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Abstract

Verbal and nonverbal communication skills are
essential for human-robot interaction, in partic-
ular when the agents are involved in a shared
task. We address the specific situation where
the robot is the only agent knowing about both
the plan and the goal of the task, and has to
instruct the human partners. The case study is
a brick assembly. We here describe a multi-
layered verbal depictor whose semantic, syn-
tactic, and lexical settings have been collected
and evaluated via crowdsourcing. One crowd-
sourced experiment involves a robot-instructed
pick-and-place task. We show that implicitly re-
ferring to achieved subgoals (stairs, pillars, etc)
increases the performance of human partners.

1 Introduction

Task-oriented interactions between systems and
humans, in order to achieve a common goal, are
present in many applications. For instance, receiv-
ing directions via GPS is a task-oriented communi-
cation with the instructions being delivered visually
and verbally (Belvin et al., 2001). Similarly, robots
have been used to give directions (Bohus et al.,
2014), describe its route experience (Rosenthal
et al., 2016; Perera et al., 2016) or instruct students
in a tutorial class Gomez et al. (2015). In the later
work (see Figure 1), a robot helps two participants
to perform a jigsaw assembly task using verbal and
non-verbal communication.

Figure 1: Face-to-face interaction on a Jigsaw reassem-
bly task with an Icub robot (right) acting as the instructor
for two students (left). From (Gomez et al., 2015).

The rise of social robots endowed with verbal,
co-verbal and non-verbal communication capabili-
ties, now raises the question from the robotic point
of view. How a robot and a human can commu-
nicate to achieve a common goal and share plans,
involving manipulating objects in their common
working space?

In this paper, we study this problem by focus-
ing on verbal communication. Indeed, a verbal
description of how the task is to be done is a more
effective way of communicating objectives than
non-verbal descriptions: not only does it improve
task performance but also gives rise to more compli-
ance and better mutual adaptation (see Nikolaidis
et al., 2017). More precisely, we propose to ex-
plore the impact of the verbalization strategy in an
extreme case where the robot is the only agent that
knows the plan and the goal, and human cowork-
ers are awaiting instructions planned by the robot
to achieve the goal. Note that we limit here the
number of human partners to one: the opportunis-
tic allocation of tasks between available coworkers
will be addressed in a following paper.

When using verbalisation as the main means of
communication, an important question is to see
how the style, i.e. saying the same thing in dif-
ferent ways, quoted as the verbalization space by
(Karlgren, 2000), in which the instructions are be-
ing delivered, can affect the execution of the task,
especially when communicating complex tasks.

In this context, our contribution is threefold:

Styles: we test four different styles on an assembly
task (see Figure 2) that offers a large verbal-
ization space, i.e. many stylistic dimensions
including choice of geometric relations be-
tween bricks, of syntactic and lexical descrip-
tions, etc. One primary style parameter is the
use of context. By context, we mean implicit
referencing to elements of the environment
that go beyond the previous and current ac-
tions. We compare two AI-generated styles
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Figure 2: Face-to-face interaction on a LEGO™
assembly task with YUMI acting as the instructor.

(inclusion vs. dismissal of the use of context)
with the lowest vs. highest human instruc-
tions in terms of: time-to-complete, compre-
hension/complexity of the instruction, and ef-
ficiency/effectiveness of the task completion.

Architecture: we propose a robotic control archi-
tecture and its sensorimotor capabilities for
task-oriented human interaction. We focus on
two key components: (a) the planner and (b)
the verbalizer. While the former takes deci-
sions on what to do next, the verbalizer puts
each elementary instruction into words for a
text-to-speech synthesizer.

Evaluation: we propose an evaluation framework
based on a series of three crowdsourced ex-
periments for: (a) collecting and (b) scoring
human verbalizations for parameterizing our
flexible verbalizer as well as (c) assessing and
evaluating the performance of human vs. auto-
matic verbalizations on actual task assembly.

This paper is organized as follows: section 2 con-
tains related work for task-oriented communication
and plan description; section 3 describes the over-
all architecture of our control model, with a closer
look on the planner and the verbalizer with its dif-
ferent layers (fig. 6); section (4) introduces the
three experiments used to parametrize the verbal-
izer; section 4.1 presents the results of the first two
web-based experiments used for data collection
and assessment of human verbalizations; finally,
section 4.2 presents the setup and results of the
last web-based experiment used to validate the effi-
ciency of the set of rules in our automatic verbalizer
and to compare it with human verbalization.

2 Related work

Verbal communication of plans has been used in
a large variety of Human-Robot Interaction (HRI)
scenarios. They mainly vary along four main cate-

gories: (1) task type (e.g. commentating, instruct-
ing, navigation). (2) perception capabilities (audi-
tive/visual sensors). (3) style and its use in sentence
generation (e.g. information tagging). (4) role (e.g.
receptionist, instructor, navigator).

Most HRI tasks require some form of commu-
nication. It could be used to describe what hap-
pens in the scene: Veloso et al. (2008) presented
Rocco, a fully automated RoboCup (Kitano et al.,
1997) commentator, aiming at generating real-time
summaries of the actions in the games (Voelz et al.,
1998). For navigation tasks, Rosenthal et al. (2016);
Perera et al. (2016) presented algorithms for gener-
ating routing narratives with varying parametrized
styles. Belvin et al. (2001) presented a real-time
spoken language navigation system able to respond
to natural conversational queries. The queries were
mainly regarding details of a step in the route.
However, responses were generated using simple
pre-written "holly sentences" filled with variables
extracted from the plan. For assembly tasks, the
‘SHRDLU’ system (Winograd, 1972, 1974) is quite
inspiring: the task focused on manipulating blocks
with a robot arm on the basis of the user’s textual
input. The system translates the user’s input into
procedures to move the blocks and question the
scene. Our work exchanges the roles of the agents:
our robot instructs human agents verbally. Fiore
et al. (2014) also shares some similarities with our
work, i.e. verbalising the actions in the plan for
the user as well as explaining which actions should
be executed and in what order. However, the task
they chose does not require the same level of pre-
cision – and their focus was not on verbalization.
Finally, the Robert system (Behnke et al., 2020), in-
stalled on Bosch equipment, provides its user with
a step-by-step instruction (on a screen using text,
images, voice and videos) detailing how to com-
plete a given DIY project successfully. Similarly to
us, the sequence of instructions (plan) is obtained
using HTN planning. They also added a new fea-
ture to perceive the scene using connected tools
(sensors), enabling the system to check whether the
user is performing the project’s steps correctly and
to provide help in the case of failure.

Zhu et al. (2017) proposed a verbalization sys-
tem able to generate explanations for navigation as
well as grasping and manipulation tasks (pick-and-
place kitchen scenario). They used pre-written sen-
tence templates. Canal et al. (2021) proposed Plan-
Verb, a domain and planner-independent method
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Figure 3: Outer part shows the Human-robot Interaction.
The inner part shows the multimodal Architecture. The
two components involved in the paper are highlighted .

for the verbalization of task plans based on seman-
tic information tagging of the actions and predi-
cates in the domain (for both PDDL and RDDL).
Several works showed the importance of having
different styles (Aires et al., 2004; Miehle et al.,
2018a; MacFadden et al., 2003). In line with Voelz
et al. (1998); Veloso et al. (2008), our verbal gen-
eration framework relies on crowdsourcing experi-
ments, for both defining the different styles of the
instructions and assessing their efficiency.

Verbal communication has been used in a large
variety of situations. Gockley et al. (2005) pro-
posed a robot receptionist with pre-written story-
lines. Their focus was on long-term interactions
with a robot that exhibits personality and character.
For their robot bartender, Petrick and Foster (2013)
construct plans with tasks, dialogue, and social ac-
tions. They advocate for a stronger link between
planning and language.

3 The architecture

Figure 3 shows the overall architecture of our
HRI system monitoring the interaction between
the agents (humans and robot) and the working en-
vironment. While no single architecture has proven
to be best for all applications, layered architec-
tures have proven to be increasingly popular, due
to their flexibility and ability to operate at multiple
levels of abstraction simultaneously (Kortenkamp
et al., 2016). Similarly to what can be found in
(Alami et al., 1998), our robot’s architecture can be
divided into three levels: perception, decision mak-
ing and action. With different robots, capabilities
change and so do their perception/action modal-
ities. This architecture allows us to add/remove

Figure 4: An example where the task is to build a
LEGO™ arch – Hierarchical decomposition in fig. 5

modalities, in order to cope with both industrial
(e.g. no gaze/head) and humanoid robots (e.g. no
grippers).

The perception level is in charge of capturing
the current state of the environment as well as
the agents acting on it, e.g. analyzing verbal
requests coming from the human agent and all
changes happening in the working environment.
The action level takes charge of all actions to-
wards the environment (e.g robot moving around
to pick an object) and agents (e.g. coordinated
gaze, speech and pointing to attract partners’ atten-
tion). The controller is responsible for orchestrat-
ing action/perception loops according to the current
objective given on request by the planner. In partic-
ular, the controller is in charge of monitoring the
addressee’s activity when processing the robot’s
instruction, such as on-line attention, task compre-
hension and correct execution. This includes the
chunking or repetition of the instruction if neces-
sary.

It all starts with the controller that receives a "go"
signal and requests the first action from the planner.
Provided the requested information, the controller
(via the action modules) either applies the action
or instructs the human agent to apply it. The envi-
ronment is modified, the controller perceives the
updated current state, and the loop continues until
the planner deems this task as completed.

The following subsections detail the key mod-
ules for the generation of verbal instructions: the
planner and the verbalizer.

3.1 Planner

The planner takes as input a domain that con-
tains a logical description of the actions, an initial
state obtained from the perception layer and an
objective and outputs a sequence of actions (the
plan/solution) in order to reach the objective. The
initial state and the objective are described as a set
of logical propositions.

The first advantage of using a planner is (a) being
able to scale to other types of tasks (e.g. assembly,
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Figure 5: Hierarchical decomposition of an arch into
towers/pillars and a bridge/beam – Example in fig. 4

real-world applications, navigation, etc.), by adapt-
ing the domain and the problem to the new task;
(b) allowing the robot to autonomously adapt and
replan when observed actions differ from expected
ones. Our planner has two important properties: it
performs Hierarchical Planning (Pellier and Fior-
ino, 2018), i.e. the goal task can be divided into
subtasks, and Partial order planning, i.e. some ac-
tions can be executed in parallel as long as they
satisfy applicability constraints. Hierarchical Plan-
ning allows us to specify subtasks, name them, and
use these names in the verbalizer. Partial ordering
means that the sequence of actions does not need to
be fixed and some actions, while satisfying appli-
cability constraints, can be executed in a different
order. Partial ordering eases task description and
offers more flexibility while executing the plan or
verbalizing it. For instance, building an arch can be
decomposed into building two pillars and a beam.
Each pillar can be constructed by different work-
ers but the beam assembly requires pillars to be
finished.

This provides a plan that is almost identical to
how a human would plan to build an arch. Thus, en-
abling the planning system to provide context about
the plan as well as some explanation regarding its
decisions in the plan. One might argue that con-
text may not be crucial when giving an instruction.
However, when dealing with a complex/important
task, the addition of hierarchical decomposition
into subtasks can help with assigning separate sub-
tasks to different users, or giving a clear explana-
tion to why we are applying a certain action. Our
focus for using hierarchy is to give context to help
remove ambiguity from instructions, and reduce
the number of errors and needed time to complete
the task.

The planner takes into account other constraints

such as visibility (cannot perform an action if it
prohibits you from seeing a later action), applica-
bility (cannot apply what is inapplicable in a given
state), and hierarchical constraints (best to finish
all actions of a subtask before starting another one).
The planner module also provides vital contextual
information for the completion of that action.

3.2 Verbalizer

We communicate the instructions via verbalization.
The aforementioned verbalizer has multiple param-
eterized layers (see Figure 6), each shaping one
aspect of the message:

The depictor takes charge of all geometric as-
pects which are vital for completing an action
(e.g. 3D position, orientation). This is where
business ontologies are hosted (presently,
what characterizes a pillar, steps, windows,
walls, etc)

The semantic generator focuses on the context,
which is in our case giving a hierarchical ex-
planation of where and why we are applying a
certain action (e.g. “To finish the red tower”).

The syntactic generator focuses on the syntax
(i.e. arranging the words and phrases to create
well-formed sentences).

The realizer generates the final sentence from the
syntactic tree

The text-to-speech system converts the text into
audiovisual signals

Style parameters condition each layer so that
to be able to adapt communication to the task dif-
ficulty and workers’ competence, with the objec-
tive to improve performance – e.g fewer mistakes
and faster completion time of the instruction (Cas-
sell and Bickmore, 2003; Forbes-Riley et al., 2008;
Stenchikova and Stent, 2007; Reitter et al., 2006;
Mairesse and Walker, 2010; Miehle et al., 2018b) –
as well as cognitive load – e.g better recall of the
task and processing capacity.

This multi-layer architecture was chosen in or-
der to separate the different skills of the verbalizer,
therefore constraining interventions when extend-
ing its capabilities. We first discuss each layer sep-
arately and spot differences between car navigation
vs. assembly task.

3.2.1 Depictor
The depictor handles here agents, objects, and pred-
icates that populate a particular domain: here 3D
arrangement of objects. It contains all necessary
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Figure 6: The different layers of the Verbalizer.

properties of these elements such as dimension,
relative position, color of objects, sets of objects
(e.g. pillars, arches, etc), their relations as well as
possible actions (e.g. placing, straddling, sticking,
etc). Relative positioning is used by the verbalizer
to describe where to place what, how and why, e.g.
relative to the closest LEGO™ object, or the last
placed one. It can be relative to more than one
object, or even a structure. For example: it enables
the generation of “To finish the south pillar, put
another red brick on top of the previous red brick”.

It takes as input the action to be performed, the
observed scene, as well as the goal, i.e. hierarchical
information of the desired final arrangement; and
outputs all possible spatial descriptions of the next
action using metric, directional and topological op-
erators as seen in (Borrmann and Rank, 2009). For
instance, “Stick a blue cube, East of the previous
cube then move it two slots to the South”. Stick
translates to the blue cube touching the previous
one which is a topological operator. East of is a
directional operator. Lastly, move it two slots to
the South is a metric putting forward the distance
between the two objects in a certain direction.

3.2.2 Semantic generator

Given all possible actions delivered by the depic-
tor, this layer filters/prioritizes the output list of the
depictor according to the style policy: efficiency of
the description in terms of positioning (e.g. use of
centering, alignments), displacements, use of con-
text, etc. When a chosen description is potentially
ambiguous, it may add to the corresponding action
extra verification(s).

The context is coming from the hierarchy of the
tasks delivered by the planner (e.g. Without con-
text: “Put a red brick on top of the previous red
brick”. vs. with context: “To finish the red tower,
put a red brick on top of the previous red brick”).
Note that it is also responsible for adding infor-
mation on the addressee (who should perform the
task) and the task (e.g. explaining what it consists
of and why this action is triggered, e.g. “Let’s start
building an arch starting with its north pile!).

3.2.3 Syntactic generator
The syntactic generator is responsible for building a
syntactic tree with proper verbal constructs, names
of objects, etc

Finally, in this layer, we have the option of either
including all of the information (verbose) or omit-
ting any redundant information as well as including
pronominalisation, all while preserving the unicity
of the task. (concise). Verbose: “Put a red brick
on top of the previous red brick”. Concise: “Put
another one on top”. The verbose option is straight-
forward and simply includes everything there is to
know about the action. When applying the concise
option, in order to remove redundant information,
we need to consider what was previously manipu-
lated by the human agent (i.e. LEGO™ type, color,
orientation, task).

3.2.4 Realizer
It converts a syntactic tree into sentences. We used
the jsRealB (Molins and Lapalme, 2015), that can
handle both English and French (fig. 7).

3.2.5 Text To Speech
We currently use the macOS TTS. One issue that
we have encountered is problematic mispronuncia-
tions in French (in particular handling homographs,
liaisons, etc). The current TTS also does not al-
low to change the intonation in case we decided
to manipulate the style of speech (e.g. instructing
an order or an astonishment), nor can we include
pauses to include coordination with gesture and
gaze. Future work will include the use of a differ-
ent TTS which allows controlling expressivity and
rhythm as well as adding emphasis on certain parts
of the text.

Going back to the idea of parametrizing the mod-
ule for another task, a spatial task to be precise, a
navigation task for instance. Aside from the nec-
essary updates in the domain and problem files of
the planner module corresponding to the new task
at hand, some changes need to occur in the first
two layers of the verbalizer. The depictor would
still generate the semantic depiction and the rel-
ative positions between the objects, however, we
would need to introduce the newly added different
types of objects from the new environment (e.g.
immovable obstacles, roads, traffic lights) and ac-
tions ("turn", "cross", "look", etc) as well as some
information about the role and the link between
these objects. The semantic generator would have
the same objective as well, however, changes might
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Figure 7: English and French realization using jsRealB

be required to accommodate with the type of in-
formation that needs to be transmitted. As for the
rest of the layers, no particular update is required
since it only concerns the styling, generation and
utterance of the sentence.

It is important to mention that previous work,
such as (Dogan et al., 2020), have shown that in-
cluding perspective-taking helps reduce time and
error. However, their work also mentions that the
use of ‘in front’ and ‘behind’ did generate some
ambiguity and caused more time and errors when
applying a task. In our work, the use of left and
right could have been easily used instead of East
and West since we know the user’s position with
respect to the environment. However, we decided
to use conventional directions (i.e. North East West
South) instead of using perspective taking, (1) to
ensure the absence of any ambiguity and (2) since
this formulation can be used to instruct multiple
users having different perspectives.

The following sections include the three web-
based experiments that we conducted for find-
ing out which (depiction/verbalization parameters)
combination offers the best reduction of errors to
complete the assembly.

4 Experiments

The purpose of the first two experiments is to pro-
vide us with a ground-truth corpus of verbal de-
scriptions and obtain the highest and lowest ranked
human exemplars for giving an instruction. The
third experiment introduces an assembly task in
order to test the efficiency of AI-generated instruc-
tions with reference to the natural ones.

Following the spatial representation — using
metric, directional and topological operators as
well as using multiple types of object references
(point/corner, line/axis . . . ) (Borrmann and Rank,
2009) — we chose a set of elementary actions

which (1) spans most of these operators and (2)
allows the implicit use of the context of that ac-
tion. Thus, the instructions studied in the following
describe the placement of the first brick of a new
structure, i.e. giving the semantic generator the
possibility to refer (or not) to the just finished one.

We describe below how we use crowdsourcing
to gather human descriptions of these placements
(mainly to parametrize the semantic and syntactic
generator) and compare the efficiency of human vs.
automatic descriptions. For this, we asked subjects
to actually perform the actions. We expect condi-
tions (human vs. AI-generated utterances, effective
vs. no use of context) will impact placement error
or time-to-complete.

All experiments are performed in French.

4.1 Collection of ground-truth data

We collected and ranked verbal descriptions per-
formed by human subjects in two steps:

Free descriptions provide us with a ground-truth
corpus of verbal descriptions of elementary
placements performed by human subjects in
which they put themselves in the place of a
robot instructor.

Ratings of the former verbalizations were then
collected by asking subjects to put themselves
in the place of human partners and listen to
the robot’s instructions.

Scene presentation. In both sub-tasks, subjects
are presented with bricks laid on a board. The brick
just placed by the robot and the one to be placed by
the subjects are respectively displayed with back
edges vs. 50% transparency. The following video
shows the screen during the experiment.
Instructions. The proposed vs ranked verbal de-
scriptions should be unambiguous and as short as
possible. Before the actual test (24 scenes), we

https://youtu.be/D5fPfKz8c8Q
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trained the participants with three examples con-
taining some incorrect propositions. The results are
used to validate crowdsourced data. We give the
participants additional instructions when describ-
ing an action, namely, the use of specific terms (e.g.
cube, brick, east-west orientation, north of) and the
possibility to refer to the previously laid brick or
any overtly constructed structure.
Subjects. The free descriptions were performed
by the authors and 10 French-speaking participants
while 15 participants recruited through Prolific per-
formed the ranking.
Analysis of free descriptions. We combined de-
scriptions performed by the authors with the ones
suggested by the 10 participants. We manually
selected an average of 5 natural instructions per
scene in order to ensure that there were no dupli-
cates, mistakes or ambiguities while trying to span
as closely as possible the variety of styles, in par-
ticular syntactic constructs, topological properties
of objects, etc.
Feature selection. Then, amongst all the sen-
tences, we gather the following key parts which
are essential or helpful for the action description:
Hierarchy (Hierarchical Planning) and precedence
between actions in the assembly (Short and long
term recall when referencing objects/landmarks).
The different reference types being the previously
placed element, a built structure (e.g. tour, bridge,
staircase etc) and a part of an element: (e.g. sides,
corners, section of a structure etc). Aside from
the reference object, an instructed action can be
decomposed using multiple sub-actions or it can
contain verification (i.e. additional information for
validating the executed action). We note that the
topological features and types of objects that can
be found in our suggested scenes are taken from
Borrmann and Rank (2009).
Analysis of the ranking. Following this phase,
we repeat the same experiment with the same ex-
ample and test sets along with the updated set of
scene descriptions. However, we only ask the par-
ticipants to choose the best, among the new list of
natural instructions (see video). 15 participants are
recruited through Prolific. The participants have
to be French native speakers. The reason behind
this experiment is to check which criteria a human
agent would prefer as an instruction (e.g. including,
or not, a verification step).

Figure 8: Frequency of appearance of topological oper-
ators in the proposed scenes

Figure 9: Results of all description criteria (by chance,
and chosen by the 15 participants)

4.1.1 Results
As instructed, the participants are to choose a com-
pact description of the action, all while being un-
ambiguous and easy to understand. Amongst all
the participants over all the scenes, 58.33% of the
chosen sentences are the shortest ones. Suggesting
that even with the instruction of ‘choosing a com-
pact sentence’, longer sentences (usually caused by
adding a verification step, or using multiple sub-
actions) are also considered by the participants.

Figure 9 compares the percentage of sentences
chosen at random with the ones chosen by the par-
ticipants when a certain criterion is provided. In
other words, the more the participants prefer a crite-
rion, the bigger the difference will be between both
percentages for that criterion. An instruction is a
combination of multiple criteria, however the re-
sults still show a difference of preference between
some of them. Going from the right, we see that
when the feature is provided, the use of ‘Decom-
position’ (decomposing an instruction), ‘Metric’
(numerical distance), and ‘Topological’ (touching
reference)} were mainly preferred. Then ‘Previous’

https://prolific.co/
https://youtu.be/uS65RWLmpWw
https://prolific.co/
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(mention of previously placed object), ‘Structure’
(mention of context and structures), and ‘Direc-
tional’ (3D directions) were also preferred but with
a smaller percentage. The final two criteria {Ver-
ification, Axes} were disliked by the participants.
Despite the fact that including a ‘Verification’ step
ensures the correctness and reduces the ambiguity
in an instruction, only 25% of the times do the par-
ticipants choose the option with verification. This
might be due to the fact that the participants are
steering away from longer sentences containing
this verification step. Lastly, we notice that the
‘Axes’ criterion corresponding to alignment is not
largely preferred, which might be caused by the
complexity of the positioning compared to other
options.
Table 1: Subjective evaluation of different aspects of our
verbalisation: 1:Strongly disagree - 5:Strongly agree

Questions Score
1- Utterances were generated by a computer 4.3
2- Instructions were unambiguous 2.9
3- I prefer instructions referring to structures in place 3.98
4- Utterances were spelled clearly 3.65
5- Syntax was correct 4.15
6- I prefer instructions referring to the brick just placed by the robot 3.55
7- Utterances were generated by humans 3.33
8- The complexity of sentences were well adapted to the task 3.05

Table 2: Subjective evaluation of the participants’ men-
tal charge: 1:Strongly disagree - 5:Strongly agree

Questions Score
1- The task was highly demanding 3.9
2- The pace of the task was too fast 2.9
3- You managed to accomplish what you were told to do 3.23
4- You worked hard to achieve your level of performance 3.9
5- You were insecure and stressed 2.48

Table 3: Different styles of sentences for the scene in
fig.10

Type Sentence
robot Pour terminer la tour Sud, je mets un cube rouge ici.

worst_NI
Empile une barre bleue orientée Est-Ouest pour recouvrir exactement
le haut de l’escalier, et le pilier qui est à l’Ouest de ce dernier.

best_NI
Dépose une barre bleue recouvrant complètement la tour rouge au
Nord et le sommet de l’escalier jaune.

without_context
Place une barre bleue orientée Est-Ouest dont le côté Ouest doit être
aligné avec celui du cube précédent laissant deux tenons libres vers le Nord.

with_context
Pour faire un pont, place une barre bleue orientée Est-Ouest qui recouvre
le sommet jaune de l’escalier et le sommet rouge de la tour Nord.

4.2 Task Assembly

The previous experiments helped us to identify the
key features used and preferred by humans for ver-
bally instructing an action. We now test the impact
of this verbal instruction on effective action perfor-
mance.

Figure 10 shows an example scene and table 3
shows the sentences for that scene. The line ‘Robot’
gives the sentence accompanying the robot’s first
action. The other four sentences correspond to the

Figure 10: Scene example, having the bold red cube
as the previously placed cube by the robot, and the
transparent blue bar as the new object to be placed by
the human agent

different styles we are comparing when instructing
a participant. At first glance, we see in this example
some difficulty of giving an instruction without the
use of structures/context. This is why both highest
and lowest ranked natural sentences use context
and structures, suggesting their importance when
giving the instruction.
Scene presentation. The participants were asked
to observe the robot placing a brick on the game
board, and then to continue the assembly according
to its verbal instructions (see video). We use the
same scenes as before and increase the test set using
data augmentation (mirroring along the north/south
axis), resulting in 54 scenes in total (3 training
scenes & 51 test scenes).
Subjects. 40 French native speakers are recruited
through the Prolific platform. 86.79% are right
handed, 50% identified as men and 88.67% have
already played with LEGO™ before this experi-
ment.
Instructions and conditions. They have to place
the right element as instructed, accurately and as
fast as possible (see video). We have 4 instruction
styles: (a) Lowest preference rate from the data-
collection experiments (worst_NI). (b) Highest
preference rate from the data-collection experi-
ments (best_NI). (c) AI-generated description
without mention of structures (without_context).
(d) AI-generated description with mention of struc-
tures (with_context). The 4 styles are equally
distributed among the 40 participants so that each
scene with a given style is exactly performed by 10
participants.
Final questionnaires. We also include a two-part,
5-point Likert scale, questionnaire at the end of the

https://youtu.be/harvF23E_dI
https://prolific.co/
https://youtu.be/harvF23E_dI
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Figure 11: Normalized results over the 4 different styles
– scenes with only one structure as available reference

Figure 12: Normalized results over the 4 different styles
– scenes with multiple structures as available references

experiment: (a) the first one evaluates the different
parts of our verbalizer (table 1); (b) the second one
(table 2) uses the NASA Task Load Index (NASA-
TLX) (Hart and Staveland, 1988), which is the most
common, subjective, multidimensional framework
Colligan et al. (2015) to measure the cognitive load.
Results. For each of the 4 styles, we measure 5
cues: (a) the pick_to_place time (i.e. time between
the first chosen object and the final release), (b-c)
the number of chosen objects and positions to evalu-
ate the participants’ hesitation, (d-e) the percentage
of correct selections and placements to evaluate
performance. Results are given in Figures 11-12.
We select scenes involving more than 2 bricks but
less than 2 laid structures (see Figure 11). We fit a
linear mixed-effects model (lmr from lme4 R pack-
age) with the scene as additional factor and subjects
as random effect, and performed a post-hoc Tukey
adjustments for pairwise comparisons (ght from
multcomp R package). The highest ranked natural
instruction significantly outperforms (p < 10−3)
the three other styles for time-to-complete and all
but best-AI for successful completion. For scenes
21-24 with more than 2 laid structures (see Fig-
ure 12), AI-generated descriptions without mention
of structures unexpectedly outperforms (p < 10−3)
all others for successful completion at a large mar-
gin: it seems that complex calculations seduce hu-
man intelligence but penalize performance. It also
mirrors the findings of the data collection: people
propose the use of axes and verifications (in experi-
ment 1) but dislike them when asked to choose the

best instruction (in experiment 2).
The verbalisation questionnaire (Tab. 1) shows that
the verbalizer is working adequately: instructions
are syntactically correct and clear, do not contain
any major ambiguities and are properly uttered.
The participants agree that both the use of hierar-
chical context and the mentioning of previously
placed objects are a plus, while still leaning more
towards the use of the former.
The NASA-TLX questionnaire (Tab. 2) shows that
the experiment does require effort and cognitive
load. It also shows that the participants are fairly
satisfied with the rhythm, do not have much to
say about their performance and do not express
important signs of stress/frustration.

5 Conclusions and Future Work

We evaluate the impact of using hierarchical con-
text when giving instructions in an assembly task.
We gathered and ranked crowdsourced human in-
structions. We set up a multi-layer verbalizer that
computes AI-generated instructions. We then com-
pared the performance of these verbalization poli-
cies on a web-based assembly task. The differ-
ences between users’ preferences and actual per-
formances claim for an evaluation method in two
steps: first, selecting candidate policies by subjec-
tive preference but then assess their efficiency by
objective performance. We see that referring to
hierarchical context improves human performance,
compared to refraining from using it, in particu-
lar when context is unambiguous. We also show
that our AI-generated instructions often outperform
the least popular human instructions, validating the
efficiency of our verbalizer.

While verbalizing, pointing towards the intended
object would improve the understanding of the
robot’s intention, and reduce the effort in the verbal
explanation to ensure task completion. Therefore,
future work will include this modality in the ac-
tion layer of our architecture along with speech-
hand-gaze coordination. Incremental monitoring
of actions by perception, in particular for on-line
comprehension and attention, is a key issue for
HRI.
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A Appendix

A.1 Obtaining natural exemplars

We present here, a screen capture from the crowd-
sourcing experiment1. The left part of figure 13
shows the fixed working environment. The right
part shows a list of proposed naturally written sen-
tences where the participants needs to choose the
best action description (first objective).

Figure 13: Describing the action

In figure 14, we show the second objective of the
task, getting a suggestion of an action description
from the participant.

Figure 14: Participant inputs their description of the
next action (scene in appendix fig. 15)

Figure 15: A 3D scene containing, the last added ele-
ment being the yellow cube on top of a staircase and the
next object to be added being the blue brick on the left

1https://youtu.be/D5fPfKz8c8Q – video

Figure 16: On the left, our proposed sentences. On
the right, explanation of the correctness of each choice
during the training phase. (scene in appendix fig. 15)

A.2 Data Collection

This section – the second experiment2

Figure 17: Different criteria (topological) found in a 3D
scene

Figure 18: An example of the proposed action descrip-
tions for the scene in fig. 17

2https://youtu.be/uS65RWLmpWw – video

https://youtu.be/D5fPfKz8c8Q
https://youtu.be/uS65RWLmpWw
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Figure 19: Different criteria found in a 3D scene

Figure 20: An example of the proposed action descrip-
tions for the scene in fig. 19

A.3 Assembly

We present here, a screen capture from the assem-
bly task experiment3. The top part of figure 21
shows the robot placing a yellow cube in order to
finish a staircase. The bottom part shows a human
participant trying to accomplish a task after receiv-
ing a detailed instruction, from the system, on how
to do so.

Below, we have a screen capture of the objec-
tive evaluation of our assembly task with figure 22
corresponding to the participants’ evaluation of the
verbalisation and figure 23 corresponding to the
participants’ evaluation of the concerned mental
charge.

3https://youtu.be/harvF23E_dI – video

Figure 21: Top: Robot’s action. Bottom: participant’s
action

Figure 22: Questions on the verbalisation

Figure 23: Questions on mental load – taken from
NASA-TLX

https://youtu.be/harvF23E_dI

