768

Compared to PCA, it is able to model non-
pairwise interaction between dimensions (in case
of models 2 and 3 also non-linear interaction).
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Figure 4: Dimension reduction using PCA (top) and Autoencoder (bottom) trained either on document index,
query embeddings or both. Each figure corresponds to one of the four possible combinations of centering and
normalizing the input data. The output vectors are not post-processed. Reconstruction loss (MSE, average for both
documents and queries) is shown in transparent colour and computed in original data space. Horizontal lines show
uncompressed performance. Embeddings are provided by DPR-CLS.

Results. We explore the effects of training data
and pre-processing with results for the first model
shown in Figure 4. Surprisingly, the Autoencoder is
even more sensitive to proper pre-processing than
PCA, most importantly centering which makes the
results much more stable.

The rationale for the third model is that we
would like the hidden representation to require as
little post-processing as possible to become the
original vector again. The higher performance
of the model with shallow decoder, shown in Ta-
ble 2 supports this reasoning. An alternative way
to reduce the computation (modelling dimension
relationships) in the decoder is to regularize the
weights in the decoder. We make use of L1 reg-
ularization explicitly because L2 regularization is
conceptually already present in Adam’s weight de-
cay. This improves each of the three models.

Similarly to the other reconstruction loss-based
method (PCA), without post-processing, inner
product works yields better results.

4.4 Precision Reduction

Lastly, we also experiment with reducing index
size by lowering the float precision from 32 bits
to 16 and 8 bits. Note that despite their quite high
retrieval performance, they only reduce the size by
2 and 4 respectively (as opposed to 6 by dimension
reduction via PCA to 128 dimensions). Another

drawback is that retrieval time is not affected be-
cause the dimensionality remains the same.

Using only one bit per dimension is a special
case of precision reduction suggested by Yamada
et al. (2021). Because we use centered data, we can
define the element-wise transformation function as:

fα(xi) =

{
1− α xi ≥ 0

0− α xi < 0

Bit 1 would then correspond to 1 − α and 0 to
0−α. While Yamada et al. (2021) use values 1 and
0, we work with 0.5 and −0.5 in order to be able
to distinguish between certain cases when using
IP-based similarity.9 As shown in Table 2, this in-
deed yields a slight improvement. When applying
post-processing, however, the two approaches are
equivalent. While this method achieves extreme
32x compression on the disk and retains most of
the retrieval performance, the downside is that if
one wishes to use standard retrieval pipelines, these
variables would have to be converted to a supported,
larger, data type.10

9When using 0 and 1, the IP similarity of 0 and 1 is the
same as 0 and 0 while for −0.5 and 0.5 they are −0.25 and
0.25 respectively.

10The Tevatron toolkit (Gao et al., 2022) supports mixed
precision training with 16-bit floats.

46



Method Compression Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.609 0.240 0.618 (100%)

Gaussian Projection (128) 6× 0.413 0.453 0.468 (76%)

Sparse Projection (128) 6× 0.398 0.448 0.457 (74%)

Dimension Dropping (128) 6× 0.426 0.466 0.478 (77%)

Greedy Dimension Dropping (128) 6× 0.447 0.478 0.504 (82%)

PCA (128) 6× 0.577 0.562 0.579 (94%)

PCA (128, scaled top 5) 6× 0.586 0.572 0.592 (96%)

Autoencoder (128, single layer) 6× 0.585 0.569 0.588 (95%)

Autoencoder (128, full) 6× 0.564 0.560 0.588 (95%)

Autoencoder (128, shallow decoder) 6× 0.599 0.582 0.599 (97%)

Autoencoder (128, single layer) + L1 6× 0.600 0.587 0.601 (97%)

Autoencoder (128, full) + L1 6× 0.573 0.569 0.589 (95%)

Autoencoder (128, shallow decoder) + L1 6× 0.601 0.591 0.601 (97%)

Precision 16-bit 2× 0.612 0.610 0.615 (100%)

Precision 8-bit 4× 0.613 0.610 0.614 (99%)

Precision 1-bit (offset 0.5) 32× 0.559 0.556 0.561 (91%)

Precision 1-bit (offset 0) 32× 0.530 0.556 0.561 (91%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.459 0.458 0.461 (75%)

PCA (128) + Precision 8-bit 24× 0.558 0.553 0.567 (92%)

Table 2: Overview of compression method performance (from 768) using either L2 or inner product for retrieval.
Inputs are based on centered and normalized output of DPR-CLS and the outputs optionally post-processed again.
Performance is measured by R-Precision on HotpotQA.

4.5 Combination of PCA and Precision
Reduction

Finally, reducing precision can be readily combined
with dimension reduction methods, such as PCA
(prior to changing the data type). The results in
Figure 5 show that PCA can be combined with
e.g. 8-bit precision reduction with negligible loss
in performance. As shown in the last row of Ta-
ble 2, this can lead to the compressed size be 100x
smaller while retaining 75% retrieval performance
on HotpotQA and 89% for NaturalQuestions (see
Table 7).

5 Analysis

5.1 Model Comparison

The comparison of all discussed dimension reduc-
tion methods is shown in Table 2. It also shows the
role of centering and normalization post-encoding
which systematically improves the performance.
The best performing model for dimension reduction
is the autoencoder with L1 regularization and either
just a single projection layer for the encoder and de-
coder or with the shallow decoder (6x compression
with 97% retrieval performance). Additionally, Ap-
pendix B compares training and evaluation speeds
of common implementations.
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Figure 5: Combination of PCA and precision reduction.
Compression ratio is shown in text. 16-bit and 32-bit
values overlap with 8-bit and their compression ratios
are not shown. Measured on HotpotQA with DPR-CLS.

5.2 Data size

A crucial aspect of the PCA and autoencoder meth-
ods is how much data they need for training. In
the following, we experimented with limiting the
number of training samples for PCA and the linear
autoencoder. Results are shown in Figure 6.

While Ma et al. (2021) used a much larger train-
ing set to fit PCA, we find that PCA requires very
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Figure 6: Dependency of PCA and autoencoder per-
formance (evaluated on HotpotQA dev data, trained
on document encodings, pre- and post-processing) by
modifying the training data (solid lines) and by adding
irrelevant documents to the retrieval pool (dashed lines).
Black crosses indicate the original training size. Verti-
cal bars are 95% confidence intervals using t-distibution
(across 6 runs with random model initialization and
sampling). Note the log scale on the x-axis and the
truncation of the y-axis.

few samples (lower-bounded by 128 which is also
the number of dimensions used for this experiment).
This is because in the case of PCA training data is
used to estimate the data covariance matrix which
has been shown to work well when using a few
samples (Tadjudin and Landgrebe, 1999). Addi-
tionally, we find that overall the autoencoder needs
more data to outperform PCA.

Next, we experimented with adding more (poten-
tially irrelevant) documents to the knowledge base.
For this, we kept the training data for the autoen-
coder and PCA to the original size. The results are
shown as dashed lines in Figure 6. Retrieval perfor-
mance quickly deteriorates for both models (faster
than for the uncompressed case), highlighting the
importance of filtering irrelevant documents from
the knowledge base.

5.3 Retrieval errors

So far, our evaluation focused on quantitative com-
parisons. In the following, we compare the dis-
tribution of documents retrieved before and after
compression to investigate if there are systematic
differences. We carry out this analysis using Hot-

potQA which, by design, requires two documents
in order to answer a given query. We compare re-
trieval with the original document embeddings to
retrieval with PCA and 1-bit compression.

We find that there are no systematic differences
compared to the uncompressed retrieval. This is
demonstrated by the small off-diagonal values in
Figure 7. This result shows that if the retriever
working with uncompressed embeddings returns
two relevant documents in the top-k for a given
query, also the retriever working with the com-
pressed index is very likely to include the same
two documents in the top-k. This is further shown
by the Pearson correlation in Table 4. This sug-
gests that the compressed index can be used on
downstream tasks with predictable performance
loss based on the slightly worsened retrieval perfor-
mance. Furthermore, there do not seem to be any
systematic differences even between the two vastly
different compression methods used for this exper-
iment (PCA and 1-bit precision). This indicates
that, despite their methodological differences, the
two compression approaches seem to remove the
same redundances in the uncompressed data. We
leave a more detailed exploration of these findings
for future work.
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Figure 7: Distribution of the number of retrieved docu-
ments for HotpotQA queries before and after compres-
sion: PCA (128) and 1-bit precision with R-Precisions
(centered & normalized) of 0.579 and 0.561, respec-
tively.

5.4 Pitfalls of Reconstruction Loss

Despite PCA and autoencoder being the most suc-
cessful methods, low reconstruction loss provides
no theoretical guarantee to the retrieval perfor-
mance. Consider a simple linear projection that can
be represented as a diagonal matrix that projects to
a space of the same dimensionality. This function
has a trivial inverse and therefore no information
is lost when it is applied. The retrieval is however
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disrupted, as it will mostly depend on the first di-
mension and nothing else. This is a major flaw of
approaches that minimize the vector reconstruction
loss because the optimized quantity is different to
the actual goal.

R =




1099 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 R−1 =




10−99 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




Distance Learning. The task of dimensionality
reduction has been explored by standard statistical
methods by the name manifold learning. The most
used method is t-distributed stochastic neighbor
(t-SNE) embedding built on the work of Hinton
and Roweis (2002) or multidimensional scaling
(Kruskal, 1964; Borg and Groenen, 2005). They
organize a new vector space (of lower dimension-
ality) so that the L2 distances follow those of the
original space (extensions to other metrics also ex-
ist). Although the optimization goal is more in
line with our task of vector space compression with
the preservation of nearest neighbours, methods of
manifold learning are limited by the large computa-
tion costs11 and the fact that they do not construct
a function but rather move the discrete points in
the new space to lower the optimization loss. This
makes it not applicable for online purposes (i.e.
adding new samples that need to be compressed as
well).

The main disadvantage of the approaches based
on reconstruction loss is that their optimization
goal strays from what we are interested in, namely
preserving distances between vectors. We tried to
reformulate the problem in terms of deep learn-
ing and gradient-based optimization to alleviate
the issue of speed and extensibility of standard
manifold learning approaches. We try to learn a
function that maps the original vector space to a
lower-dimensional one while preserving similari-
ties. That can be either a simple linear projection A
or generally a more complex differentiable function
f :

L = MSE(sim(f(ti), f(tj)), sim(ti, tj))

After the function f is fitted, both the training
and new data can be compressed by its application.
As opposed to manifold learning which usually

11The common fast implementation for t-SNE, Barnes-Hut
(Barnes and Hut, 1986; Van Der Maaten, 2013) is based on
either quadtrees or octrees and is limited to 3 dimensions.

leverages specific properties of the metrics, here
they can be any differentiable functions. The opti-
mization was, however, too slow, underperforming
(between sparse projection and PCA) and did not
currently provide any benefits.

We also tried to use unsupervised contrastive
learning by considering close neighbours in the
original space as positive samples and distant neigh-
bours as negative samples but reached similar re-
sults.

6 Discussion

In this section we briefly discuss the main con-
clusions from our experiments and analysis in the
form of recommendations for NLP practicioners.

Importance of Pre-/post-processing. As our re-
sults show, for all methods (and models), centering
and normalization should be done before and after
dimension reduction, as it boosts the performance
of every model.

Method recommendation. While most compres-
sion methods achieve similar retrieval performance
and compression ratios (cf. Table 2 and Table 7),
PCA stands out in the following regards: (1) It re-
quires only minimal implementation effort and no
tuning of hyper-parameters beyond selecting which
principal components to keep; (2) as our analysis
shows, the PCA matrix can be estimated well with
only 1000 document or query embeddings. It is not
necessary to learn a transformation matrix on the
full knowledge base; (3) PCA can easily be com-
bined with precision reduction based approaches.

7 Summary

In this work, we examined several simple unsu-
pervised methods for dimensionality reduction for
retrieval-based NLP tasks: random projections,
PCA, autoencoder and precision reduction and their
combination. We also documented the data require-
ments of each method and their reliance on pre-
and post-processing.

Future work. As shown in prior works, dimen-
sion reduction can take place also during training
where the loss is more in-line with the retrieval
goal. Methods for dimension reduction after train-
ing, however, rely mostly on reconstruction loss,
which is suboptimal. Therefore more research for
dimension reduction methods is needed, such as
fast manifold or distance-based learning.
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Hyperparameters

Batch size 128
Optimizer Adam
Learning rate 10−3

L1 regularization 10−5.9

Table 3: Hyperparameters of autoencoder architectures
described in Section 4.3. L1 regularization is used only
when explicitly mentioned.

A Pre-processing

Another common approach before any feature se-
lection is to use z-scores (x−x̄

σ ) instead of the orig-
inal values. Its boost in performance is however
similar to that of centering and normalization. The
effects of each pre-processing step are in Table 5.
The significant differences in performance show
the importance of data pre-processing (agnostic to
model selection).

B Speed

Despite the autoencoder providing slightly better
retrieval performance and PCA being generally eas-
ier to use (due to the lack of hyperparameters),
there are several tradeoffs in model selection. Once
the models are trained, the runtime performance
(encoding) is comparable though for PCA it is a
single matrix projection while for the autoencoder
it may be several layers and activation functions.

Depending on the specific library used for im-
plementation, however, the results differ. Figure 8
shows that the autoencoder (implemented in Py-
Torch) is much slower than any other model when
run on a CPU but the fastest when run on a GPU.
Similarly, PCA works best if used from the Py-
Torch library (whether on CPU or GPU) and from

12PyTorch 1.9.1, scikit-learn 0.23.2, RTX 2080 Ti (CUDA
11.4), 64×2.1GHz Intel Xeon E5-2683 v4, 1TB RAM.

Uncompressed PCA 1bit

Uncompressed 1.00
PCA 0.87 1.00
1bit 0.81 0.80 1.00

Table 4: Correlation of the number of retrieved docu-
ments for HotpotQA queries in different retrieval modes:
uncompressed, PCA (128) and 1-bit precision with R-
Precisions (centered & normalized) of 0.618, 0.579 and
0.561, respectively.

IP L2

DPR-CLS 0.609 0.240

Center 0.630 0.353
Z-Score 0.632 0.525
Norm. 0.463
Center + norm. 0.618
Z-Score + norm. 0.621

Table 5: Effect of pre-processing transformations on
embeddings produced by DPR-CLS. Means and stan-
dard deviations are computed separately for documents
and queries. Transformation into z-scores includes cen-
tering.

Dataset Train Dev Doc.

HP 69k 6k 49.7 Mio.
HP (pruned) 69k 6k 2.1 Mio.
NQ (pruned) 78k 2k 1.6 Mio.

Table 6: Number of training and dev queries and docu-
ments for HotpotQA and Natural Questions. Train and
dev columns are queries.

the standard Scikit package. Except for Scikit,
there seems to be little relation between the tar-
get dimensionality and computation time.

C Comparison on Natural Questions

We also show the major experiments in Ta-
ble 7 (table structure equivalent to that for the
pruned dataset in Table 2) on Natural Question
(Kwiatkowski et al., 2019) with identical dataset
pre-processing. The performance is overall larger
because the task is different and the set of docu-
ments is lower (1.5 million spans) but compara-
tively the trends are in line with the previous con-
clusions of the paper.

52



32 256 512 768

Dimension

50

100

150

200

250

300

350

T
ra

in
ti

m
e

(s
)

PCA (scikit)

PCA (Torch, GPU)

PCA (Torch, CPU)

Auto. (GPU)

Auto. (CPU)

32 256 512 768

Dimension

20

22

24

26

28

30

32

E
n

co
d

e
ti

m
e

(s
)

PCA (scikit)

PCA (Torch, GPU)

PCA (Torch, CPU)

Auto. (GPU)

Auto. (CPU)

Figure 8: Speed comparison of PCA and autoencoder (model 3) implemented in PyTorch and Scikit12split into
training and encoding parts. Models were trained on documents and queries jointly (normalized). Error bars are
95% confidence intervals using t-distribution (5 runs).

Method Compression Original Center + Norm.

IP L2 {IP, L2} (% original)

Original 1× 0.934 0.758 0.920 (100%)

Gaussian Projection 6× 0.825 0.848 0.855 (93%)

Sparse Projection 6× 0.826 0.848 0.856 (93%)

Dimension Dropping 6× 0.840 0.863 0.867 (94%)

Greedy Dimension Dropping 6× 0.845 0.873 0.873 (95%)

PCA 6× 0.908 0.907 0.910 (99%)

PCA (scaled top 5) 6× 0.916 0.910 0.920 (100%)

Autoencoder (single layer) 6× 0.915 0.910 0.914 (99%)

Autoencoder (full) 6× 0.903 0.907 0.910 (99%)

Autoencoder (shallow decoder) 6× 0.916 0.918 0.919 (100%)

Autoencoder + L1 (single layer) 6× 0.918 0.918 0.921 (100%)

Autoencoder + L1 (full) 6× 0.909 0.910 0.913 (99%)

Autoencoder + L1 (shallow decoder) 6× 0.918 0.917 0.919 (100%)

Precision 16-bit 2× 0.921 0.917 0.920 (100%)

Precision 8-bit 4× 0.920 0.921 0.922 (100%)

Precision 1-bit (offset 0.5) 32× 0.902 0.902 0.904 (98%)

Precision 1-bit (offset 0) 32× 0.892 0.902 0.904 (98%)

PCA (245) + Precision 1-bit (offset 0.5) 100× 0.854 0.862 0.858 (93%)

PCA (128) + Precision 8-bit 24× 0.906 0.904 0.909 (99%)

Table 7: Overview of compression method performance (from 768) using either L2 or inner product for retrieval.
Inputs are based on (1) original and (2) centered and normalized output of DPR-CLS. Performance is measured by
R-Precision on NaturalQuestions.
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