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Abstract

We present an extension of the Morfessor Base-
line model of unsupervised morphological seg-
mentation (Creutz and Lagus, 2007) that in-
corporates abstract templates for reduplication,
a typologically common but computationally
underaddressed process. Through a detailed in-
vestigation that applies the model to Māori, the
Indigenous language of Aotearoa New Zealand,
we show that incorporating templates improves
Morfessor’s ability to identify instances of redu-
plication, and does so most when there are
multiple minimally-overlapping templates. We
present an error analysis that reveals important
factors to consider when applying the extended
model and suggests useful future directions.

1 Introduction

Unsupervised models that can learn to segment
words into morphemes without requiring extensive
hand-written rules have two important advantages
(see Creutz and Lagus, 2007, for discussion). First,
their unsupervised nature allows them to capture a
key facet of human morphological learning: learn-
ing despite the lack of both direct and negative
evidence. Second, their lack of hand-written rules
makes them very flexible: they can be deployed in
a range of applications, across diverse languages.

However, in order to learn effectively, unsuper-
vised models must make general assumptions about
underlying morphological processes, and their suc-
cess in part reflects the appropriateness of these
assumptions for the language(s) under investiga-
tion. This can cause the underlying assumptions
to become tuned to the morphological processes of
high-resource languages used in development and
evaluation (Bender, 2009), leading models to over-
look processes that do not occur in such languages,
even if they are typologically common.

Recent work has highlighted the advantages
to such models of incorporating expert linguistic
knowledge, such as language-specific morphemes
and/or abstract morphological templates (Butler,
2016; Eskander et al., 2016; Godard et al., 2018;
Xu et al., 2020). We explore the value added to a
standard baseline model, Morfessor (Creutz and La-
gus, 2007; Virpioja et al., 2013), by incorporating
templates for reduplication, a typologically com-
mon but computationally underaddressed process.
We conduct a detailed analysis of the successes and
challenges in using an enriched model to capture
reduplication in Māori (Polynesian), the Indige-
nous language of Aotearoa New Zealand, which
reveals a promising path for unsupervised morpho-
logical segmentation of languages with reduplica-
tion more broadly.

2 Background

2.1 Unsupervised morphological segmentation

Morphological segmentation aims to identify
boundaries within words by splitting them into
parts, as in de + forest + ation. In unsupervised
approaches, the inventory of parts is inferred from
the training data, by identifying the morphs – se-
quences of characters, phonemes, or larger ‘atoms’
– that recur across words with statistical regularity.
There are several models for unsupervised morpho-
logical segmentation, many permitting fine-grained
structural assumptions about underlying morpho-
logical processes (e.g. Goldsmith, 2001; Johnson
and Griffiths, 2007; Eskander et al., 2016; Godard
et al., 2018; Xu et al., 2018, 2020).

We focus on the Morfessor family of models
(Creutz and Lagus, 2007), often used as a baseline
due to its extremely simple assumptions. Morfes-
sor uses a Minimum Description Length framework
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(Rissanen, 1978): it aims to identify the smallest
and simplest set of morphs (the lexicon) that gener-
ates the training data with highest probability. The
lexicon is treated as a bag of morphs, where the cost
of adding a given morph to the lexicon in training
is based on the complexity of its form as well as the
frequency with which it recurs across words. The
training data are assumed to be generated from the
lexicon by concatenating morphs that are drawn
independently from it, with no consideration of
contraints based on position, sequencing, or mor-
phosyntactic category. Morfessor is particularly
suited to languages that make heavy use of concate-
native morphological processes with limited or no
phonological alternations. We explore whether it
can be expanded to account for reduplication, by
extending the Python implementation of Morfessor
2.0 (Virpioja et al., 2013).

2.2 Reduplication and Morfessor

Reduplication is defined by Rubino (2005) as
“the systematic repetition of phonological material
within a word for semantic or grammatical pur-
poses”. Informally, it is often described as a pro-
cess by which a reduplicant phonologically ‘copies’
part of a base to which it is morphologically at-
tached. The reduplicant may copy the entire base,
as in the Māori pakipaki ‘to clap’ (from paki ‘to
slap’), or only part of it, as in Māori nunui ‘big.PL’
(from nui ‘big.SG’). In formal linguistic theory, the
reduplicant is commonly treated as a morpheme,
RED, which has little or no inherent phonological
content, and copies content from the base in order
to satisfy prosodic wellformedness templates (e.g.
Marantz, 1982; McCarthy and Prince, 1996). In
this view, the reduplicant attaches to the base in the
same way as any other morpheme would. However,
for clarity, we notate these kinds of morphologi-
cal attachment differently, using ⊕ to represent a
boundary between a reduplicant and its base, and
+ to represent all other boundaries.

Rubino (2013) reports that 85% of languages
documented in the World Atlas of Language Struc-
tures include some productive form of reduplica-
tion. Yet, despite its prominence, reduplication is
not typically given special treatment in unsuper-
vised approaches to morphological segmentation.
For Morfessor, we are only aware of one system
incorporating reduplication (Butler, 2016); how-
ever, it identifies and rewrites potential instances
of reduplication outside of Morfessor, following a

heuristic, rather than within Morfessor, according
to statistical evaluation. It treats reduplication as a
feature of the data rather than of the probabilistic
grammar of the language, limiting the ability to
leverage knowledge of reduplication to navigate
ambiguity or generalize beyond the training set.1

The lack of integrated special treatment of redu-
plication limits Morfessor’s ability to consistently
identify reduplicants, due to their variable form.
In turn, the repeated failure to isolate reduplicants
from their bases limits Morfessor’s ability to iden-
tify these bases as independent morphs elsewhere,
outside of reduplication. The incorporation of spe-
cial treatment of reduplication into Morfessor thus
stands to vastly improve its reliability, not only in
reduplicated words but also in general.

2.3 The Māori language

Māori is an ideal test case for four reasons. First, its
orthography maps to phonemes unambiguously2,
enabling morphological segmentation to be applied
straightforwardly to written words. Second, it has
clear atoms for morphological segmentation, as
morpheme boundaries typically coincide with the
boundaries of (C)V units (Bauer, 1993). Third,
its morphology predominantly includes concatena-
tive processes (Krupa, 1968) and makes heavy use
of compounding, alongside a few highly produc-
tive affixes (Bauer, 1993; Harlow, 1993). Fourth,
approximately 25% of its word types include redu-
plication (often alongside other morphological pro-
cesses; Todd et al., 2019), implying that it stands to
gain a lot from the incorporation of reduplication
into morphological segmentation systems.

Māori has many kinds of reduplication (see Kee-
gan, 1996), all requiring the base to contain at least
2 morae, where a syllable with a short vowel has
1 mora and a syllable with a long vowel has 2
(Harlow, 1991). We focus on the 5 most common
kinds: full, in which the reduplicant copies the
whole base; left-1, in which it copies the first mora
from the base; left-1L, in which it copies the first
mora and lengthens its vowel; left-2, in which it
copies the first 2 morae from a base containing at
least 3 morae; and right, in which it copies the last
2 morae from a base containing 4 morae, where the
first syllable has a long vowel (see Table 1).

1A direct comparison between our extension to Morfessor
and alternative models is left for future work.

2Each phoneme is represented by a single character, except
for the digraphs ⟨wh⟩ (/f/) and ⟨ng⟩ (/N/). Macrons ⟨ā, ē, ı̄, ō,
ū⟩ designate long vowels.
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Kind Examples

full pakipaki, whiuwhiu, tōtō
left-1 nunui, hahana, huhū
left-1L kākahu, mı̄miro, rērere
left-2 huahuaki, kuikuia, māmāika
right tākaikai, hāmamamama, ūkuikui

Table 1: Common kinds of Māori reduplication.

3 Extending Morfessor to reduplication

3.1 General approach

Consistent with the common approach within lin-
guistic theory, we treat all reduplicants as corre-
sponding to one morph, RED, which has no phono-
logical content. We add RED to the lexicon under-
lying the Morfessor training and testing algorithms,
such that identifying a new instance of reduplica-
tion allows the algorithms to ignore the form-based
component of the cost of the reduplicant, and to re-
duce its usage-based cost by pooling counts across
all other reduplicants in already-identified instances
of reduplication. Importantly, we do not assume
that all potential instances of reduplication are ac-
tual instances of reduplication, either in training
(Section 3.2) or in testing (Section 3.3).3

We use manually-defined templates to identify
potential instances of reduplication, which are as-
sessed by Morfessor for their statistical support as
actual instances. The templates are loosely spec-
ified, to permit them to capture arbitrary copying
in any language. Given the side of reduplicant
attachment and the minimum size of the base, po-
tential instances of reduplication are flagged by
string comparison of adjacent sequences of atoms
(phonemes, syllables, etc.). Additional specifica-
tions can be added on a language-by-language ba-
sis, leveraging expert knowledge for tighter control;
these may include constraints on size or shape of
the reduplicant or base, or even systematic alter-
nations between correspondents in the reduplicant
and base (e.g. Māori left-1L reduplication, kākahu).

For Māori, we define three mutually-exclusive
templates as generalizations over the kinds and con-
straints described in Section 2.3. In all templates,
the base must be at least bimoraic. In the full-
reduplication template, the reduplicant and base

3Code for our approach, consisting of a patch to Mor-
fessor 2.0 (Virpioja et al., 2013), is available at https:
//github.com/sjtodd/morfessoRED. At the time
of writing, detailed documentation is still under development.

must be the same size; in the left-reduplication tem-
plate, the reduplicant may be any size smaller than
the base, and, if monosyllabic, may consist of a
single syllable that lengthens the vowel of its corre-
spondent in the base; and in the right-reduplication
template, the reduplicant must be at least bimoraic
and shorter than the base, which must have a long
vowel in the first syllable. Because the templates
are mutually exclusive, each may be included in
the model or excluded, independent of the others.4

We also make the (Māori-specific) assumption
that the base must be morphologically simplex (fol-
lowing Krupa, 1968). Thus, when Morfessor com-
mits to analyzing a word as an instance of redupli-
cation (e.g. of analyzing tākaikai as tākai⊕ RED),
we block it from considering any future placement
of boundaries within the minimal base (tākai).

3.2 Training models with reduplication

Training in Morfessor uses the recursive splitting al-
gorithm (henceforth, RS; Creutz and Lagus, 2002).
For a given input, RS evaluates all possible anal-
yses that split the input into two parts, as well as
the analysis that leaves it unsplit. It chooses the
analysis for which the associated parameter update
permits lowest-cost generation of the training data.
If the chosen analysis splits the input into parts,
the algorithm recurses to evaluate analyses of each
part; otherwise, it moves on to evaluate the next
input. It cycles through all words in a training set
once per epoch, and repeats until the epoch-wise
decrease in cost falls below a threshold.

We extend RS to consider reduplication. When
the analysis under consideration splits a potential
reduplicant at the edge of the input from its appar-
ent base (e.g. nu⊕ nui), we consider an analysis
that replaces the reduplicant with RED (RED ⊕ nui).
This analysis will be chosen if it is associated with
lower cost than any alternative.

We do not automatically consider an analysis
involving reduplication if the potential reduplicant
is not at the edge of the input, as in many words in-
volving compounding or affixation (e.g. whārarahi,
whā + [RED ⊕ rahi]). If the compound component
or affix (whā) is split off first, leaving the redupli-
cant at the edge of one part (rarahi), we consider
reduplication as above. Otherwise, we only con-

4The full-reduplication template assumes that the ‘default’
side on which the reduplicant attaches is the left, unless the
left-reduplication template is not included in the model and
the right-reduplication template is, in which case it assumes
attachment on the right for parsimony.
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sider reduplication if RS finds no binary-splitting
analysis that is better than leaving the input unsplit
(whārarahi), in which case we evaluate whether the
ternary-splitting analysis implied by reduplication
is associated with lower cost than the unsplit anal-
ysis. This allows reduplication to be leveraged as
a cue to the presence of compounding or affixa-
tion, but ensures that we do not overgeneralize by
relying on this cue too strongly.

Finally, if it is ambiguous whether an
edge-aligned reduplicant corresponds to full-
reduplication or another kind of reduplication
(e.g. whether huahuaki is [RED ⊕ hua] + ki or
RED ⊕ huaki), we leave both options open by nei-
ther enforcing nor restricting a boundary placement
after the apparent full-reduplication base (hua). If
RS goes on to place a boundary here, we analyze
it as full-reduplication; otherwise, we analyze it
as the other kind of reduplication. This is consis-
tent with the use of loosely-specified templates that
allow arbitrary copying.

3.3 Applying models to seen and unseen data

In testing, Morfessor uses the segmentation ob-
tained from RS if the word was observed in training.
Otherwise, it uses the Viterbi algorithm (Viterbi,
1967) to find the optimal path through potential
boundary sites (see Virpioja et al., 2013).

The standard Viterbi algorithm proceeds ‘hor-
izontally’ through potential boundary sites in a
word, identifying at each site the optimal previ-
ous site to have come from in left-to-right order
(Figure 1(a)). We extend the algorithm by adding a
‘vertical’ dimension, which holds partial analyses
matching different reduplication templates (Figure
1(b)). At each potential boundary site in the word,
the set of ‘horizontal’ candidates for optimal pre-
vious site is augmented with a small number of
directly neighboring ‘vertical’ sites representing
partial analyses based on reduplication templates.
As in RS, the reduplicant is replaced by RED in the
evaluation of reduplication partial analyses.

4 Experiments

4.1 Data

The models were trained on a set of 19,595 word
types from the Te Aka Dictionary (Moorfield,
2011), with all kinds of morphological structures
(i.e. not just reduplication). To form this set, we
took all headwords, together with their listed inflec-
tions. When a headword was composed of words

Figure 1: Segmentation traces for whakapōhanehanetia
from the Viterbi algorithm. Solid circles indicate re-
quired boundaries. We extend the standard algorithm
(a) by adding a dimension for reduplication paths (b).

Data full left-1 left-1L left-2 right

Training 816 588 169 786 1191
Test 747 314 79 56 693

Table 2: Distribution of words across different kinds of
reduplication. The training data also contains 16,045
other words, many of which combine reduplication with
compounding and/or affixation.

separated by whitespace or hyphens, we split it into
components. We then removed (capitalized) proper
nouns, because they are likely to be place name
borrowings, or are otherwise unlikely to follow the
same morphological grammar as other words.

The models were tested on a set of 1,889 word
types categorized by Keegan (1996, Appendices A–
D) as clear instances of the kinds of reduplication
under investigation. Based on Keegan’s categoriza-
tion, we inferred a gold standard segmentation for
each word. We removed words where the apparent
base was likely morphologically complex, as deter-
mined by consisting of more than 4 morae or more
than 3 syllables (cf. Krupa, 1968; de Lacy, 2003),
to allow us to focus on the ability to capture redu-
plication without influence of other morphological
processes. We cross-referenced the final test items
with the Te Aka Dictionary (Moorfield, 2011) in
order to ensure consistency in the identification of
long vowels. 83.5% of the test items were in the
dictionary (i.e. the training data).

Table 2 shows the distribution of words across
reduplication templates in the two datasets.

4.2 Metrics

We report four metrics: accuracy, recall, and
two versions of precision. Each metric is macro-
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Segmentation Acc. Rec. Prec.0 Prec.1

tākai⊕ kai 1 1 1 1
tā + kaikai 0 0 0 0
tā + kai⊕ kai 0 1 0.5 0.5
tākaikai 0 0 0 1

Table 3: Example metrics for various segmentations of
tākaikai, where + designates a boundary and ⊕ desig-
nates the gold boundary between reduplicant and base.
This designation is for ease of reference only; all pre-
dicted boundaries are treated alike in calculations.

Model Acc. Rec. Prec.0 Prec.1

original 0.23 0.34 0.28 0.59
extended 0.83 0.98 0.91 0.91

Table 4: Test metrics for original Morfessor (no redupli-
cation templates) and extended model (all templates).

averaged, i.e. calculated on a per-word basis and
then averaged across all words in the test set. All
metrics are calculated based on the morph bound-
aries contained within the segmentation of a word.
Since the words in the test set have morphologically
simplex bases for reduplication, the gold standard
segmentation contains only a single boundary.

For a given word, accuracy (Acc.) is 1 if the
model predicts a single boundary matching the
gold boundary, and 0 otherwise. Recall (Rec.) is
1 if the model’s predicted boundaries include the
gold boundary, and 0 otherwise. When the model
predicts n ≥ 1 boundaries, both versions of pre-
cision (Prec.0 and Prec.1) are 1/n if one of those
boundaries is the gold boundary, and 0 otherwise.
When the model leaves a word unsplit, predicting
no boundaries for it, Prec.0 is 0, while Prec.1 is 1.5

The metrics are illustrated in Table 3.

4.3 Overall effects of reduplication templates
Our results show that incorporating reduplication
templates leads to substantial improvements over
the original Morfessor model (see Table 4). The
original model has two main issues. First, it pre-
dicts no boundaries for a lot of test items (571 items
/ 30.2%). Second, the boundaries it does predict
usually do not match the gold boundary; for exam-

5Prec.1 is the version of precision in the Morfessor 2.0
Python implementation (Virpioja et al., 2013). It artificially
rewards models that leave words unsplit; introducing Prec.0
allows us to make comparisons that account for this. To avoid
ambiguity of interpretation resulting from the presence of two
versions of precision, we do not calculate an F-score.

n Templates Acc. Rec. Prec.0 Prec.1

0 -F -L -R 0.23 0.34 0.28 0.59
1 -F +L -R 0.34 0.44 0.39 0.67
1 -F -L +R 0.47 0.53 0.50 0.77
1 +F -L -R 0.48 0.83 0.65 0.72
2 +F -L +R 0.54 0.87 0.70 0.75
2 +F +L -R 0.59 0.97 0.78 0.79
2 -F +L +R 0.65 0.71 0.68 0.86
3 +F +L +R 0.83 0.98 0.91 0.91

Table 5: Test metrics for models with different numbers
(n) and types of reduplication templates.

ple, it predicts a single boundary for 1,094 items
(57.9%), but this only matches the gold boundary
39.9% of the time (437 items). Even when it (in-
correctly) predicts multiple boundaries (224 items),
the gold boundary is not among them 9.4% of the
time (21 items). By contrast, the extended model
predicts no boundaries for very few test cases (14
items / 0.7%) and a single boundary for most (1,579
items / 83.6%), matching the gold boundary 99.4%
of the time (1,570 items). It (incorrectly) predicts
multiple boundaries slightly more often than the
original (296 items), but it is rarer for the gold
boundary not to be among them (13 items / 4.4%).

4.4 Effects of individual templates
Table 5 gives a comparison of models with differ-
ent combinations of templates. It clearly shows
that all templates are needed in order to attain best
model performance. It also shows that performance
generally increases with the number of templates
included, especially if they cover a diverse and
minimally-overlapping range of situations.

When the model contains only a single redupli-
cation template, its performance is largely driven
by the prevalence of that template in the test data.
When the model contains two templates, perfor-
mance is no longer driven entirely by prevalence,
because the templates may interact: both may
match the same test item and compete over it,
while neither matches a large class of other items.
For example, the two-template model containing
right- and full-reduplication templates performs
worse than the model containing left- and full-
reduplication templates, despite there being more
right test items than left test items.

The templates interact here for two main reasons.
The full-reduplication template interacts with any
other because it allows the reduplicant to attach on
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Figure 2: Performance metrics for models with different
reduplication templates on test items with different basic
kinds of reduplication.

a ‘default’ side set by the other template. Combin-
ing the left- and full-reduplication templates causes
competition over left-2 test items (e.g. RED ⊕ huaki
vs. [RED ⊕ hua] + ki for huahuaki) and coercion of
all right test items to the full-reduplication template
(e.g. tā + [RED ⊕ kai] for tākaikai), and vice versa
for combining the right- and full-reduplication tem-
plates. The full- and right-reduplication templates
also interact because they both allow reduplicants
of the same size. Combining them in a single model
causes some right test items to be coerced to the
full-reduplication template (e.g. tā + [RED ⊕ kai]
for tākaikai), while left-1 items (e.g. nunui) are left
unmatched to any template.

Above and beyond such interactions, a consistent
property of the full-reduplication template shines
through: it consistently closes the gap between the
two versions of precision. This suggests that, in the
absence of relevant templates, full test items such
as pakipaki are typically predicted not to contain
a boundary. To a human, this failure to predict a
boundary is remarkable, as full reduplication is a
highly salient cue to morphological structure.

4.5 Kinds of reduplication captured

To confirm the idea that the model performs well
with the addition of new templates because they
allow more (and more diverse) test items to be
matched to a template, we explored performance
across items representing different kinds of redu-
plication. The results (Figure 2) confirm three key
patterns noted earlier. First, the model containing
all templates performs best because it can capture
all kinds of reduplication well. Second, models gen-
erally perform better on a given kind of reduplica-
tion when they include the corresponding template;
for example, left items are best captured if models
contain the left-reduplication template. Third, inter-
actions between templates can cause competition,

reducing performance on certain kinds of items.
For example, when the model contains the right-
reduplication template but not the left-reduplication
template, accuracy and precision for right items de-
crease with the inclusion of the full-reduplication
template, as discussed in Section 4.4.

There is also a fourth pattern, which elaborates
on the observation that performance generally in-
creases with the number of templates included. In
Figure 2, it is clear that the increase is not driven
just by the diversification of templates, but also
by the increased statistical support that more tem-
plates bring for the recognition of RED as a morph.
Since the same RED morph is shared across all
templates, increased ability to identify RED in test
items matching one template may also increase the
ability to identify it in test items matching a dif-
ferent template. This can be seen in the way that
adding the right-reduplication template to a model
already including the left-reduplication template
causes an improvement on left test items.

The same patterns are revealed by detailed break-
downs within a given kind of reduplication, as
shown for left-reduplication in Figure 3. This
breakdown also shows that different subkinds ex-
hibit the patterns to different extents. For ex-
ample, left-1 items benefit more from the inclu-
sion of the left-reduplication template than left-1L
items do, because the CV̄ reduplicant in left-1L
cases typically has the same form as one of sev-
eral (fossilized) prefixes that recur across a num-
ber of words (Krupa, 1968; Harlow, 2007), so it
has sufficient statistical support to be segmented
away from the base without recourse to reduplica-
tion. Similarly, left-2 items are uniquely affected
by an interaction that sees them coerced to a full-
reduplication template (e.g. [RED ⊕ horo] + i in-
stead of RED ⊕ horoi for horohoroi), because only
they have a bimoraic reduplicant that is identical to
its correspondent in the base.

These results show that careful thought is needed
when adding reduplication templates to the model.
If templates are attuned to distinct reduplication
patterns in the language, they can allow the model
to perform well both specifically, on items match-
ing these templates, and generally, across all items
containing reduplication. But, if the templates are
too general or too numerous, they can interact with
each other and endanger the ability to capture par-
ticular subsets of test items.
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Figure 3: Performance metrics for models with differ-
ent reduplication templates on test items with different
kinds of left-reduplication.

5 Error analysis and improvements

5.1 Coercion to full reduplication

As previously noted, different reduplication tem-
plates can interact (Section 4.4), affecting model
performance on items with certain kinds of redu-
plication (Section 4.5). In particular, including the
full-reduplication template can limit accuracy and
precision on left-2 and right test items, as these
items are coerced to match the full template rather
than their own. Since the best model includes all
templates, it shows these interactions: coercion of
left-2 and right test items to the full-reduplication
template accounts for 88.4% of errors (221 of 250).
Nevertheless, because there are so many full items
in the test set, and because the identification of RED

in these highly salient items offers increased statisti-
cal support for the identification of RED elsewhere,
it is still better to include the full-reduplication tem-
plate than not, as shown in Table 5.

One strategy for reducing coercion of left-2 items
to the full-reduplication template might be to re-
quire that, when the left-reduplication template is
matched, the base must be longer than the redu-
plicant. Currently, the base must contain at least
2 morae, but it is not required to be longer if the
reduplicant is bimoraic. However, this would likely
cause problems for items involving full redupli-
cation alongside compounding or affixation, such
as tomotomokanga ([RED ⊕ tomo] + kanga), which
are omitted from the current test set but frequent in
the language. These would only be able to be rec-
ognized as containing full reduplication if the part
of the word that is not reduplicated is split off prior
to the reduplication template being matched, which
is unlikely as RED has more statistical support than
any single affix or compound component.

This strategy would not apply to right items,
as that template already requires that the base be

Figure 4: Partial confusion matrix for classification of
left-2 and right test items, based on whether the item
was in the training data.

longer than the reduplicant. These items are co-
erced to the full-reduplication template mainly be-
cause the initial CV̄ has the same form as one of
several prefixes (cf. Section 4.5). A strategy for
mitigating this might be to introduce a penalty for
overzealous splitting off of monosyllabic morphs.
The size of such a penalty would have to be tuned
carefully so that an initial CV̄ syllable can still be
split off outside of right items, where it has no
better alternative analysis than as a prefix.

5.2 Coercion-blocking and Viterbi decoding

As described in Section 3.3, segmentations are ob-
tained for test items in different ways. For items ob-
served in training, the segmentation obtained from
RS is used, while for items not observed in training,
a segmentation is obtained from the Viterbi algo-
rithm. As shown in Figure 4, it is test items that
were not observed in training that show the most
coercion to the full-reduplication template.6

RS blocks coercion to the full-reduplication tem-
plate because it commits to boundaries one at a
time. In RS, a right item such as tākaikai will usu-
ally have its first boundary placed in-between the
reduplicant and base (tākai⊕ RED), which commits
the algorithm to a right-reduplication template and
prevents any further boundaries from being placed
within the base (tākai). The only way RS could
end up coercing the item to the full-reduplication
template (tā + [RED ⊕ kai]) is if it placed the first
boundary after the initial CV̄ syllable (tā + kaikai)
instead, but this is unlikely because the CV̄ syllable
is much less common than RED and thus has less
statistical support for being split off.

By contrast, the Viterbi algorithm does not

6The extended model still outperforms original Morfessor
on items not observed in training, in spite of the large amount
of coercion, through improved treatment of other kinds of
reduplication. Metrics on untrained items (Acc. / Rec. / Prec.0
/ Prec.1) for original: 0.29 / 0.49 / 0.38 / 0.41; for extended:
0.51 / 0.94 / 0.72 / 0.72.
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Figure 5: Partial confusion matrix for classification of
right test items from the training data, based on whether
the base was separately observed in training.

block coercion to the full-reduplication template
because it does not commit to boundaries inde-
pendent of each other. When evaluating the best
segmentation for a right item such as tākaikai,
it will typically end up comparing the complete
full-reduplication segmentation (tā + [RED ⊕ kai])
with the complete right-reduplication segmentation
(tākai⊕ RED). Because the initial CV̄ syllable (tā)
recurs across words much more than the actual
base (tākai), the full-reduplication template will
typically have more statistical support.

This difference suggests two possible strategies
for improving model performance. One is to train
the model on as many different word types as pos-
sible, increasing the chance that any given test item
will have been observed in training and will there-
fore get its segmentation through RS. An alterna-
tive strategy is to develop a recursive segmentation
algorithm that can be used in testing without trig-
gering changes to trained model parameters.

5.3 Independence of the base

While right test items that were observed in train-
ing are coerced to the full-reduplication template
much less often than those that were not observed,
they are still coerced sometimes (see Figure 4). As
shown in Figure 5, RS coerces right test items to
the full-reduplication template more often when the
base for reduplication was not separately observed
in training. This is because it considers the sta-
tistical support for both word-parts created by the
insertion of a boundary: the base and the redupli-
cant. When the base is listed independently in the
training set, both parts have some support, and the
segmentation is likely to be accepted. But when the
base is not listed in the training set – for example,
for the word pānekeneke – only RED has support,
and the algorithm penalizes the right-reduplication
segmentation for having to add the base to the lex-
icon. By contrast, the placement of a boundary
after the initial CV̄ syllable (pā + nekeneke) can
yield two word-parts that are already listed in the

training set (pā and nekeneke), offering a penalty-
free alternative segmentation. Because RS inher-
its pre-identified substructure of word-parts, and
because one of the parts in this case is likely to
have been pre-identified as an instance of full redu-
plication (RED ⊕ neke), the alternative segmenta-
tion amounts to coercion to the full-reduplication
template. Both the right-reduplication segmenta-
tion and the alternative segmentation therefore gain
equally strong statistical support from RED, and the
alternative segmentation typically wins because it
does not enforce a new-morph penalty.

One strategy that might limit errors when the
base for reduplication is not in the training set is to
alter RS to block the inheritance of pre-identified
substructure pertaining to a reduplication template.
However, it is possible that this would limit the
ability to use reduplication as a cue to the internal
structure of a compound such as pōpōroroa.

6 Experiments on complex words

To see how incorporating reduplication templates
affects segmentation of morphologically complex
words, we now compare the extended model (all
templates) with the original (no templates) on a
broader subset of training data, examining their
agreement with fluent-speaker segmentations.

Data. We analyze model segmentations of 4,213
words of 3+ morae on which two fluent speakers
of Māori agreed. None of these words contain
long vowels, since we have documented elsewhere
that these speakers show an extreme sensitivity
to long vowels (Todd et al., 2019; Panther et al.,
under review); for example, they segmented hāro
(which is morphologically simplex) as hā + ro, and
routinely split off the initial long-vowel syllable
of right reduplication items, as in kā + witi⊕witi
and hā + upaupa. As such, the dataset contains no
instances of right or left-1L reduplication, which re-
quire a long vowel, and reduced instances of left-2
reduplication, for which the reduplicant may con-
tain a long vowel. It also contains no instances of
full reduplication alone (e.g. pakipaki), as the orig-
inal data collection purposes did not require seg-
mentations for words with transparent structures.

Methods. We treat the fluent-speaker segmenta-
tions as a reference set, such that performance met-
rics describe agreement between models and speak-
ers. This approach is imperfect; for example, the
speakers failed to segment a number of instances of
left-1 reduplication (e.g. ririki instead of ri⊕ riki)
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and missegmented others (e.g. hoho + rea instead
of ho⊕ hore + a). In particular, due to the concen-
tration of speaker errors on reduplicated words and
the omission of a large host of reduplicated words
from the dataset, this approach under-rewards mod-
els that correctly handle reduplication. Neverthe-
less, it gives a sense of how the models perform in
more complex settings than our previous test set.

Results. On this subset, the models have very
similar accuracies (agreement with speakers): 0.68
for the original model, and 0.70 for the extended
model. Thus, incorporating reduplication templates
does not hurt model performance in general.

Figure 6 breaks down the results by morpho-
logical process for the 3,380 words judged by the
speakers to involve affixation and/or compounding.
The extended model performs much better than the
original on complex reduplicated words, generaliz-
ing advantages seen previously for simple words.
While it performs slightly worse than the original
on complex non-reduplicated words, particularly
affixed words, this decrease is small relative to the
increased performance on reduplicated words, and
does not decrease performance overall.

Error analysis. There are 228 words for which
the extended model is discrepant with the speakers
but the original is not. We could unambiguously
infer a correct segmentation from Te Aka (Moor-
field, 2011) for 191 words, highlighting three main
reasons for discrepancies. First, the speakers failed
to segment reduplicant in 39 reduplicated words.
This reflects imperfections of the reference set, not
failures of the model. Second, the model identifies
reduplication in 31 non-reduplicated words (e.g.
ni⊕ nia instead of nini + a). False positives like
these are to be expected, and can be tolerated be-
cause they are few in relation to the true positives.
Third, the model undersegments in 102 words, in-
cluding failing to segment out affixes in 71 words.
This is not a major cause for concern, as the under-
segmentation is not systematic: the missed affixes
are correctly segmented in other words.

7 Conclusion

We have described a method to incorporate abstract
reduplication templates into the Morfessor baseline
model of unsupervised morphological segmenta-
tion (Creutz and Lagus, 2007; Virpioja et al., 2013).
Our test on Māori shows three main results. First,
incorporating templates allows Morfessor to better
identify instances of reduplication. Second, the

Figure 6: Performance metrics for original and extended
Morfessor models against fluent-speaker segmentations
of 3,380 words involving affixation and/or compound-
ing, with (top) or without (bottom) reduplication.

more distinct templates incorporated, the better the
model performs. Third, the benefits of incorpo-
rating additional templates are strongest for items
matching those templates, but also present for items
matching other templates, due to the pooling of sta-
tistical support for the reduplicant morph, RED.

We have also discussed factors that should be
considered when applying the extended model.
First, care should be taken to minimize interac-
tions between templates, to avoid competition that
coerces multiple kinds of reduplication to the same
template. Second, the training set should be as
large and as similar to the test set as possible, be-
cause coercion between templates is more prevalent
in the Viterbi algorithm used for untrained items
than it is in the recursive algorithm used for trained
items. Third, the training set should include both
reduplicated forms and their (apparent) bases of
reduplication, as excluding the base can preclude
it from being identified in the reduplicated form,
which can in turn increase the risk of coercion to
an incorrect reduplication template.

Our results clearly show the value of incorporat-
ing expert linguistic knowledge into unsupervised
morphological segmentation. We have shown how
this improves segmentation of reduplicated words
in Māori, while still permitting accuracy on non-
reduplicated words. While we have focused on
Māori, we expect performance gains to transfer to
other Polynesian languages with similar reduplica-
tion templates, and we expect the higher level mod-
eling approach and insights to extend more broadly
to any language that has productive reduplication
processes. Given the high typological prominence
of reduplication (Rubino, 2013), the incorporation
of reduplication templates offers a promising av-
enue for improving the cross-linguistic adequacy
of unsupervised morphological segmentation.
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Ray Harlow. 2007. Māori: A Linguistic Introduction.
Cambridge University Press, Cambridge.

Mark Johnson and Thomas L. Griffiths. 2007. Adaptor
grammars: A framework for specifying composi-
tional nonparametric Bayesian models. In Advances
in Neural Information Processing Systems 19, pages
641–648.

Peter Julian Keegan. 1996. Reduplication in Maori.
Unpublished MA thesis, University of Waikato.

Victor Krupa. 1968. The Maori Language. Nauka,
Moscow.

Alec Marantz. 1982. Re reduplication. Linguistic In-
quiry, 13(3):435–482.

John J. McCarthy and Alan S. Prince. 1996. Prosodic
morphology. In John A. Goldsmith, editor, The
Handbook of Phonological Theory, chapter 9, pages
283–305. Blackwell, Malden, MA.

John C. Moorfield. 2011. Te Aka: Māori-English,
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