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Abstract 
Coding and analyzing large amounts of video data is a challenge for sign language researchers, who traditionally code 2D video data 

manually. In recent years, the implementation of 3D motion capture technology as a means of automatically tracking movement in sign 

language data has been an important step forward. Several studies show that motion capture technologies can measure sign language 

movement parameters – such as volume, speed, variance – with high accuracy and objectivity. In this paper, using motion capture 

technology and machine learning, we attempt to automatically measure a more complex feature in sign language known as distalization. 

In general, distalized signs use the joints further from the torso (such as the wrist), however, the measure is relative and therefore 

distalization is not straightforward to measure. The development of a reliable and automatic measure of distalization using motion 

tracking technology is of special interest in many fields of sign language research. 
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1. Introduction 

Sign language users exploit different articulators of their 
body for linguistic purposes, including the face, head, 
torso, and the hands. In spoken language research, linguists 
use a range of sophisticated computer programs in the 
analysis of speech. However, until relatively recently, sign 
language researchers lacked the equivalent type of 
technology for measuring different aspects of visual 
languages. With the introduction of infra-red motion 
capture technology to the field of sign language linguistics, 
researchers can track movement in an automatic way. 
Motion capture has been used as a tool for analyzing a 
range of sign language phenomena; for example, 
distinguishing between verb types (Malaia et al., 2008), 
lexical signs and constructed action (Stamp et al., 2018a), 
signs first mentioned and repeated signs (Stamp et al., 
2018b), etc.  

In this paper, we focus on one specific feature in sign 
language, described as distalization. Distalization refers to 
the process of distancing the joint engaged in the movement 
further from the body (Meier et al., 2008; Poizner et al., 
2000). Some signs are produced with joints closer to the 
body, known as proximalized signs – typically, these joints 
are the shoulder and the elbow, while distalized signs are 
produced with joints further from the body, such as the 
wrist and finger joints (see Figure 1). In some cases, the 
same sign may exist in two variations: one proximal and 
one distal.  

 

Figure 1: Distalization of joints 

For example, the sign meaning ‘understand’ in Israeli Sign 
Language (Figure 2) can be produced proximally (left) and 
distally (right). In the distal example, the movement 
originates at the wrist, while in the proximal example, the 
movement originates from the elbow. However, 
distalization is relative, and therefore, while the wrist joint 
is distal in the sign for ‘understand’, it is proximal for the 
sign ‘donkey’, in comparison to the distal form produced at 
the finger joints. The choice of distal or proximal variants 
has been associated with a number of factors including 
fluency and sonority (Mirus et al., 2000; Napoli & Liapis, 
2019), as well as the indexing of different social identities, 
such as gender and sexuality (Blau, 2017; Moges, 2020). 

 

Figure 2: Proximalized sign (left) and distalized sign 
(right) for ‘understand’ 

In this study, we implement 3D motion capture technology 
and computational modelling to automatically detect distal 
and proximal signs. We hope that this offers linguists a 
potential alternative to the manual coding of 2D video data, 
which has often been adopted in previous studies (e.g., 
Blau, 2017). 

2. Distalization 

Distalization is an important measure in sign language 
research; the measure appears in studies on sign language 
production and perception, first and second language 
acquisition and studies on language variation and change. 
In studies on sign language production, the movement of 
the most proximal joint, the shoulder, is shown to exert the 
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greatest amount of energy and therefore use of distal joints 
has been associated with ease of articulation. Proximal 
signs are associated with non-nativity and are engaged in 
communication from a distance (Sandler & Lillo-Martin, 
2006), suggesting that proximalization aids in the process 
of sign language perception. The choice between distal and 
proximal joints, therefore, is a balance between ease of 
articulation and ease of perception (Napoli & Liapis, 2019). 
There is an important link between ease of articulation and 
language acquisition and language variation and change. 
Studies show that learners of a sign language, both children 
and adults, begin by using proximal signs and then shift to 
distal signs as they increase their motor control (Gesell, 
1929; Jensen et al., 1994; Meier et al., 2008). Therefore, 
distalization is an indicator of sign language fluency. For 
example, in a study examining signers of American Sign 
Language, fluent signers tended to reduce effort through 
distalization (Napoli et al., 2011).  

Furthermore, distalization may influence the overall size of 
signing. Proximal signs, using the shoulder or elbow joints, 
are claimed to give an overall impression of larger signing. 
Movement around the wrist joint, in contrast, can give an 
impression of smaller signing. As a result, distal signs are 
often used to communicate something private or whispered 
(Brentari, 1999), while proximal signs are associated with 
conveying anger or excitement. Moreover, distalized forms 
may be used to index different social identities, including 
sexuality (Blau, 2017) and gender (Moges, 2020). In 
interviews conducted with female-bodied masculine ASL 
signers, Moges (2020) found that participants associated 
proximalization with masculinity, and participants were 
shown to proximalize their own signing when projecting a 
more masculine identity. The relationship between sign 
size and gender has not always been clear in the literature; 
some research claims that women sign bigger than men, 
i.e., that women tend to proximalize (De Santis, 1977), and 
other research suggests the opposite (Eichmann, 2004). In 
a recent study, implementing motion capture technology, it 
was shown that women’s signing is characterized by a 
larger signing space than men’s signing (Stamp et al., in 
prep.). The feature of distalization has also been associated 
with indexing gay identities in several studies (Blau, 2017; 
Fitzgerald, 2004; Michaels, 2008, 2015; Murray, 2002). In 
contradiction to this though, some researchers claim that 
gay-indexed styles of signing are characterized by a larger 
use of the signing space (Michaels, 2008, 2015), suggesting 
that distalization may not directly correlate with sign size.  

The measurement of distalization however is not 
straightforward. It involves tracking the movement of 
several joints (e.g., finger joints, wrist, elbow, and 
shoulder), as well as measuring the degree of rotation 
around each joint. Manual coding of distalization is not 
optimal; data is usually based on 2D videos (often 
obscuring the observation of rotational movement around 
the joints), it is often coded subjectively, and it is 
considerably time-consuming and error prone. Therefore, 
the development of a reliable and automatic measure of 
distalization using motion tracking technology is of special 
interest in the fields of articulation and perception, 
acquisition, as well as language variation.  

In the next section, we outline the tool utilized for tracking 
movement in this study, Microsoft Kinect Azure.   

3. Motion capture in sign language research 

Microsoft Kinect is a camera and body-tracking sensor 
system originally designed for video game play. Kinect 
(Microsoft: ‘Kinect for Xbox One’, 2018) uses the time-of-
flight (ToF) principle, in which the distance to an object is 
determined by the time it takes for the light emitted from 
the infrared light projector to reach the object and return to 
the camera’s sensor (Foix et al., 2011; Hansard et al., 2012; 
Shotton et al., 2011). This enables the recognition of human 
bodies in the scene and an estimation of their locations in 
3D space (see Figure 3). The Kinect camera also records 
standard RGB (red-green-blue) videos and audio. The 
advantages of using Kinect for motion capture in sign 
language research is that the device is inexpensive and non-
invasive (therefore, causing minimal interference with 
signing). 

 

 

 

 

 

 

 

Figure 3: A depth image representing distance from the 
camera for every point in the human figure (bright points 

are more distant) 

In addition, when a participant is recorded, the system uses 
the depth image to extract a skeleton representation of the 
participant computed per frame (Shotton et al., 2011). The 
skeleton data is composed of 32 major skeleton joints of the 
human body, connected by line segments (see Figure 4). 
For every frame, the system outputs the 3D location of each 
of the skeleton joints (a triplet x,y,z, in meters, given in the 
camera's frame of reference).  

 
Figure 4: The joints tracked using Kinect Azure 

(Microsoft Kinect, 2019) 
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4. Methodology 

Two adult female models were recruited to elicit training 
data (Mean age: 39 years). The models produced a set of 
Israeli Sign Language signs which are known to vary in 
terms of distalization (Stamp et al., 2021). The models were 
recorded using Microsoft Kinect Azure while signing two 
versions of the same sign (distal & proximal).  

The full recording sessions were parsed into segments, 
comprising of single signs. Each sign was processed and 
analyzed using specialized code which we developed; the 
skeleton was extracted per frame and then spatio-temporal 
features were computed over all frames in the segment. 
Prior to computing the measurements, the skeletons were 
normalized to a standard size using the method in Weibel 
et al. (2016) to eliminate size effects.  

The most noticeable features of distalization include the 
angles of the arms and therefore we focused on extracting 
movement parameters from four joints: the shoulder, 
elbow, wrist, and hand joints (see Figure 5). The position 
of each joint is given in each time frame as 3D coordinates: 
X, Y and Z. Thirteen features were extracted from these 
coordinates and used in the training: 

• Speed, mean and standard deviation of: 

o Elbow angular change between frames (A)  

o Elbow twist between frames (B) 

o Wrist angular change between frames (C) 

o Hand angular change between frames (D) 

• Volume: 

o Fingers  

 

Figure 5: Visual representation of the joint movements 

The twist at the elbow measures the angle of rotation of the 
elbow-wrist bone around the axis of rotation defined by the 
elbow-shoulder bone. See OSF for the calculation of angle 
of twist at the elbow joint in MatLab script: 
https://osf.io/q3h6r/. For each feature, the mean, std and 
average speed were calculated across all frames in the 
sequence. The set of features computed per video segment, 
formed a feature vector to be used in the machine learning 
algorithm.   

 

 

 

5. Results 

The data consisted of 350 samples, which were split into 
50% distal and 50% proximal (our classification labels). A 
feature vector was created for each of the samples as 
described above. To assess the capability of predicting 
whether a sign is distally or proximally signed, we trained 
a machine learning model. We used the Random Forest 
model (Breiman, 2001; Ho, 1998), which is a collection of 
decision trees whose weights are learned from examples in 
the training set. We used 100 trees with unlimited depth. 
Gini was used as the split criterion at the nodes of the 
decision trees. We ran the test using a 10-folds validation 
design. Thus, the data was divided into 10 equal parts, and 
for each part, the samples were withheld from the rest of 
the data which were used to train the Random Forest model. 
The withheld samples were then tested for distalization 
using the trained model and the accuracy of correct 
prediction was determined. The process was repeated 
independently for each of the 10 parts resulting in 10 values 
of accuracy. Following this approach, we achieved a mean 
accuracy of 71% (std: 8.0).  

In order to enhance the model performance, we reduced the 
dimensionality of the input feature vector by performing 
feature ranking (Guyon & Elisseeff, 2006) and removing 
the least informative features:  

1. Hand angle mean 

2. Elbow standard deviation 

3. Elbow twist angle standard deviation 

4. Volume of finger joint 

 
Re-running the model with the remaining nine features 
using the same 10-fold validation design, we achieved an 
accuracy ranging between 80%-82%, with a mean accuracy 
of 81.35%. In other words, the model was able to predict if 
a new input segment was distal or proximal with 81% 
accuracy. The 19% of misses were a combination of false 
positives and false negatives (as displayed below, Figure 
6). The data with highlighted misses can be accessed in 
OSF: https://osf.io/q3h6r/.  

 

Figure 6: Distribution of the proximal and distal signs, 
showing 5 false positives (distal signs categorized as 

proximal) and 6 false negatives (proximal signs 
categorized as distal) 
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There may be several reasons why the model classified 
some of the samples incorrectly. In some cases, the arm 
joint was not captured well by the Kinect camera. In other 
cases, the skeleton was tracked well but the distal forms 
involved finger movement, which generally is not tracked 
well using Kinect. Finally, although a 10-folds design was 
used for cross-validation, the dataset is very small and 
therefore, more training data is required to reach a higher 
accuracy.  

The most predictive features of distalization were standard 
deviation of the angular changes of the wrist and hand and 
the least predictive were the features depending on speed 
(as shown in Figure 7). 

 

Figure 7: Features which predict distal or proximal signs, 
in order of their contribution to the prediction. 

6. Conclusion 

Distalization is a complex measure, in which the features 
involved are not fully understood. In this paper, we show 
that motion capture technologies can be implemented to 
measure distalization in an automatic and objective way. 
The model reached an accuracy of over 80% in predicting 
whether a sign is distal or proximal. More work needs to be 
done to improve the model; however, these preliminary 
findings suggest that motion capture can be an important 
tool in the automatic processing of sign language data. In 
addition, our initial findings point to the importance of the 
standard deviation of the wrist and hand movements as a 
predictor of such a movement. Interestingly, our model 
showed that volume (signing size) was not an important 
predictor of distal or proximal signs, despite the close 
relationship between distalization and signing size in the 
literature. Future studies should test the model on a larger 
dataset and implement more accurate tracking tools which 
enable finger joint tracking. 
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