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Abstract

Object permanence is the ability to form and
recall mental representations of objects even
when they are not in view. Despite being a
crucial developmental step for children, ob-
ject permanence has had only some explo-
ration as it relates to symbol and communica-
tive grounding in spoken dialogue systems. In
this paper, we leverage SLAM as a module
for tracking object permanence and use a robot
platform to move around a scene where it dis-
covers objects and learns how they are denoted.
We evaluated by comparing our system’s ef-
fectiveness at learning words from human di-
alogue partners both with and without object
permanence. We found that with object per-
manence, human dialogue partners spoke with
the robot and the robot correctly identified ob-
jects it had learned about significantly more
than without object permanence, which sug-
gests that object permanence helped facilitate
communicative and symbol grounding.

1 Introduction

Communicative grounding is the process of medi-
ating what words mean (Clark, 1996) and symbol
grounding is the establishment of connections be-
tween language and the perceptual, physical world
(Harnad, 1990). Following Larsson (2018) that ex-
plained how symbol grounding is a side effect of
communicative grounding, children who are learn-
ing their first language cannot learn symbol ground-
ing without simultaneously being engaged in com-
municative grounding. Consider the following ex-
ample, within the physical space of a room. A child
(C) picks up a ball (B) and a caregiver (P) engages
in dialogue with the child about the ball:

(1) a. (C picks up a B and looks at it)
b. P: That’s a ball!
c. C: ball
d. P: Ball! Very good!

Communicative grounding happens between P and
C during this interaction as P offers ball as a word
with a semantic potential and C understands B to
be an extension of ball. At the point (1)-b symbol
grounding takes place between C and B where C
links the word ball to the object in their hand. Com-
municative grounding then follows when C says
ball and receives a positive confirmation from P,
resulting in knowledge that P has experienced an
interaction with C when C heard and demonstrated
understanding of ball, and C received confirmation
of understanding of the word ball from P.

But what happens in Example (1) when C moves
their attention to a different object? It is the case
that the C has grounded the word ball using their
experience with B, and P acknowledges that C has
done so, but does it matter that the object is no
longer in view? Prior work explored the interplay
between communicative and perceptual grounding
(Chai et al., 2014; Larsson, 2018), but there is very
little work on how object permanence plays a role
in the communicative and symbol grounding pro-
cess. Piaget identified object permanence in the
child development process within the sensorimotor
stage—a period that lasts from birth to nearly two
years old (i.e., beginning before children can speak)
when children largely interact with and understand
the world through their sensorimotor experience
(Piaget, 2013; Bremner et al., 2015). Moreover,
children who are learning their first words are ego-
centric in that they have not yet developed the ca-
pability of understanding another person’s point
of view (i.e., of an object) (Repacholi and Gopnik,
1997). A lack of object permanence means that
objects that children observe, but are then out of
view no longer exist, and are separate and distinct
objects if the child observes them again.1

1Lack of object permanence is the common assumption
that holds for most vision and language datasets, e.g., ref-
COCO (Yu et al., 2016) where referring expressions to ob-
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Moore and Meltzoff (1999) suggested that as
early as four months, a child begins to recognize
that objects have permanence even when the child
is not actively observing them—an ability that
the child can leverage before they start to learn
language—but this knowledge has been ignored
in prior research. Therefore, in this paper, we ask
the question: Does object permanence matter for
communicative grounding and symbol grounding
in an automated learning spoken dialogue system?
We hypothesize that it does matter, particularly for
first-language acquisition in a spoken dialogue sys-
tem (SDS) that has no prior exposure to language.
We test our hypothesis in a human-robot interac-
tion (HRI) task where we task human participants
to interact with a robot and observe that the robot
has been able to utter words in the right context.
We use a survey to measure the perceptions of the
human participants in order to establish that com-
municative grounding took place, and we measure
the number of words that the robot “learned” dur-
ing the interaction to determine if communicative
and symbol grounding took place. We find through
our experiment that symbol and communicative
grounding are affected by object permanence, lead-
ing to increased user engagement and a more re-
sponsive and effective spoken dialogue system that
learns word groundings as it interacts.

In the following section, we compare our work to
others then explain our method for tracking object
permanence using a simultaneous localization and
mapping (SLAM) module and the the robot-ready
SDS system that we used. We then explain our
experiment and conclude.

2 Background & Related Work

Object permanence is a crucial milestone in cog-
nitive development, and it has been suggested by
Moore and Meltzoff (1999) that as early as four
months this milestone is reached. Tomasello and
Farrar (1984) shows that as infants enter the sixth
stage of object permanence development (where
children understand that objects completely re-
moved from their view still exist) they start to learn
relational words. A more recent study explores
the development of search behavior in 7 month
old infants after they guide them in understand-
ing the effects of their actions upon hidden objects.
This indicates that object permanence is crucial in

jects depicted in images only offer a single visual experience
(though multiple referring expressions) to the objects.

searching behavior as it leads to the understanding
that infants have the ability to cause hidden objects
to reappear (O’Connor and Russell, 2015).

Bechtle et al. (2015) worked towards developing
a sense of object permanence in robots through
creating a simulated experimental setup where a
robot learns how the movements of its arms (one
holding a shield) affect the visual detection of an
object in a scene. Although, not directly related to
object permanence, Platonov et al. (2019) is more
closely related to grounding as they create a SDS

which is able to create a 3D model of a physical
block world and answer spatial questions about it.
Roy et al. (2004) also explored spatial reasoning
within a physical world through the creation of a
robot called Ripley which performed grounding of
spatial language that could not be understood under
fixed-perspective assumptions.

Of similar importance in cognitive development
is communicative grounding. Researchers, notably
Chai et al. (2014), have investigated how the collab-
orative efforts of a robot in situated human-robot
dialogue affects both perceived and true grounding
which involved a situated setup of objects simi-
lar to our experiment. This notion of common
ground and communicative grounding has also
been explored in other human-robot interaction
work (Kiesler, 2005; Powers et al.; Stubbs et al.,
2007, 2008; Peltason et al., 2013) and work involv-
ing human interactions with virtual agents (Puste-
jovsky et al., 2017). Our work extends and builds
on prior work as we focus on using object perma-
nence in a robot to improve its language learning
abilities.

3 Proposed System

In this section we explain how we modeled the
dialogue for language learning, integrated with
robot modules. We first explain the choice of
robot: Digital Dream Lab’s Cozmo robot. Plane
et al. (2018) showed that participants perceived
Cozmo as young and with potential to learn, which
is precisely the setting and perception that we want
dialogue partners to have when interacting with
Cozmo. Cozmo is small, has a track for movement,
a lift and a head with an OLED display which allow
it to display its eyes. Within the head is a small
camera and a speech synthesizer (with a “young”
sounding voice). For this study we make use of
Cozmo’s camera for object detection, track for
navigation and most importantly Cozmo’s built-in
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SLAM (Simultaneous Localization and Mapping)
functionality for object permanence. Cozmo has
no microphone, so we use an external microphone.

The system outlined in this paper uses the incre-
mental framework ReTiCo (Michael and Möller,
2019; Michael, 2020) extended for multimodal use
with Cozmo (Kennington et al., 2020), leveraging
existing modules as well as the newly developed
Object Permanence module. The full SDS is de-
picted in Figure 3. The modules include: Object
Detection, Feature Extraction, Automatic Speech
Recognition, Natural Language Understanding,
Grounded Semantics, Action Management (Navi-
gation & Speaking), and Object Permanence.

Object Detection The Object Detection module
uses YOLO object detection (Redmon et al., 2016).
The model we used was pre-trained on the MSCoco
dataset (Lin et al., 2014) containing 91 object types
with a total of 2.5 million labeled objects in 328
thousand images. We apply this model as a means
for object region classification in order to draw
bounding boxes around objects in images received
from Cozmo’s Camera. We discard the labels and
only use the bounding box information as to avoid
the use of a pretrained vocabulary since children
are born without linguistic knowledge. The output
of this module is the bounding box information of
the objects in view to Cozmo.

Feature Extraction The Feature Extraction
module uses CLIP (Radford et al., 2021) a neural
network trained on a variety of (image, text) pairs.
This module takes an image and bounding box in-
formation, extracts each sub-image containing each
object, then passes those through CLIP’s image en-
coder which returns image features encoded by the
vision portion of the CLIP model. This module out-
puts a vector of size 512 for each detected object,
for each frame. In our case only one object will be
detected in an image, though as the robot shifts and
moves, multiple frames of the object will results in
multiple CLIP vector representations of that object.
Taken together, the Object Detection and Feature
extraction modules provide a way of isolating and
extracting features from objects; children likewise
have experienced objects physically (i.e., visual,
tactile) before they learn that words denote objects.
Both modules use models that were trained using
language data which certainly affects functionality
of the modules. We ignore the language aspects
of the models, and leave for future work develop-

ing models (e.g., object region detection) that are
trained without language data.

Figure 1: Visualization of the creation of a custom ob-
ject in SLAM. In 1, the object is not yet observed, but
in 2 the object is placed in the SLAM space.

Automatic Speech Recognition The Automatic
Speech Recognition (ASR) module transcribes user
speech. We use Google’s speech to text API. The
output is the word-level transcription.

Natural Language Understanding The Natural
Language Understanding (NLU) module takes in
the transcribed speech from the ASR and deter-
mines the dialogue act (i.e., intent) of the user using
RASA (Bocklisch et al., 2017) an open source NLU

library. Specifically, we use RASA to categorize
user speech into 5 different dialogue acts:

• positive user feedback (e.g., yes)
• negative user feedback (e.g., no)
• where questions (e.g., where is the can?)
• what questions (e.g., what is that?)
• statements (e.g., that is red.)

The positive and negative user feedback is used
to document the number of questions that Cozmo
answered correctly and incorrectly from the par-
ticipant. We categorize where and what questions
so that Cozmo can differentiate between initiating
finding behavior (where questions) and answering
questions using the best known word about an ob-
ject (what questions). This signals to our system
when it should be in a state of learning how words
ground into images, or whether it should be exploit-
ing what it knows in order to locate and identify an
object it has seen. This fairly simplistic ontology
of dialogue acts is in line with child development;
children can infer intent of positive and negative
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feedback, as well as simple questions like location
before they are able to speak, albeit often through
extra-linguistic information such as prosody and
affective displays (see (Locke, 1995), chapters 3-5).
We trained RASA on 19 hand-crafted examples
of positive user feedback, 10 examples of nega-
tive user feedback, 25 examples of what questions,
22 examples of where questions, and 747 exam-
ples of statements that we extracted from random
samples of text from Wikipedia. We train on 747
examples of statements because statements are the
most difficult to identify as there are many different
variations of statements therefore requiring many
training examples.

Grounded Semantics The Grounded Semantic
Module performs symbol grounding by mapping
heard words (though the ASR) to observed objects.
The module makes use of the the Words as Clas-
sifiers (WAC) model (Kennington and Schlangen,
2015). In the WAC model, each word is represented
by its own classifier trained on positive and nega-
tive examples of real-world referents and has been
shown to learn words with only a few examples,
which is critical for our task that is intended to
mimic how children fast-map words to objects. The
module learns as it “hears” a word (i.e., a recent
update from the ASR module) and is currently ob-
serving an object. The WAC model associates words
with the detected objects (i.e., represented as CLIP
vectors) as positive examples. The module system-
atically trains individual logistic regression classi-
fiers for each word as it hears words and associates
those words with objects. Negative examples for
training are randomly sampled from positive vec-
tors associated with other words (the system must
have heard at least two words and associated some
objects with them in order to train). The classifiers
are trained every time an utterance is spoken and
after observing an object every 20 added frames.

The Grounded Semantics module has two
modes: explore and exploit. In the explore mode,
the module associates words with objects and trains
the individual word classifiers as explained above.
In the exploit mode, the module instead uses the
recently heard words and either attempts to identify
the object that is the best fit for the description or it
attempts to determine which word is the best fit for
an object that is currently under observation. The
module’s mode is determined by the speech act as
signalled by the NLU module, explained above.

Action Management For dialogue (and robot ac-
tion) management we use PyOpenDial (Jang et al.,
2019). This module acts as a broker of the entire
dialogue state to map from states to actions. In
our case, the primary actions are explore when
the robot drives around looking for objects, find
when the dialogue partner asks about an object,
learnwhen the robot should be associating words
with objects, and answer when the robot should
utter something in response to a dialogue partner’s
where or what dialogue act. The explore action is
the default. In the explore state, Cozmo randomly
drives in front of one of the 7 different objects (see
Figure 4).

Figure 2: Quad-tree Maps are space efficient alterna-
tives to an an occupancy map where open space is com-
pressed into a single “unoccupied” cell. White means
no cells are occupied, grey means some, and black
means all. The root node represents the entire map and
children are arranged in clockwise order. The first child
node corresponds to the 4x4 grid in the upper left.

Object Permanence The Object Permanence
module is an application of a SLAM module that is
part of the Cozmo robot’s functionality. The goal
of the SLAM module is to track the position and
location of observed objects in a 3-dimensional
space. The surface that the robot can drive on is a
2-dimensional plane that the SLAM module breaks
into very small cells. The SLAM module then uses
quad-tree maps (Finkel and Bentley, 1974) to de-
termine which cells are occupied and which ones
are free. Representing the space as a quad-tree
map allows SLAM to store and retrieve object lo-
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Figure 3: Schematic of our system.

cations efficiently. An example of a quad-tree map
is shown in Figure 2. While we do not argue that
humans use quad-tree maps for organizing object
permanence, it serves as a functional approxima-
tion of what object permanence affords: the ability
to remember objects and their locations.

When the system is first invoked, there is ini-
tially no history of observed objects and the robot’s
starting point becomes the point of reference for
everything that the robot will observe. As the robot
moves (i.e., drives forward or backward, and turns
left or right) the SLAM module can track precisely
how far and in which direction the robot has moved
from its origin. The original SLAM module for
Cozmo is designed to track specific objects based
on a marker code (i.e., three blocks each with QR-
like symbols). We extended the functionality of
the SLAM module to include any object that is ob-
served by the Object Detection module described
above. We use that module’s bounding box infor-
mation (See Figure 1) and current observed loca-
tion relative to where Cozmo is facing to infer the
object’s location and uniqueness. The uniqueness
here is important because if the robot moves away
from the object then returns to it later, the robot
should be able to identify the object as one that has
been seen before, not as a new object. For each
new object that the robot observes, the Object Per-

manence module assigns a unique identifier. The
unique identifier is shared with the Grounded Se-
mantics module so it can associate specific objects
(i.e., their CLIP vectors) with words that were used
to describe those specific objects.

Traditional symbol grounding generally only vi-
sualizes representations of objects and associates
those with referring expressions or descriptions, but
the identity of objects is discarded during testing.
Here, the WAC model not only learns word ground-
ings through experience as it observes words ut-
tered in association with observing objects, but it
also uniquely identifies each object and keeps a
history of its visual experience with each object re-
gardless of how they were referred to or described.
Importantly, the SLAM functionality does not just
identify unique objects, it gives the robot the ability
to return directly to that object without colliding
with other objects because it tracks all objects that
Cozmo has observed.

System Task Behavior The default action for
Cozmo is explore which is done by randomly
choosing a position at one of the drawn squares in
front of all seven objects shown in 4 and centering
its camera to the closest object. Once in front of an
object, Cozmo waits up to 10 seconds for an utter-
ance from a dialogue partner. If the partner utters
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Figure 4: The seven objects used for our experiment

something, Cozmo assumes the words are about the
object in view and the Grounded Semantics mod-
ule learns by associating the last uttered word with
the object. If no utterance is given, Cozmo moves
away from the object and continues to explore.
If the dialogue partner continues to speak, Cozmo
remains in front of the object.

The find state is activated when the NLU de-
tects that the dialogue partner has uttered a where
dialogue act. For example, where is a can? would
result in a detected find dialogue act. This trig-
gers the Grounded Semantics module to find the
object in its history that is the most probable fit for
the description (in this case, the word can might
ground more strongly to one object compared to
others). The Grounded Semantics module then
signals to the Object Permanence module to drive
to and face the object with the specified identi-
fier. Once the robot reaches the object, it utters
back the description (i.e., can). At this point the
dialogue partner can utter positive or negative feed-
back. When the Object Permanence module is not
available (i.e., our baseline system version), Cozmo
randomly explores objects and the Grounded Se-
mantics module determines if the description fits
the currently observed object using the last word
in the utterance. If the probability of the model
is above 0.5, then Cozmo repeats what it heard to
signal that Cozmo found the object. The user can
then utter positive or negative feedback.

Another dialogue act is the what question. If
the robot is currently looking at an object, then
the system assumes the what dialogue act is about
the currently observed object and looks through its
history to find the best known word for the object
currently in view and utters the best known word.

In the following section, we will explain how
we evaluated our SDS and whether or not Cozmo’s
language learning abilities improved with the use
of the Object Permanence module.

4 Evaluation

In this section, we explain how we evaluated
our model with human participants to determine
if Cozmo performs communicative and symbol
grounding more effectively with Object Perma-
nence. We compare two versions of our system:
one that did not have an access to the Object Per-
manence module and one that did. Our evaluation
included objective measures logged by the system
and by the participants used to measure symbol
grounding by tracking correctly “learned” words,
as well as subjective measures collected using par-
ticipant questionnaires used to measure commu-
nicative grounding.

Procedure Study participants met in our lab lo-
cated near Boise State University’s Computer Sci-
ence building. The lab is setup for the participant
interaction as follows. A large table is setup with 7
objects on the table as shown in Figure 4. We chose
the 7 objects to vary shape and color, but wanted
to have a degree of overlap for words that might be
used to describe them (e.g., can or blue).

In front of each object is a straight line drawn
on the table and a box.2 Cozmo is placed in front
of the leftmost object. The microphone that feeds
into the ASR module is positioned in front and to
the left of the table with the objects and Cozmo.
The participant stands or sits (as they prefer) at the
front of the table. Cozmo is not introduced to the
participant until the participant has signed a con-
sent form and the task has been explained to them.
The experimenter was present to examine the state
of the robot and the microphone, answer any ques-
tions the participant may have, and troubleshoot
any problems that arose. The experimenter was
permitted to offer a constrained set of coaching
tips to the participant during the experiment, given
the participant needed a reminder of their task or

2The line and box does not affect Cozmo, it is just there to
help the participant adjust Cozmo when needed.
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the instructions. Following each interaction with
Cozmo, the participant was instructed to complete a
questionnaire. Following the completion of the ex-
periment and surveys, the participant was paid $10.
We recruited 24 participants to interact with Cozmo
for two twenty-minute periods over the course of
a single session. Most study participants recruited
were from the Boise State University Department
of Computer Science. 18 of the participants were
male; 6 were female. The entire time for each
participant was approximately one-hour.

After signing the informed consent, Cozmo was
introduced to the participant, with the following
explanation; (1) Cozmo has a camera that can see
the world; (2) Cozmo has a microphone and can
hear them; (3) Cozmo doesn’t know anything, but
would like to know more about the world; (4) for
the next 20 minutes, it is your job to teach Cozmo
as many words as they can, about the seven objects
in front of Cozmo; (5) Cozmo will move in front
of an object. If Cozmo does not hear you speak he
will move on to a new object. If Cozmo does hear
you speak, then it will observe the object and repeat
the word he learned. The word Cozmo learned will
always be the last word you spoke. Do not teach
Cozmo any more words until it repeats this word.
For every word you teach it, you can write it down
so you can keep track; (6) if Cozmo is not on the
square in front of the object when he moves to an
object you must readjust it to that square; (7) After
teaching Cozmo about two different words for two
different objects you can and should ask it what
and where questions to check his knowledge; (8)
For every question he gets right answer “yes” and
put down a tally mark to record a correct answer
for every question he gets wrong answer “no” only;
(9) Only speak to Cozmo when he is in front of an
object.

We used an A/B design, meaning that each par-
ticipant went through the same procedure twice,
once with Cozmo having access to Object Perma-
nence and once without access. To mitigate prim-
ing effects, the order in which the test condition
was presented was alternated.

Two System Versions The test condition is the
system version that had access to Object Perma-
nence and is explained in Section 3. The baseline
point of comparison for this study was a system
that did not have access to the Object Permanence
module. The overall functionality of the baseline
system was the same as the system with access to

Object Permanence, except that the system could
not track and locate objects when participants asked
them to. The Grounded Semantics module in this
case only performs traditional symbol grounding
between words and visual representations—not spe-
cific objects. This meant that the robot behavior
when a find dialogue state was entered (i.e., after
a where dialogue act from the participant) was dif-
ferent: instead of moving directly to the identified
object, the robot would move towards a random
object one at a time and check each object to deter-
mine if they matched the description. If an object
did match, the robot would repeat the description
to the participant, who then in turn offered positive
or negative feedback. Under the best circumstances
for the baseline system, the robot would randomly
move towards an object that fit the description on
the first attempt. But if the first object did not fit the
description, then the robot moved towards a differ-
ent object and repeated until an object matched the
description. To give the baseline version a higher
chance of the robot actually finding the objects,
the objects were placed in a line and the robot sys-
tematically drove directly to a randomly selected
object. This was designed to give the baseline sys-
tem version some degree of the object permanence
functionality as a stronger point of comparison.

Metrics All module communication is logged us-
ing the Platform for Situated Intelligence (Bohus
et al., 2017). We specifically track the number of
utterances made by the participants, including posi-
tive and negative feedback, and the number of ques-
tions asked. The participant themselves keep track
of the number of questions Cozmo correctly an-
swers (i.e., if Cozmo correctly identified an object).
These metrics act as a way to measure symbol and
communicative grounding, as well as engagement
(i.e., more utterances means more engagement).

We evaluate the robot based on questionnaire
responses filled out by the participants following
each interaction to establish that communicative
grounding took place. We used the Godspeed
Questionnaire (Bartneck et al., 2009), a 5-point
Likert-scaled questionnaire with 24 questions using
negative (left side) to positive (right side) ratings
of a robot’s anthropomorphism, animacy, likeabil-
ity, and perceived intelligence. In addition to the
Godspeed questions, we asked the participants the
following questions to further ascertain their per-
ceptions of our system and robot (some items have
boldface text to link them with results):
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(Mean / std. dev) baseline with obj. perm. p-value
Heard Words 15.9 / 3.9 18.8 / 4.7 0.02
Questions Asked 10.7 / 3.2 20.0 / 6.7 3.7e-7
% Correct 70.0 / 22.2 82.7 / 12.1 0.02

Table 1: The effect of object permanence on a language acquisition
task

Interesting 0.0048
Spend more Time 0.049
Responsive 0.083
Intelligence 0.10

Table 2: Statistical Significance
between values with and without
Object Permanence using a t-test.

(Mean / std. dev) 1st Interaction (A) 1st Interaction (B) 2nd Interaction (A) 2nd Interaction (B)
Heard Words 19.4 / 4.7 16.2 / 2.7 18.3 / 5.0 (0.56) 15.6 / 4.9 (0.72)
Questions Asked 16.4 / 4.0 12.0 / 3.5 23.0 / 7.5 (0.01) 9.7 / 2.7 (0.13)
% Correct 83.2 / 11.5 74.7 / 20.4 82.1 / 13.0 (0.84) 64.9 / 23.7 (0.30)

Table 3: The effect of initial setting on a language acquisition task (A is for with Object Permanence and B is for
without. Furthermore, the values in parentheses near the values for the second interaction represent the p-values
between the values in 1st Interaction compared to 2nd Interaction for A and B)

• How attached to the robot did you feel?
• How interesting was the robot to interact

with?
• Would you like to spend more time with the

robot?
• How many years old do you think the robot is

(in terms of its behavior)?

Results Table 1 shows the effect object perma-
nence has on Cozmo’s language acquisition abil-
ities.3 It is clear that with object permanence,
Cozmo is perceived to learn language better than
without object permanence as shown by the statis-
tical significance values. This suggests that object
permanence does appear to have an affect on sym-
bol grounding especially as Cozmo not only hears
more words on average per participant with the test
condition than without, his accuracy in answering
questions also increases by approximately 13%.

Relating to participant perceptions of the robot
and interaction, we find that overall the mean val-
ues for the ratings were higher for the test condition
than the baseline except for three questions which
relate to kindness, and feelings of calmness and in-
terest at the beginning of the interaction. Therefore,
showing that overall, the test condition positively
influenced users’ perception of Cozmo. Further-
more, we observe that with object permanence, par-
ticipants believed that Cozmo learned better than

3Nine interactions had to be restarted due to unexpected
events (e.g., Cozmo rolled off the table) which affected the
SLAM map and learned words, but this happened at roughly
the same frequency for both settings. Cozmo also picked up
his own voice in the microphone in both settings, but this also
happened at roughly the same frequency for both settings so
we decided to leave it as part of the data.

without, as seen by the overall higher intelligence
and responsiveness scores in Figure (1), though
note that the difference in perceived intelligence
is not significant, which tells us that the baseline
system was still viewed positively and therefore
provided a high point of comparison.

Participants on average estimated Cozmo’s age
with the test condition at 3.5 years of age compared
to 2.6 years of age with the baseline, suggesting
that Cozmo was perceived to be more intellectu-
ally advanced with the test condition, but still an
early language learning child, which also tells us
that the robot did not exhibit behaviors that par-
ticipants perceived as too advanced for our task.
We also observe higher responsiveness in the ob-
ject permanence version which likely results from
participants observing that Cozmo answered ques-
tions quickly and with high accuracy, suggesting
that communicative grounding was better with the
object permanence version (see Appendix for more
results comparing perceived Intelligence and Re-
sponsiveness).

Finally, ratings for interest and desire to spend
more time with the robot are significantly higher
with object permanence than without. This is espe-
cially evident when observing that the mean value
for interest at the end of the interaction is 4.7 with
the test condition and 4.2 without; the average in-
crease in interest from the beginning of the interac-
tion for the test condition is 0.54 as compared to
0.83 without. Furthermore, using questions asked
as a measurement for engagement (since it shows
active interest in what Cozmo is learning) we ob-
serve that with Object Permanence, Cozmo is asked
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approximately 9 more questions than without show-
ing that object permanence has a significant effect
on engagement (see Table 3). This is crucial, be-
cause the interaction itself needs to motivate hu-
man participants to “buy into” the robot’s language
learning by spending time and effort helping it
learn. See also Figure 5 in the Appendix for more
results.

5 Conclusion

We conducted an experiment with twenty-four par-
ticipants who performed a language acquisition
task with Cozmo both with and without object
permanence. We analyzed our results by compar-
ing the participants’ survey responses to measure
communicative grounding and number of words
heard, questions asked, and percent of questions
answered correctly to measure symbol grounding
between the experimental and control interactions.
We found that a robot with object permanence
resulted in improved communicative and symbol
grounding due to stronger engagement from the
participant and a higher percentage of correct an-
swers from Cozmo. User perceptions of Cozmo
with object permanence also greatly improved over-
all. This indicates that object permanence does in
fact have a positive affect on communicative and
symbol grounding. Our findings suggest that an
understanding of object permanence is a necessary
component of any spoken dialogue system built
to reach the potential of natural dialogue between
humans.
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Figure 6: Intelligence and Responsiveness ratings for
Cozmo with and without object permanence

Figure 5: Engagement ratings for Cozmo with and
without object permanence


