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Abstract

Neural approaches to end-to-end argument min-
ing (AM) are often formulated as dependency
parsing (DP), which relies on token-level se-
quence labeling and intricate post-processing
for extracting argumentative structures from
text. Although such methods yield reason-
able results, operating solely with tokens in-
creases the possibility of discontinuous and
overly segmented structures due to minor in-
consistencies in token level predictions. In this
paper, we propose EDU-AP, an end-to-end ar-
gument parser, that alleviates such problems
in dependency-based methods by exploiting
the intrinsic relationship between elementary
discourse units (EDUs) and argumentative dis-
course units (ADUs) and operates at both token
and EDU level granularity. Further, appropri-
ately using contextual information, along with
optimizing a novel objective function during
training, EDU-AP achieves significant improve-
ments across all four tasks of AM compared to
existing dependency-based methods.

1 Introduction

Considered an integral mode of persuasion, argu-
mentation is prevalent in our daily verbal commu-
nication and represents chains of thought patterns
and reasoning. An argument constitutes claims and
premises, with the claim being the central contro-
versial statement of the argument, and the premise
either supporting or attacking the claim by provid-
ing the reasoning for the claim (Stab and Gurevych,
2014b). Argument mining (AM) is a recent re-
search field in computational linguistics, that deals
with analyzing discourse on the pragmatics level,
and finding argumentation structures in natural lan-
guage texts (Mochales and Moens, 2011; Lippi and
Torroni, 2016; Lawrence and Reed, 2019). AM
comprises four sub-tasks: (a) text segmentation:
identifying ADUs from text, by separating argu-
mentative units from non-argumentative units; (b)
component classification: associating each identi-

Figure 1: Dependency tree for the argument “Biking is
good because it reduces stress, and releases endorphins".

fied ADU with a tag from a pre-defined labeling
scheme (e.g., Claim or Premise); (c) relation detec-
tion: determining if any relationship exists between
pairs of ADUs; (d) relation classification: labeling
a determined relationship with a tag from a pre-
defined labeling scheme (e.g., attack or support).
When performed successfully, AM generally leads
to the creation of an argumentation graph (AG)
(Peldszus and Stede, 2013): a graphical framework
for representing arguments, whereby nodes repre-
sent claims and premises, and the edges represent
diverse relationships (e.g., support, attack) between
arguments. Such graphical structures not only help
analyze discourse but also aids in the creation of
dialogue agents that can leverage the AGs for re-
sponse generation (Chalaguine and Hunter, 2020;
Slonim et al., 2021). Figure 1 illustrates such a
graphical relationship, where the premise “biking
reduces stress and releases endorphins", supports
the claim “biking is good".

With an increased interest in engendering pur-
poseful and persuasive conversational agents, the
need for argument parsers that can automatically
and effectively extract, parse and relate argumenta-
tive components end-to-end from natural language
text is on the rise. In this paper, we address this
need by proposing a robust end-to-end argument
parser that formulates AM as a dependency pars-
ing (DP) problem. Unlike prior research in DP
based argument mining approaches, we exploit the
innate relationship between EDUs and ADUs in
multi-task learning (MTL) framework and achieve
competitive results. We further improve upon our
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results by utilizing appropriate contextual infor-
mation and optimizing a novel objective function
during training.

2 Related Work

Significant advancements have been made in com-
putational model for AM in recent years. Stab
and Gurevych (2014b) implemented a feature en-
gineering based pipelined approach for perform-
ing all four sub-tasks of AM, on the Persuasive
Essays (PE) corpus (Stab and Gurevych, 2014a),
which was further improved by the Integer Linear
Programming (ILP) based approach proposed by
Persing and Ng (2016). Stab and Gurevych (2017)
introduced a larger version of the PE corpus and im-
plemented an ILP constrained pipelined approach
for AM. Mirko et al. (2020) improved upon the
pipelined approach for AM introduced by Nguyen
and Litman (2018), and further implemented a
novel graph construction process to create argu-
ment graphs. Recently, Bao et al. (2021) proposed
a neural transition-based model for component clas-
sification and relationship detection, which incre-
mentally builds an argumentation graph by gener-
ating a sequence of actions, and can handle both
tree and non-tree argumentation structures.

Eger et al. (2017) formulated the tasks of AM
as a token level DP, and achieved state-of-the-art
performance on the PE dataset, using a neural de-
pendency parser. Inspired by the success of incor-
porating biaffine classifiers for semantic DP (Dozat
and Manning, 2016, 2018), Ye and Teufel (2021)
further improved the DP based approach by using
biaffine layers, and leveraged pre-trained BERT
(Devlin et al., 2018) for richer argument represen-
tations. Instead of operating at a word level, Morio
et al. (2020) experimented with proposition level
AM and used a joint learning framework for jointly
performing the tasks of component classification,
relation detection and classification.

Considerable work has also been done in trying
to establish relationships between ADUs and EDUs.
Peldszus (2015); Peldszus and Stede (2016); Musi
et al. (2018); Hewett et al. (2019) studied the
mapping from discourse structure from Rhetori-
cal Structure Theory (RST) to argumentation struc-
tures and showed that discourse relations from RST
often correlate with argumentative relations.

3 Proposed Approach

Our work is inspired by the token level dependency
parser proposed by Ye and Teufel (2021), and the
proposition level parser proposed by Morio et al.
(2020). However, unlike previous works, our for-
mulation of dependency representation for argu-
ments unifies all sub-tasks of AM under an EDU
level framework and exploits the relationship be-
tween EDUs and ADUs. We factorize the sub-tasks
of AM as different prediction tasks and train end-to-
end in a multi-task learning (MTL) framework. We
implement a hierarchical encoding scheme, which
enables the use of a larger context, and train using a
modified loss function for increasing performance.

3.1 Dependency Representation for
Arguments

As illustrated in Figure 1, we structure arguments
as a combination of EDUs and define types of rela-
tionships that could potentially hold between EDUs.
We further enrich each EDU token with segment
boundaries, that enable the re-construction of ADU
from the EDUs. We list the properties of our de-
pendency representation below:

• An EDU can either partially or fully overlap
with an ADU and each token in an EDU is la-
beled as argumentative or non-argumentative,
using the IO tagging scheme. For example in
Figure 1, EDU 1 partially overlaps with ADU
1, as the token “because" is tagged as “O",
whereas the EDUs 2 and 3 fully overlap with
ADU 2, which is indicated by all the tokens
in the EDUs labeled as “I".

• Each EDU can only belong to 1 of 4 classes
∈ [major claim (MC), claim (C), premise
(P), non-argument (NA)]. Consecutive EDUs
which belong to the same class can be com-
bined using Append relationship to yield an
ADU. For example in Figure 1, EDU 2 and 3
can be combined using the Append relation-
ship to construct ADU 2.

• Claim and premise EDUs can be related us-
ing “Support" (Sup) or “Attack" (Att) relation-
ships, with the relationship originating from
the last EDU of a claim to the last EDU of a
premise. EDUs comprising premises can be
related using the “Support" relationship, with
the relationship originating from the last EDU
of the supported premise to the last EDU of
the supporting premise.
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Figure 2: End-to-End Model Architecture.

• A pseudo-token “ROOT" is added to the
beginning of each argument, which repre-
sents the topic or gist of the entire argument.
“ROOT" is always acting as a parent to the
highest-level component(s).

• Each claim is parented by the “ROOT", and
related using “For" (For) or “Against" (Agn)
relationship, signifying the stance of the claim
concerning the topic of discussion. In case of
the presence of a MC, the “ROOT" parents
the MC using a “default" (Def) relationship,
which in turn parents the claims using “For"
or “Against" relationships.

• An EDU can contain zero or more parents,
and the relationships are acyclic.

In contrast to Ye and Teufel (2021), parsing ar-
guments at an EDU level reduces complexity and
simplifies all sub-tasks of AM, which we hypothe-
size should lead to better results. Similar to Morio
et al. (2020), we implement DP only for the rela-
tionship detection and classification sub-tasks and
further incorporate separate classifiers for text seg-
mentation and component classification.

3.2 Multi-Task Learning (MTL) for AM

We train our argument parser in a MTL framework,
where all the AM sub-tasks share a common encod-
ing representation, followed by task-specific layers.
Figure 2 illustrates our architecture in detail 1.

1EDU-AP codebase: https://github.com/sougata-ub/edu-
ap.

3.2.1 Model Input Representation

We segment input text into EDUs using the Bi-
LSTM-CRF based discourse segmenter by Wang
et al. (2018) and add a special [EDU] token to
the start of each span. The [EDU] token acts as a
delimiter between EDU spans, and also represents
the meaning of the corresponding EDU. Further, a
[ROOT] token is added to the start of each input,
which represents the meaning of the entire text.

3.2.2 Hierarchical Encoding

Depicted in Figure 2, we implement a hierarchical
encoder, where we sequentially encode the current
paragraph input and context tokens using a shared
transformer encoder, and perform multi-headed at-
tention (MHA) between the current input special
tokens and the concatenated contextual [ROOT] to-
kens. Equations 1 to 4 defines the encoding process,
where Ecurr and Ectx are the encoded representa-
tions of the current and context inputs Scurr and
Sctx. The representations of the current turn and
context special tokens EI

curr and EI
ctx are selected

(using Get) from Ecurr and Ectx respectively. The
final representation EMHA

curr of the current turn’s spe-
cial tokens is obtained by sum pooling EI

curr and
the MHA output followed by a dropout layer.

Ecurr=Encode(Scurr);Get(X, idx)=X[idx, :] (1)

EI
curr=Get(Ecurr, idxROOT,EDU) (2)

EI
ctx=Get(Encode(Sctx), idxROOT) (3)

EMHA
curr =EI

curr+Dropout(MHA(EI
curr,E

I
ctx)) (4)
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Such a formulation not only encourages the special
tokens to better encode its representative span but
also ameliorates the length bottleneck (Joshi et al.,
2020) in transformer architectures by reducing the
sequence length. Thus, enabling the use of a larger
context compared to token level parsing.

3.2.3 Task Specific Prediction
Post encoding, we incorporate task-specific layers
to perform the final prediction for each task. De-
picted in Equations 5 and 6, we use single-layered
feed-forward neural networks (FNNs) as the final
layer for both text segmentation and component
classification. For text segmentation, we use the
initial token level encoding (Ecurr) of the current
text as input, whereas for component classification,
the final encoding of the current text [EDU] tokens
(EMHA

curr ) are used as inputs.

scspan=FNN(Ecurr); sc
typ=FNN(EMHA

curr ) (5)

y
′span={scspan ≥ 0}; y′typ=argmax sctyp (6)

Biaffine classifiers are generalizations of linear clas-
sifiers, which include multiplicative interactions
between two vectors. Since relation detection and
relation classification require performing inference
between argument pairs, we implement biaffine de-
pendency parsing (DP) for both the tasks. Using
FNNs, the current text [ROOT] and [EDU] encod-
ings EMHA

curr are split into two parts with reduced
hidden size–a head (parent) and a dependent (child)
representation, which in turn are passed through a
biaffine classifier (Biaf) for predicting edges and
labels between EDUs. Equations 7 to 11 details
our biaffine DP formulation, where He_p and He_c

denotes the parent and child representations for
relation detection, and Hl_p and Hl_c denotes the
parent and child representations for relation classi-
fication. sce and scl contains the output logits from
the biaffine layers, where scei,j and scli,j denotes
the logits between the ith and jth EDU for relation
detection and classification respectively.

Biaf(x, y)=xTUy +W(x⊕ y) + b (7)

He_p=FNN(EMHA
curr ); He_c=FNN(EMHA

curr ) (8)

Hl_p=FNN(EMHA
curr ); Hl_c=FNN(EMHA

curr ) (9)

sce=Biaf(He_p,He_c); scl=Biaf(Hl_p,Hl_c) (10)

y
′e
i,j={scei,j ≥ 0}; y′l

i,j=argmax scli,j (11)

3.2.4 Modified Objective Function
Depicted in Equation 16, we train the model end-
to-end by minimizing the aggregated interpolated

loss across all four sub-tasks, with an interpola-
tion factor λ. The sub-tasks of text segmentation,
component classification and relation classification
are trained by minimizing the cross entropy (CE)
losses Lspan, Ltyp

i , Ll
i,j respectively in Equations

14 and 15, whereas relation prediction is trained
by minimizing the binary cross entropy (BCE) loss
Le
i,j (Equation 13).
We further add an extra penalty term δ with an in-

terpolation factor of β to the BCE loss in Equation
13, to increase the recall of predicting relationships
between EDUs. Exploiting the symmetry of the
final score matrix (logits) in biaffine classifiers, as
depicted in Equations 12 and 13, the penalty term
for the relationship from the ith to jth EDU is set
to be dependent on the logit of its reverse: jth to
ith. This results in the loss function being penal-
ized most in case a relationship and its conjugate
reverse are both predicted to be present or absent,
and least if either is predicted to exist. We hypothe-
size that such a penalty should increase the relation
detection recall, while minimally impacting the
precision.

δ(y, ỹ)=y log(1-σ(ỹ)) + (1-y) log σ(ỹ) (12)

Le
i,j=β BCE(yei,j, sc

e
i,j)-(1-β)δ(yei,j , sc

e
j,i) (13)

Ll
i,j=CE(y

l
i,j , sc

l
i,j);L

typ
i =CE(ytypi , sctypi ) (14)

Lspan = CE(yspan, scspan) (15)

L = λLe + (1 - λ)(Ll + Lspan + Ltyp) (16)

3.2.5 Post Processing and Graph Construction
During inference, we perform a few post-
processing steps to constrain the model output.
For relationship prediction, we discard self ref-
erences and cyclic relationships, and further re-
strict the argument structures to conform to the
ones defined by Stab and Gurevych (2017), i.e
premise→premise, premise→claim, claim→major
claim/claim→ROOT and major claim→ROOT.

For generating an argument graph, we extract
ADUs by concatenating consecutive argumentative
EDUs that are predicted to be connected by an “Ap-
pend" relationship and remove non-argumentative
tokens, using the text segmentation prediction. To
yield contiguous arguments and prevent unnatu-
ral segmentation, we ensure the label of each to-
ken within an appended ADU confirms with its
neighbours, and re-label to the majority class of its
neighbours if needed. Next, we label each ADU
by assigning the majority label of the constituent
EDUs predicted by the component classifier. Fi-
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nally, a graph is formed by connecting the labeled
ADUs with the relationships predicted by the rela-
tion classifier, only if the relation detector predicts
its existence.

4 Experiments

4.1 Dataset

We use the benchmark persuasive essays (PE)
dataset by Stab and Gurevych (2017), for all our
experiments. This dataset comprises 402 persua-
sive essays: 322 for training and 80 for testing,
randomly selected from an online forum. Barring
non-arguments, there are three kinds of argumen-
tative components in the dataset, along with four
types of relationships that can hold between the
components: (i) Major claim: the main claim by
an author, which informs their stance. (ii) Claim:
a statement that is either For or Against one or
more major claims. (iii) Premise: a statement that
provides evidence to a claim or another premise
by a Support or Attack relationship. Please refer
Stab and Gurevych (2017) for a detailed dataset
statistics.

4.2 Experiment Setup

We use Roberta (base) (Liu et al., 2019) as the base
encoder, and increase its embedding layer to accom-
modate the special tokens. Two layers comprising
four attention heads are used for MHA, where the
MHA result in each layer is sum pooled with the
residual output while applying dropout with 0.1
probability to the MHA result. The hidden size of
the FNNs in the biaffine layer is set to 600. An in-
terpolation factor λ of 0.95 is used for aggregating
the losses, and the factor β in the modified BCE
loss is set to 0.85. All models are trained with a
learning rate of 1e-5 for 15 epochs and optimised
using AdamW (Loshchilov and Hutter, 2017), with
early stopping if the validation loss doesn’t reduce
for 2 epochs. We repeat each experiment five times
and report the average across all runs.

4.3 Competing Model

We recreate the state-of-the-art BiPAM parser by
Ye and Teufel (2021) as an external baseline and
compare it against our proposed method. BiPAM
implements token level dependency parsing for
end-to-end argument mining and had achieved
significant improvements over LSTM-Parser and
LSTM-ER reported in Eger et al. (2017).

4.4 Evaluation Metrics

All tasks are evaluated using the F1 score. Similar
to Persing and Ng (2016), approximate and exact
overlap is computed between the golden and pre-
dicted ADUs, where a predicted ADU is classified
as approximate overlap if at least 50% of its to-
kens match with the golden ADU, and is classified
as exact overlap if all the tokens match with the
golden ADU. Each task is evaluated for both the
approximate and exact overlapping ADU spans.

4.5 Results and Analysis

We share the experimental results for the sub-tasks
of text segmentation and component classification
in Table 1, and the sub-tasks of relation detec-
tion and relation classification in Table 2. In each
table, we calculate and report the F1 score for
both approximate and exact overlapping ADUs (ap-
prox/exact). We treat EDU-AP–our non-contextual
implementation without the δ loss penalty as the in-
ternal baseline, and underline the best performing
model for each task, in comparison to this base-
line. We also compare the results obtained from
the BiPAM parser and highlight the best perform-
ing result in comparison to this baseline in bold.

As indicated by the top section of Table 1, us-
ing a mixture of EDUs and tokens, our baseline
EDU-AP outperforms token level BiPAM for text
segmentation by a significant margin (61.8/53.2
compared to 38.8/25.6). We reason that operating
solely with tokens, BiPAM increases the chances
of locally erroneous predictions, yielding discon-
tinuities in ADU spans. Whereas EDU-AP min-
imizes this by globally identifying EDUs which
should be combined as an ADU using the “Ap-
pend" relationship, and further locally eliminating
non-argumentative tokens from each EDU. This is
further corroborated by the fact that the average ra-
tio between predicted ADU spans and golden ADU
spans per paragraph is 1.1 for the EDU-AP, in com-
parison to an average ratio of 2.2 in the BiPAM
parser, signifying a greater number of short spans
predicted by BiPAM.

For component classification (Table 1), EDU-
AP outperforms BiPAM across all classes (Major
Claim: MC, Claim: C, Premise: P and Non Argu-
ment: NA) for the approximately matched ADU
spans. However, for the exact matching spans, Bi-
PAM mostly performs better than EDU-AP.

For both the relation detection and classification
tasks in the top section of Table 2, EDU-AP largely
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ADU
Span

Component
Classification

Model F1 MC-F1 C-F1 P-F1 NA-F1

BiPAM † 38.8 / 25.6 81.9 / 87.8 67.8 / 77.0 88.8 / 88.0 92.5 / 98.3
EDU-AP * 61.8 / 53.2 86.2 / 86.8 68.9 / 70.8 90.3 / 90.7 96.4 / 97.6

EDU-AP + prompt 61.4 / 52.5 84.9 / 85.2 69.2 / 71.7 90.5 / 91.1 96.6 / 97.7
EDU-AP + left 61.5 / 51.9 84.2 / 83.9 64.8 / 67.4 89.9 / 90.1 96.2 / 97.6
EDU-AP + all 60.5 / 50.8 83.6 / 84.1 68.2 / 70.2 90.5 / 90.8 95.9 / 97.7
EDU-AP + δ 61.4 / 53.5 85.7 / 87.3 73.5 / 75.1 91.2 / 91.4 97.2 / 98.1
EDU-AP + δ + prompt 61.2 / 53.2 87.8 / 88.1 74.2 / 76.1 91.9 / 92.2 97.3 / 97.9
EDU-AP + δ + left 60.0 / 51.5 87.0 / 88.4 71.2 / 73.0 91.5 / 91.6 96.6 / 97.8
EDU-AP + δ + all 59.9 / 51.6 86.3 / 86.6 71.9 / 73.7 91.3 / 91.6 96.0 / 97.4

Table 1: Results for the sub-tasks Text Segmentation and Component Classification (Major Claim, Claim, Premise,
Non Argument), for both approximate and exact overlapping spans (approx/exact). †and * denotes external and
internal baselines respectively.

Relation
Detection

Relation
Classification

Model F1 Agn-F1 Att-F1 Def-F1 For-F1 Sup-F1

BiPAM † 37.1 / 13.2 16.1 / 5.0 0.0 / 0.0 61.1 / 30.9 51.3 / 24.4 26.1 / 5.7
EDU-AP * 57.0 / 47.3 56.5 / 46.9 31.9 / 12.4 85.5 / 72.9 74.1 / 65.6 57.7 / 47.5

EDU-AP + prompt 62.0 / 51.6 58.5 / 47.7 35.3 / 14.1 85.1 / 71.2 81.9 / 73.2 68.8 / 57.3
EDU-AP + left 57.2 / 46.8 55.9 / 48.3 29.8 / 14.1 86.5 / 71.0 75.4 / 66.9 59.6 / 48.2
EDU-AP + all 57.8 / 47.4 56.4 / 47.2 31.1 / 15.6 86.5 / 71.1 75.9 / 66.9 59.5 / 48.8
EDU-AP + δ 62.6 / 53.8 64.6 / 57.0 38.8 / 18.7 86.3 / 77.8 80.3 / 73.2 69.1 / 58.5
EDU-AP + δ + prompt 64.9 / 55.0 64.4 / 56.7 41.1 / 22.6 88.4 / 77.0 82.5 / 74.1 74.3 / 62.9
EDU-AP + δ + left 62.3 / 52.2 59.3 / 50.9 39.0 / 17.3 86.1 / 75.9 77.7 / 69.9 66.8 / 54.8
EDU-AP + δ + all 62.8 / 53.0 64.4 / 57.0 37.7 / 18.1 87.8 / 76.7 81.1 / 72.5 69.3 / 58.0

Table 2: Results for the sub-tasks Relation Detection and Relation Classification (Against, Attack, Default, For,
Support), for both approximate and exact overlapping spans (approx/exact). †and * denotes external and internal
baselines respectively.

outperforms BiPAM. We reason that since both the
tasks demand inference over pairs of argumentative
sentences, using our formulation of operating at an
EDU level and using representative [EDU] tokens
better represents and encodes arguments, thus pro-
viding better context during scoring, compared to
operating at the individual token level. Further, un-
like BiPAM, incorporating task-specific layers en-
courages learning task-specific parameters, which
enhances the model’s performance.

4.6 Ablation Study

We further perform an ablation study, to determine
the effect of adding the δ penalty and utilizing con-
text in all sub-tasks. The bottom section in both
Tables 1 and 2 includes the ablation results. We
experiment with combinations of adding an essay’s
prompt as context (+prompt), the prompt along

with all the past paragraphs (+left), the prompt
along with all other paragraphs (+all), and the loss
penalty (+δ).

Overall, we observe that although baseline EDU-
AP performs better than BiPAM, incorporating the
δ penalty increases the model’s efficacy for most
sub-tasks, which is further boosted by adding the
essay’s prompt (+prompt) as context. Most sig-
nificant improvements are observed for relation
detection and classification (Table 2 bottom sec-
tion), which is intuitively justified, as establishing
relationships (like For/Against) not only require
knowledge and understanding of the main theme of
discussion, but also cognizance of the established
stance towards the topic from prior paragraphs. Ta-
ble 3 further illustrates the impact of the δ penalty
on the precision and recall scores for relation de-
tection. As previously hypothesized, we observe
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Figure 3: Comparison of a parsed paragraph from test set using the EDU-AP (left) and BiPAM (right) parsers.

that incorporating the δ penalty almost always im-
proves recall, while also boosting the precision in
some cases.

Model F1 Precision Recall
BiPAM † 37.1 / 13.2 32.3 / 13.9 45.4 / 13.1
EDU-AP * 57.0 / 47.3 71.6 / 66.1 48.1 / 37.6
+ prompt 62.0 / 51.6 68.0 / 62.1 57.1 / 44.2
+ left 57.2 / 46.8 68.6 / 62.4 49.4 / 37.7
+ all 57.8 / 47.4 70.2 / 64.2 50.2 / 38.5
+ δ 62.6 / 53.8 69.2 / 64.5 57.5 / 46.4
+ δ + prompt 64.9 / 55.0 67.8 / 62.5 62.3 / 49.2
+ δ + left 62.3 / 52.2 72.8 / 67.7 55.0 / 42.9
+ δ + all 62.8 / 53.0 69.0 / 63.7 58.1 / 45.7

Table 3: Comparison of F1, Precision and Recall for the
Relation Detection subtask, for both approximate and
exact overlapping spans (approx/exact). † and * denotes
external and internal baselines respectively.

We also observe that text segmentation largely
remains unaffected by the addition of context and δ
penalty (Table 1 bottom section), which is justified
by the nature of the task, which does not depend
much on external context, and relies more on lin-
guistic features.

The nature of argumentation is such that the la-
bel of the components can be ascertained with a
fair probability, from the relationships that exist
between components. For example, as described
in sub-section 4.1, only a claim can be the child
node in a For/Against relationship, and premises

can only be a part of Support/Attack relationships.
Although the δ penalty is not directly applied to
component classification, we still observe an in-
crease in performance for classifying components,
with the addition of the δ penalty and context (Table
1 bottom section). We attribute this to our multi-
task learning framework, which enables learning
joint representations that benefit all sub-tasks.

It is also interesting to note that for all the sub-
tasks, adding more context (+left, +all) does not
always yield superior results, whereas just adding
the prompt (+prompt) of the essay yields better
results. We attribute this to the fairly small size
of the corpus used in the experiments, which does
not provide many data points for learning complex
interactions from context.

4.7 Discussion
Our results indicate that parsing text at a combina-
tion of EDU and token level yields better results,
compared to bare token level DP, and can be further
improved by appropriately penalizing the loss func-
tion, and incorporating contextual information. Fig-
ure 3 illustrates and compares a parsed example of
a paragraph from the test set, using both the EDU-
AP and BiPAM parsers. We underline and enclose
the predicted argumentative spans by the models
in square brackets, and assign a unique identifier
to each component (C1, C2, P1, etc.). Predicted
claims are highlighted in red, and their unique iden-
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tifier starts with ‘C’, whereas premises are high-
lighted in green, with their identifier starting with
‘P’. Predicted relationships between components
are separated using a colon. Example P5:P4 signi-
fying support relationship from P4 to P5, or C1:(P1,
P3, P5) signifying support relationship from P1, P3
and P5 to C1.

We observe that EDU-AP can correctly iden-
tify ADU spans by merging EDUs using the “Ap-
pend" relationship and further eliminating non-
argumentative tokens. BiPAM on the other hand
yields more fragmented and discontinuous spans.
The average ratio of predicted and golden ADU
spans per paragraph in the test set is 1.1 for the
EDU-AP in comparison to 2.2 for BiPAM parser,
signifying a greater number of shorter spans pre-
dicted by BiPAM. For example, the span C1 in
EDU-AP parsed output (which matches with the
golden span) is split into two spans: P1 and P2 by
BiPAM. We further observe that EDU-AP is not
only able to correctly label the identified ADUs as
claim and premise but also able to correctly predict
support relationships between the ADUs. Com-
pared to that, BiPAM is not able to correctly iden-
tify the claim of the paragraph and fails to predict
any relationships between the arguments.

Figure 4: KDE plots comparing the effect of δ penalty
on the distribution of relationship probability and its re-
verse for relationship detection. The dotted line denotes
the probability threshold used for the experiments.

To understand the effect of the δ penalty on rela-
tion detection, we combine results from all experi-
ments and plot the kernel density of probabilities of
predicted relationships and its conjugate reverse re-

lationship in Figure 4. We observe that as expected,
overall the model assigns lower probabilities when
no relationship exists between a pair of argument
components and asymmetrically higher probabil-
ities when a relationship exists, signifying a uni-
directional relationship. Adding the δ penalty has
the effect of shifting the probability distributions to-
wards more symmetry (i.e for pairs of components,
the difference of predicted probability for both di-
rections is reduced), resulting in a recall seeking
behaviour.

Although EDU-AP outperforms all baselines, it
still fails to attain the human upper bound perfor-
mance measured by Stab and Gurevych (2017) on
the PE corpus. Further, trained only on monologi-
cal essay data, EDU-AP can’t be used for parsing
other forms of discourse like dialogue, which we
seek to address in our next research steps.

5 Conclusion

In this paper, we present EDU-AP, an end-to-end
dependency parsing based argument parser for pars-
ing arguments from molonogical text. Exploiting
the innate relationship between EDUs and ADUs,
along with the appropriate use of context, and a
hierarchical encoding scheme, EDU-AP is trained
end-to-end in a multi-task learning setting by mini-
mizing a novel loss function. EDU-AP’s efficacy
is demonstrated by its superior experimental and
ablation results, in comparison to strong internal
and external baselines. We believe, with minor ad-
justments EDU-AP can be purposed for parsing
arguments from dialogues.
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