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Abstract

This paper presents DeepSPIN’s submissions
to the SIGMORPHON 2022 Shared Task on
Morpheme Segmentation. We make three sub-
missions, all to the word-level subtask. First,
we show that entmax-based sparse sequence-to-
sequence models deliver large improvements
over conventional softmax-based models, echo-
ing results from other tasks. Then, we chal-
lenge the assumption that models for morpho-
logical tasks should be trained at the character
level by building a transformer that generates
morphemes as sequences of unigram language
model-induced subwords. This subword trans-
former outperforms all of our character-level
models and wins the word-level subtask. Al-
though we do not submit an official submis-
sion to the sentence-level subtask, we show that
this subword-based approach is highly effective
there as well.

1 Introduction

Nearly all neural models for morphological and
phonological NLP tasks operate at the character
level. This is a natural design choice because
there is usually a monotonic alignment between
source and target characters. Although often suc-
cessful, character-level models do not leverage the
fact that words contain longer substrings, such as
roots and affixes, that can often be copied all at
once. They also go against the grain of modern
NLP, in which most systems for other tasks are
trained on sequences of subword units induced by
an unsupervised algorithm, usually either byte-pair
encoding (BPE; Sennrich et al., 2016) or unigram
language modeling (ULM; Kudo, 2018). Although
subword units should not be adopted just because
they are widespread, they should not be ignored
either, especially given the great amount of effort
that has gone into integrating morphological induc-
tive biases into subword tokenization (Park et al.,
2020; Tan et al., 2020; Huck et al., 2017; Weller-

Di Marco and Fraser, 2020; Banerjee and Bhat-
tacharyya, 2018).

We demonstrate that subword-level modeling
does work for morpheme segmentation through our
submissions to the SIGMORPHON 2022 Shared
Task on Morpheme Segmentation (Batsuren et al.,
2022). Our subword-level model, an entmax trans-
former with sampled ULM tokenizations, outper-
forms our character-level submissions and wins
the word-level subtask. Because it generates mor-
phemes as subword sequences, it also offers a way
to combine the advantages of subword tokenization
(a fixed-size vocabulary, compression) with the ad-
vantages of conventional morpheme segmentation
(segments do not cross morpheme boundaries).

In all, we submit three models to the task:

• DeepSPIN-1 is a character-level RNN-based
sequence-to-sequence model trained to min-
imize cross entropy. Although intended as a
strong baseline, this model still finishes fourth
overall with an average F-measure of 96.32.

• DeepSPIN-2 is a character-level sparse
sequence-to-sequence model with entmax. It
records the best F-measure on 2 of 9 lan-
guages, which finishing second overall with
an average F-measure of 97.15.

• DeepSPIN-3 is a subword-level entmax trans-
former trained with subword regularization.
It records the best F-measure on 7 of 9 lan-
guages, and wins the word-level subtask with
an average F-measure of 97.29.

We then retrain DeepSPIN-3 on the combined
word- and sentence-level data. Although this model
is unofficial, it outperforms the winners of the
sentence-level subtask for all three languages.

2 Model

In our experiments, we use both attentional LSTM
(Bahdanau et al., 2015) and transformer (Vaswani
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et al., 2017) sequence-to-sequence models. Re-
gardless of those internal details, at time step i
the model predicts a next-target-token distribution
pθ(· | x, y<i) conditioned on a source sequence
x and a target history y<i. In most sequence-to-
sequence systems, pθ(· | x, y<i) is computed with
softmax (Bridle, 1990), and x and y consist of se-
quences of characters. In this work, we depart
from these defaults by replacing softmax with 1.5-
entmax (Peters et al., 2019), and by tokenizing into
subwords instead of characters.

Entmax and its loss. Language models, includ-
ing sequence-to-sequence models, produce a nor-
malized probability distribution at teach time step.
To do this, they need a function Rn → △n: that
is, a function that maps an arbitrary vector of real
numbers to a vector in the n-dimensional probabil-
ity simplex △n := {p ∈ Rn : p ≥ 0,1⊤p = 1}.
The standard choice of function is softmax, which
is dense: it assigns strictly positive probabilities to
all outcomes. However, there is another option, the
α-entmax transformation (Peters et al., 2019). Ent-
max, parameterized by a scalar α ≥ 1, computes

α-entmax(z) := argmax
p∈△n

p⊤z + Hα(p), (1)

where Hα(p) is the Tsallis α-entropy (Tsallis,
1988), defined in Appendix A. When α = 1, this
recovers softmax; for α > 1, it can return sparse
vectors, enabling models that can completely rule
out some outcomes by assigning them zero prob-
ability. Exact algorithms exist for α ∈ {1.5, 2},
while approximations exist in the general case. Be-
cause sparse probabilities are incompatible with
the standard cross entropy loss, it is necessary to
train with the entmax loss, defined

Lα(y, z) := (p⋆ − ey)
⊤z + Hα(p

⋆), (2)

where p⋆ = α-entmax(z) and ey is a one-hot
vector whose nonzero index is y. When α = 1,
this recovers cross entropy. Entmax-based sparse
sequence-to-sequence models have been shown to
work well on machine translation (Peters et al.,
2019; Peters and Martins, 2021) as well morpholog-
ical (Peters and Martins, 2019) and phonological
(Peters and Martins, 2020) tasks. Beyond the top-
line results, they have also been shown to be better
calibrated than models trained with cross entropy
loss (Peters and Martins, 2021).

sausagemakers sausage|make|er|s
_sa us age makers _sa us age _| make _| er _| s

Figure 1: The English word “sausagemakers” seg-
mented with character-level tokenization (top) and the
ULM model used by DeepSPIN-3 (bottom).

Tokenization. In morpheme segmentation, x and
y are typically treated as character sequences.
Character-level modeling is attractive because of
the mostly monotonic alignments between source
and target characters, and because it keeps vocab-
ularies and embedding matrices small. However,
multi-character sequences in words, such as “make”
or “er” in Figure 1, often function as single units.
Therefore, we use ULM (Kudo, 2018) to induce a
subword tokenization. ULM is a top-down tech-
nique: the tokenization model is initialized with a
large vocabulary of overlapping subwords. The pa-
rameters of a unigram model over this vocabulary
are then estimated using expectation maximization
and the lowest-scoring subword types are pruned.
This process is repeated until the desired vocabu-
lary size is reached. For any string, a ULM model
licenses a lattice of subword tokenizations. The
highest-scoring tokenization can be computed effi-
ciently with the Viterbi algorithm (Viterbi, 1967).
Tokenizations can also be sampled from the model,
enabling subword regularization. ULM has been
shown to produce tokens that more closely corre-
spond to meaningful linguistic units (Bostrom
and Durrett, 2020) than the more widespread BPE
(Sennrich et al., 2016; Gage, 1994). An example
ULM tokenization is shown in Figure 1: while com-
pletely merging the frequent morpheme “make” on
the target side, it is also able to decompose the less
frequent “sausage” into smaller units.

2.1 Implementation details

Training and decoding procedure. We trained
with early stopping in all experiments, validating
after each epoch. Our validation metric was the
mean Levenshtein distance1 between the gold seg-
mentation and the model’s prediction when decod-
ing with a beam size of 5. Training was ended if
the model failed to improve for five consecutive

1A more conventional choice would be to validate with
force-decoded loss. However, this is problematic in our case
for two reasons: first, we experiment with two different loss
functions, and the values they return are not comparable; sec-
ond, in a subword-level model there are several subword se-
quences that represent the same morpheme sequence, but force
decoding would return the loss of only one of them.
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epochs. We used only the official task data to train
our models. We report the configuration with the
highest validation set F-measure. We decoded with
a beam size of 5 unless otherwise noted.

Software packages. We implemented all neural
models with Fairseq (Ott et al., 2019), which we
augmented with the pytorch implementation of ent-
max.2 We used the BPE and ULM implementation
from sentencepiece (Kudo and Richardson, 2018).

3 Word-level Subtask

Our three submissions to the word-level subtask
can be divided into two parts. First, we present
character-level LSTM-based models trained with
cross entropy loss (DeepSPIN-1) and 1.5-entmax
loss (DeepSPIN-2). These models are similar to
models that performed well at past shared tasks and
serve as strong supervised baselines for morpheme
segmentation. Second, we implement subword-
level transformer3 models (DeepSPIN-3).

Additional baselines. Although the BERT tok-
enizer is the official task baseline, we find that
its performance is (perhaps unsurprisingly) ex-
tremely weak. Therefore, we include three ad-
ditional unsupervised/semi-supervised baselines.
The first two are based on BPE and ULM, with
models trained on the concatenation of source and
target data. The vocabulary size was selected
by development set F-measure from the values
{2000, 4000, . . . , 32000}. The third extra baseline
is Morfessor 2.0 (Smit et al., 2014), for which we
treated the task data as supervised annotations and
used no additional unlabeled data. Our DeepSPIN-
1 submission can also be thought of as a strong
supervised baseline: its architecture is similar to
Kann et al. (2016)’s system, which to our knowl-
edge was the first to apply encoder-decoder models
to canonical morpheme segmentation.

3.1 Character-level LSTM
Hyperparameters. We trained RNN-based mod-
els with a plateau-based learning rate schedule, us-
ing the hyperparameter ranges shown in Table 1.
Due to the much smaller training sets for Czech
and Mongolian than the other languages, we differ-
ent batch sizes for them than the other languages.

2https://github.com/deep-spin/entmax
3We also tried character-level transformers with the same

hyperparameters, but these performed much worse. Future
work should investigate why it remains challenging to train
character-level transformers.

Hyperparameters Values

Embedding size 512
Hidden size {512, 1024}
Layers {1, 2}
Dropout 0.3
Batch size (Low) {16, 32, 64}
Batch size (High) {256, 512}
Learning rate {.001, .0005, .0001}

Table 1: Hyperparameters for DeepSPIN-1 and
DeepSPIN-2. Brackets indicate values that were deter-
mined by grid search. The ‘Low’ languages are Czech
and Mongolian, while all others are ‘High’.

The learning rate was reduced by a factor of 10 if
the model failed to improve for two consecutive
epochs. RNN models were trained for a maximum
of 150,000 parameter updates.

3.2 Subword-level Transformer
Hyperparameters. We trained transformers with
the inverse square root learning schedule and the
hyperparameters in Table 3. The size of feedfor-
ward layers was always 4 times the embedding size.
All models used 6 layers in the encoder and de-
coder, with 8 attention heads per layer, and were
trained for up to 400,000 parameter updates.

Subword vocabulary. For each language, we
trained a ULM model on the concatenation of the
source and target training corpora. The vocabulary
size was set at 2000 for Czech and Mongolian, and
8000 for the other languages.4 We performed sub-
word regularization at training time by sampling
source and target subword sequences. Ideally, we
would have generated new subword samples on the
fly, as described in (Kudo, 2018). However, Fairseq
expects data to be preprocessed in advance, so in-
stead we concatenated several copies of the training
data (100 for Czech and Mongolian, 10 for other
languages) with different sampled tokenizations.

3.3 Results and discussion
We report results in terms of F-measure (Table 2).
Regardless of metric, DeepSPIN-3 and DeepSPIN-
2 finish first and second among all submitted sys-
tems. On a per-language basis, DeepSPIN-3 has
the best F-measure for 7 of 9 languages, while
DeepSPIN-2 has the best for the remaining two.

4This is not a principled choice. We found that 8000
seemed to work well for most languages. Due to the limited
size of the Czech and Mongolian corpora, we used a smaller
vocabulary for them. Future research should exhaustively ex-
plore subword vocabulary sizes for morpheme segmentation.
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Model ces eng fra hun ita lat mon rus spa avg.

BERT 20.42 23.06 12.66 24.00 9.08 8.84 14.58 13.81 16.57 15.89
BPE 27.76 20.86 20.08 37.95 10.15 9.46 35.84 9.53 20.33 21.33
ULM 50.51 52.55 38.90 67.77 24.68 73.36 44.39 31.65 34.94 46.53
Morfessor 65.18 64.38 45.56 75.34 36.38 90.23 56.97 40.15 42.60 57.42

DeepSPIN-1 93.42 92.29 91.66 98.56 96.01 99.37 98.03 98.75 98.79 96.32
DeepSPIN-2 93.88 93.39 95.29 98.68 97.47 99.36 98.00 99.30 99.02 97.15
DeepSPIN-3 93.84 93.63 95.73 98.72 97.43 99.38 98.51 99.35 99.04 97.29

Best Other 93.85 93.20 94.80 98.59 96.93 99.37 98.31 98.62 98.74 96.85

Table 2: Test set F-measure results for baselines and our submissions. Numbers in boldface are the best among any
submission to the task, not only ours. Per-language Best Other results are the best of any system, while the Best
Other system averaged over languages is CLUZH (Wehrli et al., 2022).

Hyperparameters Values

Embedding size {256, 512}
Dropout {0.1, 0.3}
Batch tokens (mon) 1024
Batch tokens (others) 8192
Warmup steps {4000, 8000}

Table 3: Hyperparameters for subword models.

In terms of baselines, our results also support the
claim that ULM is more morphologically faithful
than BPE (Bostrom and Durrett, 2020), while nei-
ther matches Morfessor 2.0.

4 Unofficial Sentence-level Subtask Model

Although we did not submit to the sentence-level
subtask due to time and computation restraints, we
were able to train subword-level models similar to
DeepSPIN-3 after the conclusion of the task. This
system, which we dub DeepSPIN-Sent, uses the
same hyperparameter grid as DeepSPIN-3. It is
trained on the concatenation of data from the word-
level and sentence-level subtasks. Our model does
not make use of sentence context: each word in a
sentence is presented as a separate example.

Our results are shown in Table 4 alongside the
task winners and baselines trained on the same data
as DeepSPIN-Sent. Our model outperforms the
official task winner for all three languages.

5 Analysis

5.1 Does subword regularization matter?

DeepSPIN-3 uses subword regularization for both
its source and target sequences. But is this an im-
portant part of its design? While source side reg-

Model ces eng mon avg.

BERT 34.61 63.53 23.62 40.59
BPE 43.31 64.74 40.95 49.67
ULM 58.03 71.20 48.69 59.31
Morfessor 72.79 78.74 51.21 67.58

DeepSPIN-sent 93.23 98.24 83.59 91.69

Task winner 91.99 96.31 82.88 89.77

Table 4: Results for DeepSPIN’s unofficial sentence-
level system and the per-language task winners. The
overall task winner is AUUH_B (Rouhe et al., 2022).

ularization is generally considered beneficial, the
situation on the target side is more controversial:
Provilkov et al. (2020) suggest that target-side BPE-
dropout only helps in lower-data settings, and alter-
nate strategies have been developed to replace it on
the target side (He et al., 2020). However, these ex-
periments only compared BPE-based methods, not
ULM, and only evaluated on machine translation.
In order to evaluate the importance of subword
regularization in our case, we trained English seg-
mentation models that vary in their use of subword
regularization, while keeping the same hyperpa-
rameter grid as DeepSPIN-3. Table 5 shows that
subword regularization appears to be beneficial for
both the source and target.

5.2 How difficult is search?

For a sequence-to-sequence model, the difficulty of
the inference time search problem depends strongly
on the task. In high-uncertainty tasks like machine
translation, the highest-scoring hypothesis is often
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Figure 2: The average probability mass in the beam (left) and rate at which search returns an argmax certificate
(right) as a function of beam size for character (DeepSPIN-2) and subword (DeepSPIN-3) models on the English
word-level development set.

Subword Reg. F-measure

neither 92.69
target 93.09
source 93.30
both 93.83

Table 5: English development set F-measure with vary-
ing subword regularization configurations. The “both”
configuration is our official DeepSPIN-3 submission.

inadequate (Stahlberg and Byrne, 2019); strong
performance is due to the helpful biases of beam
search (Meister et al., 2020). In contrast, less uncer-
tain tasks like morphological inflection often con-
centrate probability into a few hypotheses, making
it easy for beam search to find the argmax (Peters
and Martins, 2019; Forster et al., 2021).

Character-based segmentation is a low-
uncertainty task: usually, a sequence has only one
reasonable segmentation, or a handful at most.
Indeed, as we show for the English word-level
development set in Figure 2, DeepSPIN-2 con-
centrates more than 96% of probability mass into
the greedy hypothesis on average, an amount that
increases to nearly 99.9% at a beam size of 5.
The story is different for subword-based models:
DeepSPIN-3 concentrates an average of 58.5% of
the probability mass in the greedy hypothesis and
87.6% in the hypotheses found with a beam width
of 5. By increasing the beam size further, nearly
all of the probability mass can be recovered.

Besides the raw amount of probability in the

beam hypotheses, it is also possible to obtain a
certificate that the argmax has found if the single-
best beam hypothesis probability is greater than
the combined probability mass of every hypothesis
outside the beam. The rate at which an argmax cer-
tificate is found for DeepSPIN-2 and DeepSPIN-3
is shown in Figure 2. As expected, DeepSPIN-3
returns an argmax certificate less frequently than
DeepSPIN-2 with a narrow beam, but the gap
closes as the beam size increases.

6 Related Work

Given the widely-observed shortcomings of unsu-
pervised subword units for handling morphology
(Amrhein and Sennrich, 2021; Bostrom and Dur-
rett, 2020; Ács, 2019; Mielke et al., 2021), several
works have attempted to replace these units with
a more morphologically-principled representation
for downstream tasks. Although this sometimes
means completely replacing the unsupervised sub-
words (Ataman et al., 2017; Schwartz et al., 2020),
other works have adopted a pipeline approach in
which unsupervised subwords are applied to a mor-
phological analysis (Park et al., 2020; Tan et al.,
2020; Huck et al., 2017; Weller-Di Marco and
Fraser, 2020; Banerjee and Bhattacharyya, 2018).
These techniques are attractive because unsuper-
vised subword techniques are empirically very ef-
fective, and removing them entirely risks losing
benefits such as their compressive capacity (Gallé,
2019). Although DeepSPIN-3 is similar to these
combined approaches, it is not a pipeline: a single
neural model predicts both the subword sequence
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and the location of the morpheme boundaries.

7 Conclusion

We implemented several sequence-to-sequence
models for morpheme segmentation, showing that
sparse entmax losses outperform cross entropy.
Our strongest model, which won the word-level
subtask, is a transformer that generates morphemes
as sequences of subword units, unlike traditional
character-level segmentation models.
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